E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f635-e-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MICROCHIP PIC12F635/PIC16F636/639

8/14-Pin Flash-Based, 8-Bit CMOS Microcontrollers With nanoWatt Technology

High-Performance RISC CPU:

- Only 35 instructions to learn:
 - All single-cycle instructions except branches
- Operating speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- · Interrupt capability
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes

Special Microcontroller Features:

- Precision Internal Oscillator:
 - Factory calibrated to ±1%, typical
 - Software selectable frequency range of 8 MHz to 125 kHz
 - Software tunable
 - Two-Speed Start-up mode
 - Crystal fail detect for critical applications
 - Clock mode switching during operation for power savings
- Clock mode switching for low-power operation
- Power-Saving Sleep mode
- Wide operating voltage range (2.0V-5.5V)
- Industrial and Extended Temperature range
- Power-on Reset (POR)
- Wake-up Reset (WUR)
- Independent weak pull-up/pull-down resistors
- Programmable Low-Voltage Detect (PLVD)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR) with software control option
- Enhanced Low-Current Watchdog Timer (WDT) with on-chip oscillator (software selectable nominal 268 seconds with full prescaler) with software enable
- Multiplexed Master Clear with pull-up/input pin
- Programmable code protection (program and data independent)
- High-Endurance Flash/EEPROM cell:
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - Flash/Data EEPROM Retention: > 40 years

Low-Power Features:

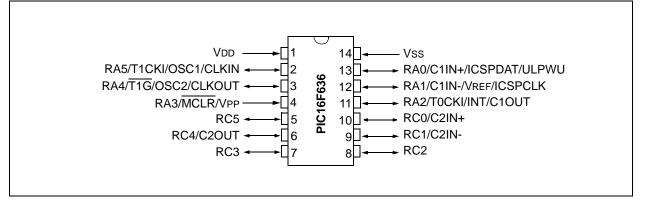
- Standby Current:
 - 1 nA @ 2.0V, typical
- Operating Current:
 - 8.5 μA @ 32 kHz, 2.0V, typical
 - 100 μA @ 1 MHz, 2.0V, typical
- Watchdog Timer Current:
 - 1 μA @ 2.0V, typical

Peripheral Features:

- 6/12 I/O pins with individual direction control:
 - High-current source/sink for direct LED drive
 - Interrupt-on-change pin
 - Individually programmable weak pull-ups/ pull-downs
- Ultra Low-Power Wake-up
- Analog Comparator module with:
 - Up to two analog comparators
 - Programmable On-chip Voltage Reference (CVREF) module (% of VDD)
 - Comparator inputs and outputs externally accessible
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Timer1 Gate (count enable)
 - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator if INTOSC mode selected
- KEELOQ[®] compatible hardware Cryptographic module
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Low-Frequency Analog Front-End Features (PIC16F639 only):

- Three input pins for 125 kHz LF input signals
- High input detection sensitivity (3 mVPP, typical)
- Demodulated data, Carrier clock or RSSI output selection
- Input carrier frequency: 125 kHz, typical
- Input modulation frequency: 4 kHz, maximum
- 8 internal Configuration registers
- Bidirectional transponder communication (LF talk back)
- Programmable antenna tuning capacitance (up to 63 pF, 1 pF/step)
- Low standby current: 5 μ A (with 3 channels enabled), typical
- Low operating current: 15 μA (with 3 channels enabled), typical
- Serial Peripheral Interface (SPI) with internal MCU and external devices
- Supports Battery Back-up mode and batteryless
 operation with external circuits


	Device Program Memory Data Memory I/O	•	Low Frequency				
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	1/0	Comparators	Analog Front-End	
PIC12F635	1024	64	128	6	1	N	
PIC16F636	2048	128	256	12	2	N	
PIC16F639	2048	128	256	12	2	Y	

Note 1: Any references to PORTA, RAn, TRISA and TRISAn refer to GPIO, GPn, TRISIO and TRISIOn, respectively.

2: VDDT is the supply voltage of the Analog Front-End section (PIC16F639 only). VDDT is treated as VDD in this document unless otherwise stated.

3: VSST is the ground reference voltage of the Analog Front-End section (PIC16F639 only). VSST is treated as VSS in this document unless otherwise stated.

