

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

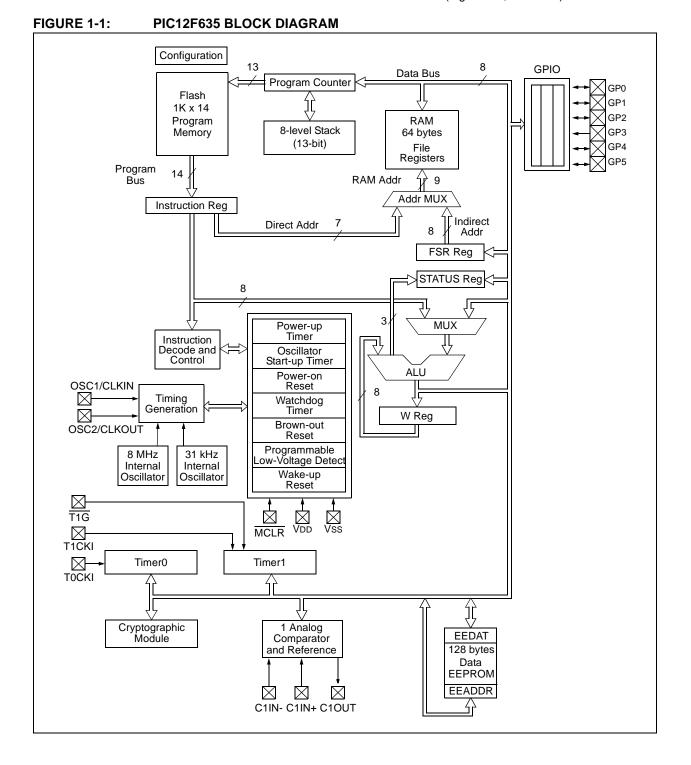
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f635-e-p

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the PIC12F635/PIC16F636/639 devices.

Block Diagrams and pinout descriptions of the devices are as follows:

- PIC12F635 (Figure 1-1, Table 1-1)
- PIC16F636 (Figure 1-2, Table 1-2)
- PIC16F639 (Figure 1-3, Table 1-3)

NOTES:

5.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (shared with Watchdog Timer)
- · Programmable internal or external clock source
- · Programmable external clock edge selection
- Interrupt on overflow

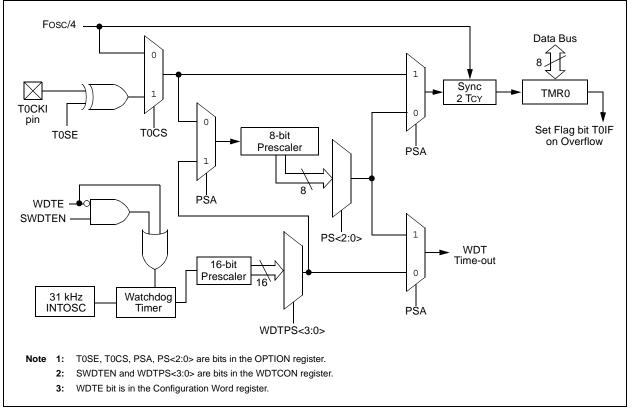
Figure 5-1 is a block diagram of the Timer0 module.