14-Pin Diagram (PDIP, SOIC, TSSOP)

TABLE 2: 14-PIN SUMMARY (PDIP, SOIC, TSSOP)

I/O	Pin	Comparators	Timer	Interrupts	Pull-ups	Basic
RA0	13	C1IN+		IOC	Y	ICSPDAT/ULPWU
RA1	12	C1IN-	_	IOC	Y	VREF/ICSPCLK
RA2	11	C1OUT	TOCKI	INT/IOC	Y	—
RA3 ⁽¹⁾	4	—	_	IOC	Y ⁽²⁾	MCLR/Vpp
RA4	3	—	T1G	IOC	Y	OSC2/CLKOUT
RA5	2	—	T1CKI	IOC	Y	OSC1/CLKIN
RC0	10	C2IN+	—	—	—	—
RC1	9	C2IN-	—	—	—	—
RC2	8	—	—	—	—	—
RC3	7	—	—	—	—	—
RC4	6	C2OUT	—	—	—	—
RC5	5	—	—	—	—	—
	1	—	—	—	—	Vdd
_	14			_		Vss

Note 1: Input only.

2: Only when pin is configured for external MCLR.

2.2.2.2 OPTION Register

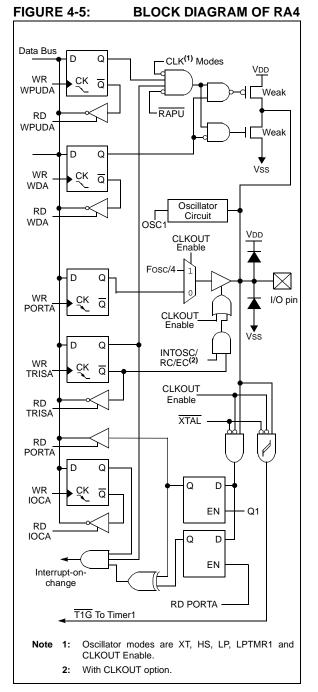
The OPTION register is a readable and writable register which contains various control bits to configure:

- TMR0/WDT prescaler
- External RA2/INT interrupt
- TMR0
- Weak pull-up/pull-downs on PORTA

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting the PSA bit of the OPTION register to '1'. See Section 5.1.3 "Software Programmable Prescaler".

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RAPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RAPU: PORTA Pull-	-up Enable bi	t				
	1 = PORTA pull-ups 0 = PORTA pull-ups		by individual PORT latch values				
bit 6	INTEDG: Interrupt E	dge Select bi	it				
	1 = Interrupt on risin0 = Interrupt on fallir	• •	-				
bit 5	TOCS: Timer0 Clock	Source Sele	ct bit				
	1 = Transition on RA0 = Internal instruction	•	< (Fosc/4)				
bit 4	T0SE: Timer0 Source Edge Select bit						
		5	sition on RA2/T0CKI pin sition on RA2/T0CKI pin				
bit 3	PSA: Prescaler Ass	ignment bit					
	1 = Prescaler is ass 0 = Prescaler is ass	0					
bit 2-0	PS<2:0>: Prescaler	Rate Select b	pits				
	Bit Value	Timer0 Rate	WDT Rate				
	000 001 010 011 100 101 110	1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128				
	111	1.200	1.120				

4.2.4.5 RA4/T1G/OSC2/CLKOUT

Figure 4-5 shows the diagram for this pin. The RA4 pin is configurable to function as one of the following:

- a general purpose I/O
- a Timer1 gate input
- a crystal/resonator connection
- a clock output

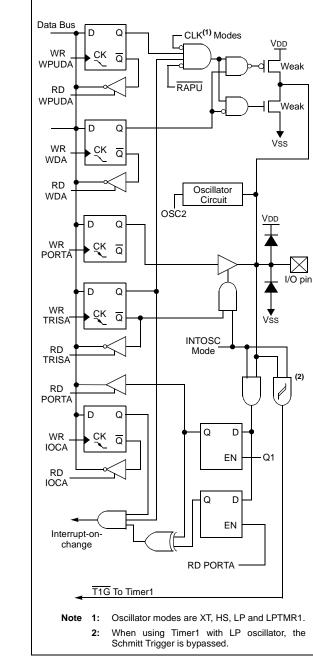

4.2.4.6 RA5/T1CKI/OSC1/CLKIN

Figure 4-6 shows the diagram for this pin. The RA5 pin is configurable to function as one of the following:

BLOCK DIAGRAM OF RA5

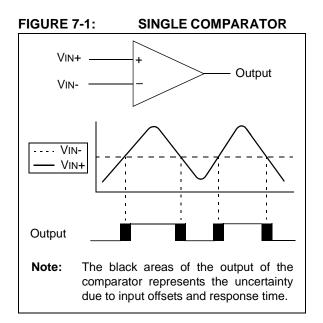
- a general purpose I/O
- a Timer1 clock input
- a crystal/resonator connection
- a clock input

FIGURE 4-6:

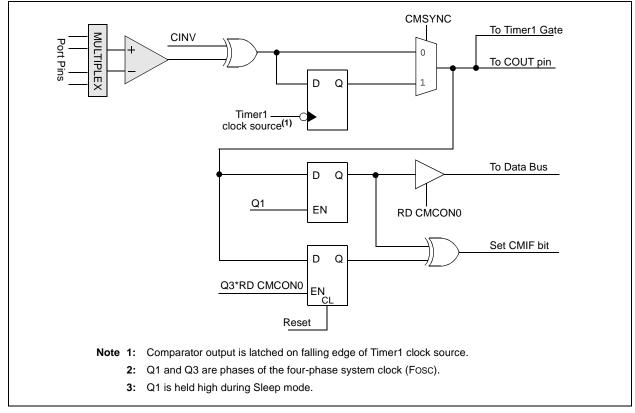
7.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The Analog Comparator module includes the following features:

- Dual comparators (PIC16F636/639 only)
- Multiple comparator configurations
- Comparator(s) output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- Wake-up from Sleep
- Timer1 gate (count enable)
- Output synchronization to Timer1 clock input
- Programmable voltage reference


7.1 Comparator Overview

A comparator is shown in Figure 7-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the


comparator is a digital low level. When the analog voltage at V_{IN+} is greater than the analog voltage at V_{IN-} , the output of the comparator is a digital high level.

The PIC12F635 contains a single comparator as shown in Figure 7-2.

The PIC16F636/639 devices contains two comparators as shown in Figure 7-3 and Figure 7-4. The comparators are not independently configurable.

FIGURE 7-2: COMPARATOR OUTPUT BLOCK DIAGRAM (PIC12F635)

7.4 Comparator Control

The CMCON0 register (Register 7-1) provides access to the following comparator features:

- Mode selection
- Output state
- Output polarity
- Input switch

7.4.1 COMPARATOR OUTPUT STATE

Each comparator state can always be read internally via the CxOUT bit of the CMCON0 register. The comparator state may also be directed to the CxOUT pin in the following modes:

PIC12F635

- CM<2:0> = 001
- CM<2:0> = 011
- CM<2:0> = 101

PIC16F636/639

• CM<2:0> = 110

When one of the above modes is selected, the associated TRIS bit of the CxOUT pin must be cleared.

7.4.2 COMPARATOR OUTPUT POLARITY

Inverting the output of a comparator is functionally equivalent to swapping the comparator inputs. The polarity of a comparator output can be inverted by setting the CXINV bit of the CMCON0 register. Clearing CXINV results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 7-1.

TABLE 7-1: OUTPUT STATE VS. INPUT CONDITIONS

Input Conditions	CxINV	CxOUT
VIN- > VIN+	0	0
VIN- < VIN+	0	1
VIN- > VIN+	1	1
VIN- < VIN+	1	0

Note: CxOUT refers to both the register bit and output pin.

7.4.3 COMPARATOR INPUT SWITCH

The inverting input of the comparators may be switched between two analog pins in the following modes:

PIC12F635

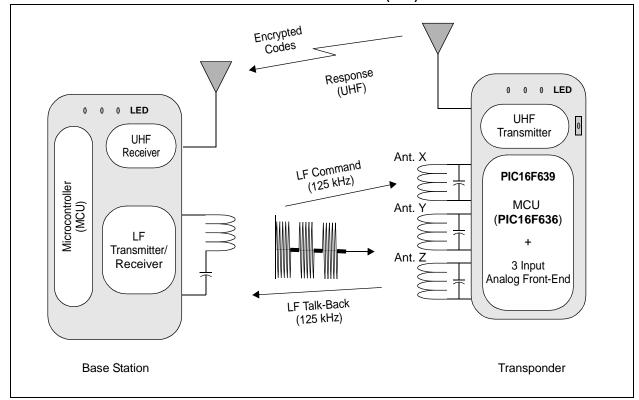
- CM<2:0> = 101
- CM<2:0> = 110

PIC16F636/639

- CM<2:0> = 001 (Comparator C1 only)
- CM<2:0> = 010 (Comparators C1 and C2)

In the above modes, both pins remain in Analog mode regardless of which pin is selected as the input. The CIS bit of the CMCON0 register controls the comparator input switch.

U-0	U-0	R-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	IRVST ⁽¹⁾	LVDEN	—	LVDL2	LVDL1	LVDL0				
bit 7							bit				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7-6	Unimplemen	nted: Read as '	٥'								
bit 5	•			Status Flag bit	(1)						
on o		IRVST: Internal Reference Voltage Stable Status Flag bit ⁽¹⁾ 1 = Indicates that the PLVD is stable and PLVD interrupt is reliable									
		0 = Indicates that the PLVD is not stable and PLVD interrupt is reliable									
bit 4	LVDEN: Low	LVDEN: Low-Voltage Detect Module Enable bit									
	1 = Enables	PLVD Module, j	powers up PL	VD circuit and	supporting refer	ence circuitry					
	0 = Disables	PLVD Module,	powers down	PLVD circuit a	nd supporting r	eference circui	try				
bit 3	Unimplemer	nted: Read as '	0'								
bit 2-0	LVDL<2:0>:	Low-Voltage De	etection Level	bits (nominal v	values)						
	111 = 4.5V										
	110 = 4.2V	110 = 4.2V									
		101 = 4.0V									
		100 = 2.3V (default)									
	011 = 2.2V 010 = 2.1V										
	010 = 2.1V $001 = 2.0V^{(2)}$)									
	000 = Reserved										


REGISTER 8-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER

- **Note 1:** The IRVST bit is usable only when the HFINTOSC is running.
 - 2: Not tested and below minimum operating conditions.


TABLE 8-1: REGISTERS ASSOCIATED WITH PROGRAMMABLE LOW-VOLTAGE DETECT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	x000 000x	0000 000x
PIE1	OSFIE	C2IE	C1IE	LCDIE	_	LVDIE	—	CCP2IE	0000 -0-0	0000 -0-0
PIR1	OSFIF	C2IF	C1IF	LCDIF	_	LVDIF	—	CCP2IF	0000 -0-0	0000 -0-0
LVDCON	_	_	IRVST	LVDEN		LVDL2	LVDL1	LVDL0	00 -100	00 -100

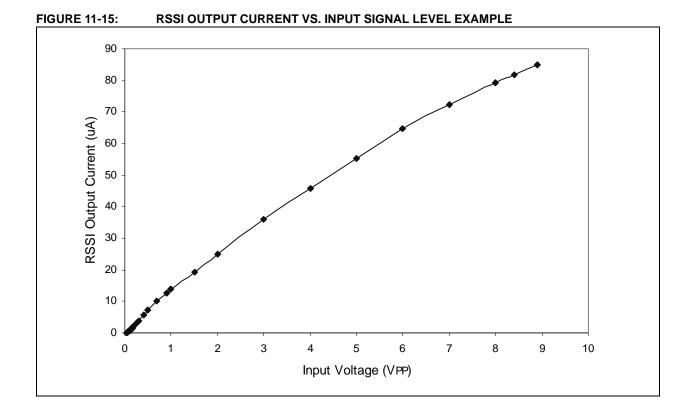

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the PLVD module.