5.1 Timer0 Operation

When used as a timer, the Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

5.1.1 8-BIT TIMER MODE

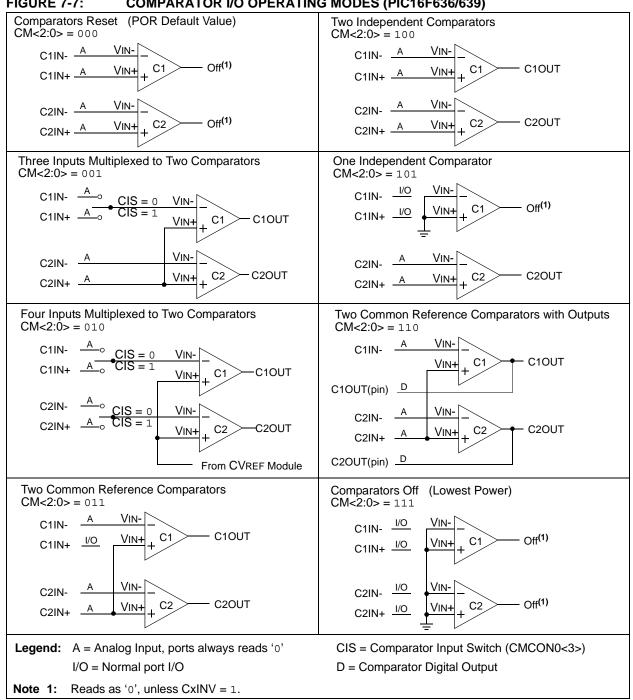
When used as a timer, the Timer0 module will increment every instruction cycle (without prescaler). Timer mode is selected by clearing the T0CS bit of the OPTION register to '0'.


When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

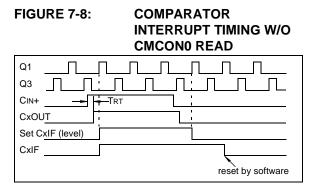
Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

5.1.2 8-BIT COUNTER MODE

When used as a counter, the Timer0 module will increment on every rising or falling edge of the T0CKI pin. The incrementing edge is determined by the T0SE bit of the OPTION register. Counter mode is selected by setting the T0CS bit of the OPTION register to '1'.


FIGURE 5-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CMCON1	—	—	—	—	—	_	T1GSS	CMSYNC	10	0010
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 000x	0000 000x
PIE1	EEIE	LVDIE	CRIE	C2IE ⁽¹⁾	C1IE	OSFIE	_	TMR1IE	000- 00-0	000-00-0
PIR1	EEIF	LVDIF	CRIF	C2IF ⁽¹⁾	C1IF	OSFIF	_	TMR1IF	000-00-0	000-00-0
TMR1H	1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	uuuu uuuu
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	uuuu uuuu
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu


Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: PIC16F636/639 only.

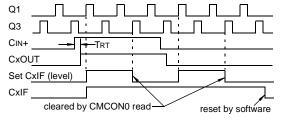


FIGURE 7-7: COMPARATOR I/O OPERATING MODES (PIC16F636/639)

PIC12F635/PIC16F636/639

FIGURE 7-9: COMPARATOR INTERRUPT TIMING WITH CMCON0 READ

- Note 1: If a change in the CMCON0 register (CxOUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CxIF of the PIR1 register interrupt flag may not get set.
 - When either comparator is first enabled, bias circuitry in the Comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 μs for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts.

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 7		parator 2 Outp	ut bit				
	When C2INV						
	1 = C2 VIN+ > 0 = C2 VIN+ <						
	When C2INV	-					
	1 = C2 VIN+ <						
	0 = C2 VIN+ >						
bit 6	C1OUT: Com	parator 1 Outp	ut bit				
	When C1INV	= 0:					
	1 = C1 VIN+ >	-					
	0 = C1 VIN+ <						
	When C1INV						
	1 = C1 VIN+ < 0 = C1 VIN+ >						
bit 5		parator 2 Outpu	t Inversion bi	t			
2.1.0	1 = C2 output	=		-			
	0 = C2 output						
bit 4	C1INV: Comp	parator 1 Outpu	t Inversion bi	t			
	1 = C1 Outpu						
	0 = C1 Outpu	it not inverted					
bit 3	-	ator Input Swite	ch bit				
	When CM<2:						
		nnects to C1 V					
		onnects to C2 V nnects to C1 VI					
		nnects to C2 V					
	When CM<2:						
		nnects to C1 V					
		nnects to C1 VI		7 5)			
bit 2-0		mparator Mode			la a		
		inputs multiple		nfigured as anal	log		
		puts multiplexe		•			
	011 = Two co	ommon referen	ce comparato				
		dependent com	•				
		dependent con		common refere	ence		
				figured as digit			
			1	<u>.</u>			

REGISTER 7-2: CMCON0: COMPARATOR CONFIGURATION REGISTER (PIC16F636/639)

9.5 Protection Against Spurious Write

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (nominal 64 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during:

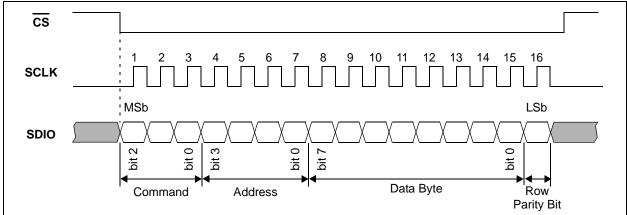
- Brown-out
- Power Glitch
- Software Malfunction

9.6 Data EEPROM Operation During Code Protection

Data memory can be code-protected by programming the CPD bit in the Configuration Word (Register 12-1) to '0'.

When the data memory is code-protected, the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code-protecting data memory. This prevents anyone from programming zeroes over the existing code (which will execute as NOPS) to reach an added routine, programmed in unused program memory, which outputs the contents of data memory. Programming unused locations in program memory to '0' will also help prevent data memory code protection from becoming breached.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	x000 0000x	0000 000x
PIR1	EEIF	LVDIF	CRIF	C2IF ⁽¹⁾	C1IF	OSFIF	_	TMR1IF	0000 00-0	0000 00-0
PIE1	EEIE	LVDIE	CRIE	C2IE ⁽¹⁾	C1IE	OSFIE	_	TMR1IE	0000 00-0	0000 00-0
EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	0000 0000	0000 0000
EEADR	EEADR7 ⁽¹⁾	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	0000 0000	0000 0000
EECON1	_	_	_	_	WRERR	WREN	WR	RD	x000	q000
EECON2	2 EEPROM Control Register 2 (not a physical register)									


TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the data EEPROM module.

Note 1: PIC16F636/639 only.

PIC12F635/PIC16F636/639

FIGURE 11-19: DETAILED SPI INTERFACE TIMING (AFE)

11.32.2.1 Clamp On Command

This command results in activating (turning on) the modulation transistors of all enabled channels; channels enabled in Configuration Register 0 (Register 11-1).

11.32.2.2 Clamp Off Command

This command results in de-activating (turning off) the modulation transistors of all channels.

11.32.2.3 Sleep Command

This command places the AFE in Sleep mode – minimizing current draw by disabling all but the essential circuitry. Any other command wakes the AFE (example: Clamp Off command).

11.32.2.4 Soft Reset Command

The AFE issues a Soft Reset when it receives an external Soft Reset command. The external Soft Reset command is typically used to end a SPI communication sequence or to initialize the AFE for the next signal detection sequence, etc. See **Section 11.20** "**Soft Reset**" for more details on Soft Reset.

If a Soft Reset command is sent during a "Clamp-on" condition, the AFE still keeps the "Clamp-on" condition after the Soft Reset execution. The Soft Reset is executed in Active mode only, not in Standby mode. The SPI Soft Reset command is ignored if the AFE is not in Active mode.

11.32.2.5 AGC Preserve On Command

This command results in preserving the AGC level during each AGC settling time and apply the value to the data slicing circuit for the following data stream. The preserved AGC value is reset by a Soft Reset, and a new AGC value is acquired and preserved when it starts a new AGC settling time. This feature is disabled by an AGC Preserve Off command (see **Section 11.19 "AGC Preserve"**).

11.32.2.6 AGC Preserve Off Command

This command disables the AGC preserve feature and returns the AFE to the normal AGC tracking mode, fast tracking during AGC settling time and slow tracking after that (see **Section 11.19 "AGC Preserve"**).

11.32.3 CONFIGURATION REGISTERS

The AFE includes 8 Configuration registers, including a column parity register and AFE Status Register. All registers are readable and writable via SPI, except STATUS register, which is readable only. Bit 0 of each register is a row parity bit (except for the AFE Status Register 7) that makes the register contents an odd number.