FIGURE 11-4: PASSIVE KEYLESS ENTRY (PKE) TRANSPONDER CONFIGURATION EXAMPLE

FIGURE 11-3: BIDIRECTIONAL PASSIVE KEYLESS ENTRY (PKE) SYSTEM APPLICATION EXAMPLE

REGISTER 11-2: CONFIGURATION REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATOUT1	DATOUT0	LCXTUN5	LCXTUN4	LCXTUN3	LCXTUN2	LCXTUN1	LCXTUN0	R1PAR
bit 8								bit 0
Legend:								
R = Readab	le bit	W = Writable	e bit	U = Unimple	mented bit, r	ead as '0'		
-n = Value a	t POR	'1' = Bit is se	et	'0' = Bit is cl	eared	x = Bit is unl	known	
	01 = Carrier 10 = RSSI o 11 = RSSI o	output						
bit 6-1		: 0>: LCX Tun 0 pF (Default) : 63 pF	0 1	nce bit				
bit 0	R1PAR: Reg bits	gister Parity B	it – set/clear	ed so the 9-bi	t register con	tains odd pari	ity – an odd nι	umber of set

REGISTER 11-3: CONFIGURATION REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSSIFET	CLKDIV	LCYTUN5	LCYTUN4	LCYTUN3	LCYTUN2	LCYTUN1	LCYTUN0	R2PAR
bit 8								bit 0

Legend:					
R = Read	R = Readable bit W = Writable bit		U = Unimplemented b	it, read as '0'	
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 8	1 = Pull-	Pull-down MOSFET on down RSSI MOSFET on down RSSI MOSFET off	LFDATA pad bit (controllab	le by user in the RSSI mode only)	
bit 7	1 = Carri	Carrier Clock Divide-by b ier Clock/4 er Clock/1	it		
bit 6-1		<5:0>: LCY Tuning Capa = +0 pF (Default) : = +63 pF	citance bit		
bit 0		l.	eared so the 9-bit register	contains odd parity – an odd numbe	er of set

REGISTER 11-6: CONFIGURATION REGISTER 5

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AUTOCHSEL	AGCSIG	MODMIN1	MODMIN0	LCZSEN3	LCZSEN2	LCZSEN1	LCZSEN0	R5PAR
bit 8								bit 0
Legend:								
•	•							
R = Readable b		W = Writable I	JIC	•	nented bit, read			
-n = Value at PC	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 8	1 = Enabled channel(.: Auto Channel – AFE selects o (s). I – AFE follows	channel(s) that I				STAB; or otherwi	se, blocks the
bit 7	1 = Enabled when the	nodulator Outpu – No output ur e AGC begins re I – the AFE pas	itil AGC is regue	Ilating at aroun	d 20 mVpp at i		AGC Active St	tatus bit is set
bit 6-5	MODMIN<1:0 00 = 50% 01 = 75% 10 = 25% 11 = 12%	D> : Minimum Mc	dulation Depth	bit				
bit 4-1	LCZSEN<3:0 0000 = -0dB : 1111 = -30dl		tivity Reduction	bit				
bit 0	R5PAR: Regi	ster Parity Bit –	set/cleared so	the 9-bit registe	r contains odd	parity – an odd	d number of set	bits
Note 1: Ass	sured monotoni	c increment (or	decrement) by	design.				

REGISTER 11-7: COLUMN PARITY REGISTER 6

R/W-0	R/W-0							
COLPAR7	COLPAR6	COLPAR5	COLPAR4	COLPAR3	COLPAR2	COLPAR1	COLPAR0	R6PAR
bit 8								bit 0

Legend:				
R = Readable bit W = Writable bit			U = Unimplemented bit,	read as '0'
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 8		7: Set/Cleared so that this 8th mber of set bits.	h parity bit + the sum of the Cor	figuration register row parity bits contain an odd
bit 7		6: Set/Cleared such that this 7 odd number of set bits.	7th parity bit + the sum of the 7th	bits in Configuration Registers 0 through 5 contai
bit 6		5: Set/Cleared such that this 6 odd number of set bits.	6th parity bit + the sum of the 6th	bits in Configuration Registers 0 through 5 contai
bit 5		4: Set/Cleared such that this sold number of set bits.	5th parity bit + the sum of the 5th	bits in Configuration Registers 0 through 5 contai
bit 4		3: Set/Cleared such that this 4 odd number of set bits.	Ith parity bit + the sum of the 4th	bits in Configuration Registers 0 through 5 contai
bit 3		2: Set/Cleared such that this 3 odd number of set bits.	Brd parity bit + the sum of the 3rd	bits in Configuration Registers 0 through 5 contai
bit 2		1: Set/Cleared such that this 2 odd number of set bits.	nd parity bit + the sum of the 2nd	I bits in Configuration Registers 0 through 5 contai
bit 1		0 : Set/Cleared such that this 1 d number of set bits.	st parity bit + the sum of the 1st b	its in Configuration Registers 0 through 5 contain a
bit 0	R6PAR:	Register Parity bit – set/clear	ad so the 9-bit register contains	odd parity – an odd number of set bits

FIGURE 12-8:	INT PIN INT	ERRUPT TIMINO	6		
:	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1 /					
CLKOUT ⁽³⁾	(4)		\/	\/	
INT pin 🕂		(1)	1 1 1 1		1 I 1 I 1 I
INTF Flag (INTCON<1>)	, (1) (5)	¥ (.)	Interrupt Latency ⁽²⁾	.	
GIE bit (INTCON<7>)					
Instruction Flow	PC		Y PC+1		× 0005h
Instruction {	Inst (PC)	Inst (PC + 1)	· _ ·	Inst (0004h)	Inst (0005h)
Instruction { Executed	Inst (PC – 1)	Inst (PC)	Dummy Cycle	Dummy Cycle	Inst (0004h)
	ag is sampled here (e	3		where Toy instructi	an avala tima. Latanav

- 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.
- 4: For minimum width of INT pulse, refer to AC specifications in Section 15.0 "Electrical Specifications".
- 5: INTF is enabled to be set any time during the Q4-Q1 cycles.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 000x	0000 000x
IOCA	—	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	00 0000
PIR1	EEIF	LVDIF	CRIF	C2IF ⁽¹⁾	C1IF	OSFIF	—	TMR1IF	0000 00-0	0000 00-0
PIE1	EEIE	LVDIE	CRIE	C2IE ⁽¹⁾	C1IE	OSFIE	_	TMR1IE	0000 00-0	0000 00-0

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends upon condition. Shaded cells are not used by the Interrupt module.

Note 1: PIC16F636/639 only.

15.1 DC Characteristics: PIC12F635/PIC16F636-I (Industrial) PIC12F635/PIC16F636-E (Extended)

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Sym	Characteristic	Min Typ† Max Units Conditions						
D001 D001A D001B D001C	Vdd	Supply Voltage	2.0 2.0 3.0 4.5		5.5 5.5 5.5 5.5 5.5	> > > >	Fosc < = 4 MHz Fosc < = 8 MHz, HFINTOSC, EC Fosc < = 10 MHz Fosc < = 20 MHz		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5*	—	_	V	Device in Sleep mode		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See Section 12.3 "Power-on Reset" for details.		
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05*	—	—	V/ms	See Section 12.3 "Power-on Reset" for details.		
D005	VBOD	Brown-out Reset	2.0	2.1	2.2	V			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

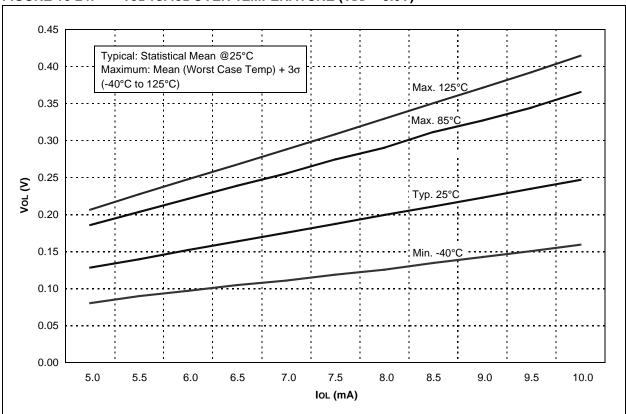
15.6 DC Characteristics: PIC16F639-I (Industrial)