REGISTER 11-8: AFE STATUS REGISTER 7

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
CHZACT	CHYACT	CHXACT	AGCACT	WAKEZ	WAKEY	WAKEX	ALARM	PEI
bit 8								bit (
Legend:								
R = Readable	bit	W = Writable b	ait	II = Unimplem	ented bit, read	as 'O'		
-n = Value at I		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own	
							-	
bit 8	1 = Channel	Z is passing dat	bit (cleared via a after TAGC data after TAGC	,				
bit 7	CHYACT : Char 1 = Channel	nnel Y Active ⁽¹⁾ Y is passing da	bit (cleared via	Soft Reset)				
bit 6	1 = Channel	X is passing da	bit (cleared via ta after TAGC data after TAGC	,				
bit 5	1 = AGC is a		0,		,	vel is approxima	ately > 20 mVPP i	ange.
bit 4	1 = Channel	Z caused a AFE	Indicator Status E wake-up (pass a AFE wake-up	ed ÷64 clock co	,			
bit 3	1 = Channel	Y caused a AFE	Indicator Status E wake-up (pass a AFE wake-up	ed ÷64 clock co	,			
bit 2	1 = Channel	X caused a AFE	Indicator Status E wake-up (pass a AFE wake-up	ed ÷64 clock co	,			
bit 1	1 = The Alarr Configura		t has occurred. I				egister command nding on the state	
bit 0		or Indicator bit -	- indicates whet			ty error has occ	urred (real time)	

See Table 11-7 for the bit conditions of the AFE Status Register after various SPI commands and the AFE Power-on Reset.

TABLE 11-7:AFE STATUS REGISTER BIT CONDITION (AFTER POWER-ON RESET AND
VARIOUS SPI COMMANDS)

Condition	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Condition	CHZACT	СНҮАСТ	СНХАСТ	AGCACT	WAKEZ	WAKEY	WAKEX	ALARM	PEI
POR	0	0	0	0	0	0	0	0	1
Read Command (STATUS Register only)	u	u	u	u	u	u	u	0	u
Sleep Command	u	u	u	u	u	u	u	u	u
Soft Reset Executed ⁽¹⁾	0	0	0	0	0	0	0	u	u

Legend: u = unchanged

Note 1: See Section 11.20 "Soft Reset" and Section 11.32.2.4 "Soft Reset Command" for the condition of Soft Reset execution.

Register	Address	Power-on Reset Wake-up Reset	MCLR Reset WDT Reset Brown-out Reset ⁽¹⁾ Wake-up Reset	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
W	_	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	00h/80h	xxxx xxxx	xxxx xxxx	uuuu uuuu
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h/82h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h/84h	xxxx xxxx	uuuu uuuu	սսսս սսսս
PORTA	05h	xx xx00	00 0000	uu uu00
PORTC ⁽⁶⁾	07h	xx xx00	00 0000	uu uu00
PCLATH	0Ah/8Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh	0000 000x	0000 000x	uuuu uuuu (2)
PIR1	0Ch	0000 00-0	0000 00-0	uuuu uu-u (2)
TMR1L	0Eh	xxxx xxxx	uuuu uuuu	<u>uuuu</u> uuuu
TMR1H	0Fh	xxxx xxxx	<u>uuuu</u> uuuu	uuuu uuuu
T1CON	10h	0000 0000	uuuu uuuu	-uuu uuuu
WDTCON	18h	0 1000	0 1000	u uuuu
CMCON0	19h	0000 0000	0000 0000	uuuu uuuu
CMCON1	1Ah	10	10	uu
OPTION_REG	81h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h	11 1111	11 1111	uu luuu
TRISC ⁽⁶⁾	87h	11 1111	11 1111	uu luuu
PIE1	8Ch	0000 00-0	0000 00-0	uuuu uu-u
PCON	8Eh	01 q-qq	0u u-uu (1,5)	Ou u-uu
OSCCON	8Fh	-110 q000	-110 q000	-uuu uuuu
OSCTUNE	90h	0 0000	u uuuu	u uuuu
WPUDA	95h	11 -111	11 -111	uuuu uuuu
IOCA	96h	00 0000	00 0000	uu uuuu
WDA	97h	11 -111	11 -111	นนนน นนนน
VRCON	99h	0-0- 0000	0-0- 0000	u-u- uuuu
EEDAT	9Ah	0000 0000	0000 0000	uuuu uuuu
EEADR	9Bh	0000 0000	0000 0000	սսսս սսսս
EECON1	9Ch	x000	d000	uuuu
EECON2	9Dh			
ADRESL	9Eh	xxxx xxxx	<u>uuuu</u> uuuu	uuuu uuuu
ADCON1	9Fh	-000	-000	-uuu
LVDCON	94h	00-000	00-000	uu -uuu
CRCON	110h	0000	0000	uuuu

TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS

 $\label{eq:logend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

4: See Table 12-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: PIC16F636/639 only.