DC CHAF	RACTERIST	ICS		g temperati		-40°C ≤		otherwise stated) TA ≤ +85°C for industrial DD ≤ 3.6V		
Param								Conditions		
No.	Sym	Device Characteristics	Min	Тур†	Мах	Units	Vdd	Note		
D010	IDD	Supply Current ^(1,2,3)	_	11	16	μΑ	2.0	Fosc = 32.768 kHz		
			—	18	28	μΑ	3.0	LP Oscillator mode		
D011			_	140	240	μΑ	2.0	Fosc = 1 MHz		
			—	220	380	μΑ	3.0	XT Oscillator mode		
D012			_	260	360	μΑ	2.0	Fosc = 4 MHz		
			_	420	650	μΑ	3.0	XT Oscillator mode		
D013			_	130	220	μΑ	2.0	Fosc = 1 MHz		
			—	215	360	μΑ	3.0	EC Oscillator mode		
D014			_	220	340	μΑ	2.0	Fosc = 4 MHz		
			—	375	550	μΑ	3.0	EC Oscillator mode		
D015			—	8	20	μΑ	2.0	Fosc = 31 kHz		
			—	16	40	μA	3.0	LFINTOSC mode		
D016			_	340	450	μA	2.0	Fosc = 4 MHz		
			_	500	700	μA	3.0	HFINTOSC mode		
D017			_	230	400	μA	2.0	Fosc = 4 MHz		
			_	400	680	μA	3.0	EXTRC mode		
D020	IPD	Power-down Base Current ⁽⁴⁾	_	0.15	1.2	μA	2.0	WDT, BOR, Comparators,		
			—	0.20	1.5	μΑ	3.0	VREF and T1OSC disabled (excludes AFE)		
D021	IWDT		_	1.2	2.2	μA	2.0	WDT Current ⁽¹⁾		
			_	2.0	4.0	μA	3.0			
D022A	IBOR		_	42	60	μA	3.0	BOR Current ⁽¹⁾		
D022B	ILVD		_	22	28	μA	2.0	PLVD Current		
			_	25	35	μA	3.0			
D023	ICMP		_	32	45	μA	2.0	Comparator Current ⁽¹⁾		
			_	60	78	μA	3.0			
D024A	IVREFHS		_	30	36	μA	2.0	CVREF Current ⁽¹⁾		
			_	45	55	μA	3.0	(high-range)		
D024B	IVREFLS		_	39	47	μA	2.0	CVREF Current ⁽¹⁾		
			_	59	72	μA	3.0	(low-range)		
D025	IT10SC		—	4.5	7.0	μA	2.0	T1OSC Current ⁽¹⁾		
			_	5.0	8.0	μA	3.0]		
D026	ІАСТ	Active Current of AFE only (receiving signal) 1 LC Input Channel Signal 3 LC Input Channel Signals	_	10 13	— 18	μA μA	3.6 3.6	CS = VDD; Input = Continuous Wave (CW); Amplitude = 300 mVPP. All channels enabled.		
D027 D028	ISTDBY	Standby Current of AFE only (not receiving signal) 1 LC Input Channel Enabled 2 LC Input Channels Enabled 3 LC Input Channels Enabled Sleep Current of AFE only	 	3 4 5 0.2	5 6 7	μΑ μΑ μΑ μΑ	3.6 3.6 3.6 3.6	CS = VDD; ALERT = VDD		
		"Typ" column is at 3.0V. 25°C unless othe						,		

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: The test conditions for all <u>IDD measurements</u> in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. MCU only, Analog Front-End not included.

The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. MCU only, Analog Front-End not included.

3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.


4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

15.12 SPI Timing: Analog Front-End (AFE) for PIC16F639

AC CHA	RACTER	RISTICS	Standar	d Operat	ing Cond	itions (unless otherwise stated)			
			Supply Voltage Operating temperature LC Signal Input Carrier Frequency LCCOM connected to Vss			-40°C ≤	/DD ≤ $3.6V$ TAMB ≤ $+85$ °C for industrial dal 300 mVPP		
Param	Sym	Characteristic	Min	Typ†	Max	Units	Conditions		
AF33	FSCLK	SCLK Frequency	—	_	3	MHz			
AF34	Tcssc	CS fall to first SCLK edge setup time	100	-	—	ns			
AF35	Tsu	SDI setup time	30	—	—	ns			
AF36	THD	SDI hold time	50	_	—	ns			
AF37	Тні	SCLK high time	150	_	—	ns			
AF38	Tlo	SCLK low time	150	_	_	ns			
AF39	TDO	SDO setup time	—	_	150	ns			
AF40	Tsccs	SCLK last edge to CS rise setup time	100	—	_	ns			
AF41	Тсѕн	CS high time	500	_	—	ns			
AF42	Tcs1	CS rise to SCLK edge setup time	50	—	—	ns			
AF43	Tcs0	SCLK edge to $\overline{\text{CS}}$ fall setup time	50	—	_	ns	SCLK edge when $\overline{\text{CS}}$ is high		
AF44	TSPIR	Rise time of SPI data (SPI Read command)	_	10	_	ns	VDD = 3.0V. Time is measured from 10% to 90% of amplitude		
AF45	TSPIF	Fall time of SPI data (SPI Read command)	_	10	_	ns	VDD = 3.0V. Time is measured from 90% to 10% of amplitude		