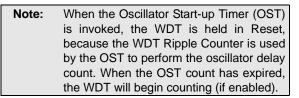
^{3:} When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 12-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	010x
MCLR Reset during normal operation	000h	000u uuuu	0uuu
MCLR Reset during Sleep	000h	0001 Ouuu	0uuu
WDT Reset	000h	0000 uuuu	0uuu
WDT Wake-up	PC + 1	սսս0 Օսսս	uuuu
Brown-out Reset	000h	0001 luuu	0110
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uuuu
Wake-up Reset	000h	0001 1xxx	010x

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit, GIE, is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.


12.11 Watchdog Timer (WDT)

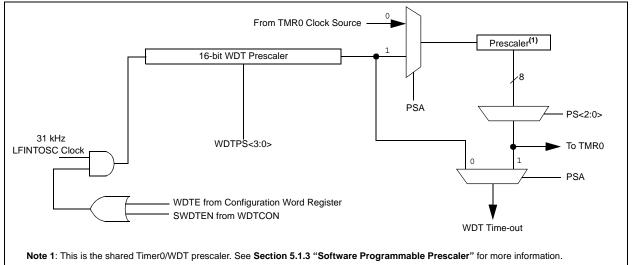
The PIC12F635/PIC16F636/639 WDT is code and functionally compatible with other PIC16F WDT modules and adds a 16-bit prescaler to the WDT. This allows the user to have a scaler value for the WDT and TMR0 at the same time. In addition, the WDT time-out value can be extended to 268 seconds. WDT is cleared under certain conditions described in Table 12-7.

12.11.1 WDT OSCILLATOR

The WDT derives its time base from the 31 kHz LFINTOSC. The LTS bit does not reflect that the LFINTOSC is enabled.

The value of WDTCON is '---0 1000' on all Resets. This gives a nominal time base of 16 ms, which is compatible with the time base generated with previous PIC12F635/PIC16F636/639 microcontroller versions.

A new prescaler has been added to the path between the INTRC and the multiplexers used to select the path for the WDT. This prescaler is 16 bits and can be programmed to divide the INTRC by 32 to 65536, giving the WDT a nominal range of 1 ms to 268s.


12.11.2 WDT CONTROL

The WDTE bit is located in the Configuration Word register. When set, the WDT runs continuously.

When the WDTE bit in the Configuration Word register is set, the SWDTEN bit of the WDTCON register has no effect. If WDTE is clear, then the SWDTEN bit can be used to enable and disable the WDT. Setting the bit will enable it and clearing the bit will disable it.

The PSA and PS<2:0> bits of the OPTION register have the same function as in previous versions of the PIC16F family of microcontrollers. See **Section 5.0 "Timer0 Module"** for more information.

FIGURE 12-9: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 12-7: WDT STATUS

Conditions	WDT	
WDTE = 0		
CLRWDT Command	Cleared	
Oscillator Fail Detected	Cleared	
Exit Sleep + System Clock = T1OSC, EXTRC, HFINTOSC, EXTCLK		
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST	

PIC12F635/PIC16F636/639

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

Instruction Descriptions

13.2

BCF	Bit Clear f		
Syntax:	[label]BCF f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	$0 \rightarrow (f < b >)$		
Status Affected:	None		
Description:	Bit 'b' in register 'f' is cleared.		

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a two-cycle instruction.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

14.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

14.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC[®] and MCU devices. It debugs and programs PIC[®] and dsPIC[®] Flash microcontrollers with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high speed, noise tolerant, lowvoltage differential signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

14.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

14.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

15.4 DC Characteristics: PIC12F635/PIC16F636-I (Industrial) PIC12F635/PIC16F636-E (Extended)

DC CHARACTERISTICS			Standard Operating Cond Operating temperature		-40°C s	otherwise stated) ·85°C for industrial ·125°C for extended	
Param No.	Sym	Characteristic	Min Typ†		Мах	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			Vss	—	0.15 Vdd	V	Otherwise
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	Entire range
D032		MCLR, OSC1 (RC mode)	Vss	_	0.2 Vdd	V	
D033		OSC1 (XT and LP modes) ⁽¹⁾	Vss	_	0.3	V	
D033A		OSC1 (HS mode) ⁽¹⁾	Vss	_	0.3 Vdd	V	
	Viн	Input High Voltage					
		I/O ports:					
D040 D040A		with TTL buffer	2.0 (0.25 Vdd + 0.8)	_	Vdd Vdd	V V	$4.5V \le VDD \le 5.5V$ Otherwise
D041		with Schmitt Trigger buffer	0.8 VDD	_	Vdd	V	Entire range
D042		MCLR	0.8 Vdd	_	Vdd	V	5
D043		OSC1 (XT and LP modes)	1.6	_	Vdd	V	(Note 1)
D043A		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V	(Note 1)
D043B		OSC1 (RC mode)	0.9 Vdd	_	Vdd	V	
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O ports	—	± 0.1	± 1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in \ at \ high-impedance} \end{split}$
D060A		Analog inputs	—	± 0.1	± 1	μΑ	$VSS \leq VPIN \leq VDD$
D060B		VREF	—	± 0.1	± 1	μΑ	$VSS \leq VPIN \leq VDD$
D061		MCLR ⁽³⁾	—	± 0.1	± 5	μΑ	$VSS \leq VPIN \leq VDD$
D063		OSC1	—	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration
D070	IPUR	PORTA Weak Pull-up Current	50	250	400	μA	VDD = 5.0V, VPIN = VSS
D071	IPDR	PORTA Weak Pull-down Current	50	250	400	μA	Vdd = 5.0V, Vpin = Vdd
	Vol	Output Low Voltage					
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)
D083		OSC2/CLKOUT (RC mode)	—	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V (Ind.) IOL = 1.2 mA, VDD = 4.5V (Ext.)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

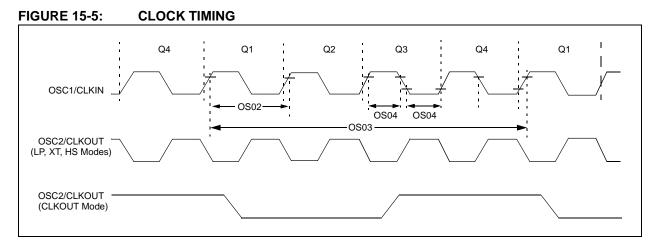
2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: See Section 9.4.1 "Using the Data EEPROM" for additional information.