* Parameter is characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

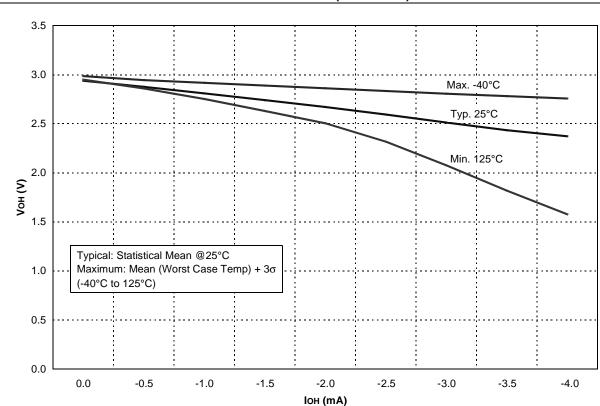
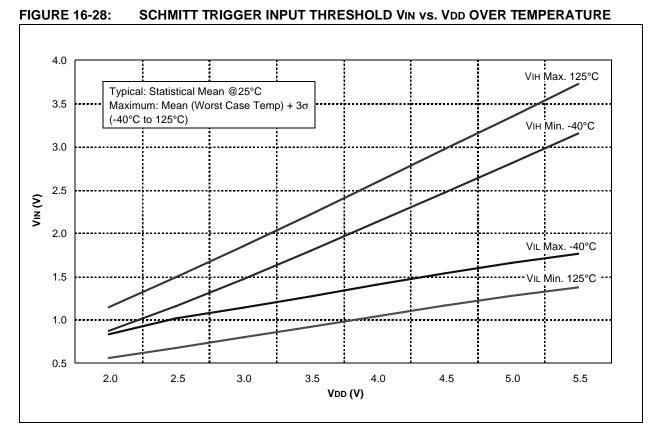
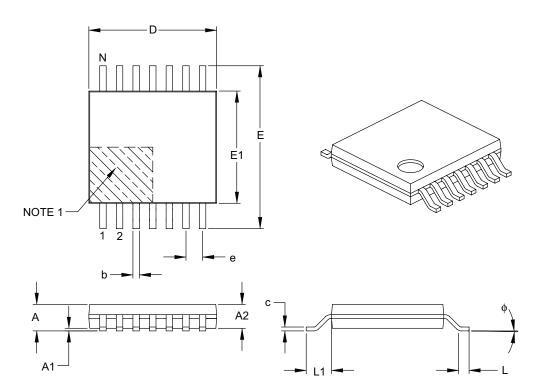



FIGURE 16-25: VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)



14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

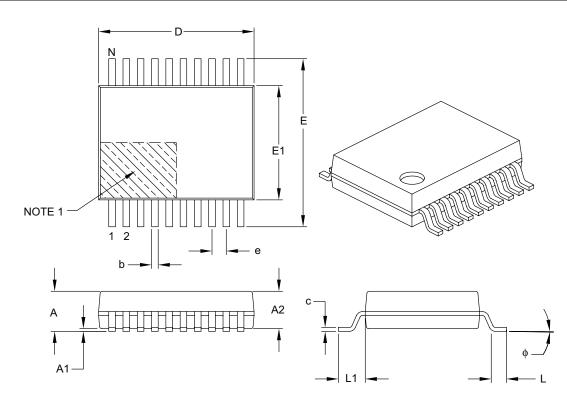
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		14		
Pitch	e		0.65 BSC		
Overall Height	A	-	-	1.20	
Molded Package Thickness	A2	0.80	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Overall Width	E	6.40 BSC			
Molded Package Width	E1	4.30	4.40	4.50	
Molded Package Length	D	4.90	5.00	5.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.19	-	0.30	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		20		
Pitch	e		0.65 BSC		
Overall Height	A	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B