15.6 DC Characteristics: PIC16F639-I (Industrial)

DC CHARACTERISTICS		ICS				-40°C ≤	ess otherwise stated) C ≤ TA ≤ +85°C for industrial ≤ VDD ≤ 3.6V		
Param								Conditions	
No.	Sym	Device Characteristics	Min	Тур†	Мах	Units	Vdd	Note	
D010	IDD	Supply Current ^(1,2,3)	_	11	16	μA	2.0	Fosc = 32.768 kHz	
			—	18	28	μΑ	3.0	LP Oscillator mode	
D011			_	140	240	μΑ	2.0	Fosc = 1 MHz	
			—	220	380	μΑ	3.0	XT Oscillator mode	
D012			_	260	360	μΑ	2.0	Fosc = 4 MHz	
			_	420	650	μΑ	3.0	XT Oscillator mode	
D013			_	130	220	μΑ	2.0	Fosc = 1 MHz	
			—	215	360	μA	3.0	EC Oscillator mode	
D014			—	220	340	μA	2.0	Fosc = 4 MHz	
			_	375	550	μΑ	3.0	EC Oscillator mode	
D015			_	8	20	μΑ	2.0	Fosc = 31 kHz	
			_	16	40	μΑ	3.0	LFINTOSC mode	
D016			_	340	450	μΑ	2.0	Fosc = 4 MHz	
			_	500	700	μΑ	3.0	HFINTOSC mode	
D017			_	230	400	μΑ	2.0	Fosc = 4 MHz	
			_	400	680	μΑ	3.0	EXTRC mode	
D020	IPD	Power-down Base Current ⁽⁴⁾	_	0.15	1.2	μΑ	2.0	WDT, BOR, Comparators,	
			_	0.20	1.5	μΑ	3.0	VREF and T1OSC disabled (excludes AFE)	
D021	IWDT		_	1.2	2.2	μΑ	2.0	WDT Current ⁽¹⁾	
			_	2.0	4.0	μΑ	3.0		
D022A	IBOR		_	42	60	μΑ	3.0	BOR Current ⁽¹⁾	
D022B	ILVD		_	22	28	μΑ	2.0	PLVD Current	
			_	25	35	μΑ	3.0		
D023	ICMP		_	32	45	μΑ	2.0	Comparator Current ⁽¹⁾	
			_	60	78	μΑ	3.0		
D024A	IVREFHS		_	30	36	μΑ	2.0	CVREF Current ⁽¹⁾	
			_	45	55	μΑ	3.0	(high-range)	
D024B	IVREFLS		_	39	47	μΑ	2.0	CVREF Current ⁽¹⁾	
			_	59	72	μΑ	3.0	(low-range)	
D025	IT10SC		—	4.5	7.0	μA	2.0	T1OSC Current ⁽¹⁾	
			_	5.0	8.0	μA	3.0	7	
D026	ІАСТ	Active Current of AFE only (receiving signal) 1 LC Input Channel Signal 3 LC Input Channel Signals	_	10 13	— 18	μΑ μΑ	3.6 3.6	CS = VDD; Input = Continuous Wave (CW); Amplitude = 300 mVPP. All channels enabled.	
D027 D028	ISTDBY	Standby Current of AFE only (not receiving signal) 1 LC Input Channel Enabled 2 LC Input Channels Enabled 3 LC Input Channels Enabled Sleep Current of AFE only	 	3 4 5 0.2	5 6 7	μΑ μΑ μΑ	3.6 3.6 3.6 3.6	$\overline{CS} = VDD; \overline{ALERT} = VDD$ $\overline{CS} = VDD; \overline{ALERT} = VDD$	
		"Typ" column is at 3.0V. 25°C unless othe						,	


Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: The test conditions for all <u>IDD measurements</u> in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. MCU only, Analog Front-End not included.

The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. MCU only, Analog Front-End not included.

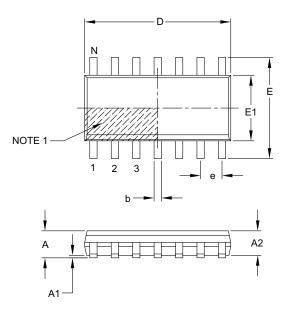
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

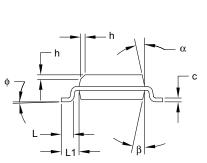
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

15.10 AC Characteristics: PIC12F635/PIC16F636/639 (Industrial, Extended)

TABLE 15-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	37	kHz	LP Oscillator mode
			DC	—	4	MHz	XT Oscillator mode
			DC	—	20	MHz	HS Oscillator mode
			DC	—	20	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	—	32.768	—	kHz	LP Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			1	—	20	MHz	HS Oscillator mode
			DC	—	4	MHz	RC Oscillator mode
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	—	∞	μs	LP Oscillator mode
			250	—	∞	ns	XT Oscillator mode
			50	—	∞	ns	HS Oscillator mode
			50	—	∞	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	_	μs	LP Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode
			250	—	_	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc
OS04*	TosH,	External CLKIN High,	2	-		μs	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20		—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	_	50	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	25	ns	XT oscillator
			0	—	15	ns	HS oscillator


These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

14-Lead Plastic Small Outline (SL or OD) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		14	•
Pitch	e		1.27 BSC	
Overall Height	A	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E		6.00 BSC	•
Molded Package Width	E1	3.90 BSC		
Overall Length	D	8.65 BSC		
Chamfer (optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	•
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.17	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-065B

PIC12F635/PIC16F636/639

Column Parity Register 6	
Configuration Register 0	
Configuration Register 1	
Configuration Register 2	
Configuration Register 3	
Configuration Register 4	
Configuration Register 5	
CMCON0 (Comparator Control 0)	
CMCON0 (Comparator Control) Register	
CMCON1 (Comparator Control 1)	
CMCON1 (Comparator Control) Register	82
CONFIG (Configuration Word)	
EEADR (EEPROM Address)	
EECON1 (EEPROM Control 1)	
EEDAT (EEPROM Data)	91
INTCON (Interrupt Control)	
IOCA (Interrupt-on-change PORTA)	
LVDCON (Low-Voltage Detect Control)	89
OPTION_REG (OPTION)	
OPTION_REG (Option)	
OSCCON (Oscillator Control)	
OSCTUNE (Oscillator Tuning)	
PCON (Power Control Register)	31
PIE1 (Peripheral Interrupt Enable 1)	
PIR1 (Peripheral Interrupt Request 1)	30
PORTA	
PORTC	57
Reset Values	137
Reset Values (Special Registers)	
STATUS	26
T1CON	68
TRISA (Tri-State PORTA)	48
TRISC (Tri-State PORTC)	
VRCON (Voltage Reference Control)	
WDA (Weak Pull-up/Pull-down Direction PORTA)	
WDTCON (Watchdog Timer Control)	
WPUDA (Weak Pull-up/Pull-down Enable PORTA	A) 49
Reset	131
Revision History	225

S

Software Simulator (MPLAB SIM)	
Special Function Registers (SFR)	
Maps	
PIC12F635	19
PIC16F636/639	20
Summary	
PIC12F635, Bank 0	21
PIC12F635, Bank 1	
PIC12F635/PIC16F636/639, Bank 2	25
PIC16F636/639, Bank 0	23
PIC16F636/639, Bank 1	24
SPI Timing	
Analog Front-End (AFE) for PIC16F639	
STATUS Register	
т	
T1CON Register	68

T1CON Register	68
Thermal Considerations	
Time-out Sequence	
Timer0	61
Associated Registers	63
External Clock	62
Interrupt	63
Operation	61, 64
Specifications	

T0CKI
Timer1
Associated registers 69
Asynchronous Counter Mode 66
Reading and Writing 66
Interrupt67
Modes of Operation 64
Operation During Sleep 67
Oscillator66
Prescaler66
Specifications184
Timer1 Gate
Inverting Gate 66
Selecting Source 66, 81
Synchronizing CxOUT w/Timer1 81
TMR1H Register 64
TMR1L Register 64
Timers
Timer1
T1CON
Timing Diagrams
Brown-out Reset (BOR)
Brown-out Reset Situations
CLKOUT and I/O
Clock Timing 179
Comparator Output
Fail-Safe Clock Monitor (FSCM)
INT Pin Interrupt
Internal Oscillator Switch Timing
Reset, WDT, OST and Power-up Timer 182
Time-out Sequence on Power-up (Delayed MCLR). 136
Time-out Sequence on Power-up (MCLR with VDD) 136 Timer0 and Timer1 External Clock
Timer1 Incrementing Edge
Two Speed Start-up
Timing Parameter Symbology
TRISA
TRISA Register
TRISC Register
Two-Speed Clock Start-up Mode
U

v

Voltage Reference. See Comparator Voltage	
Reference (CVREF)	
Voltage References	
Associated registers 8	5

Ultra Low-Power Wake-up...... 13, 14, 47, 51

w

Wake-up from Sleep	145
Wake-up Reset (WUR)	132
Wake-up using Interrupts	145
Watchdog Timer (WDT)	143
Associated Registers	144
Control	143
Oscillator	143
Specifications	
WDA Register	49
WDTCON Register	
WPUDA Register	49
WWW Address	223
WWW, On-Line Support	7