E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN-S (6x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f635-i-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	File		File		File		File
	Address		Address		Address		Addres
Indirect addr.(1)	00h	Indirect addr.(1)	80h	Accesses	100h	Accesses	180h
TMR0	01h	OPTION_REG	81h	00h-0Bh	101h	80h-8Bh	181h
PCL	02h	PCL	82h		102h		182h
STATUS	03h	STATUS	83h		103h		183h
FSR	04h	FSR	84h		104h		184h
GPIO	05h	TRISIO	85h		105h		185h
	06h		86h		106h		186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah		10Ah		18Ah
INTCON	0Bh	INTCON	8Bh		10Bh		18Bh
PIR1	0Ch	PIE1	8Ch		10Ch		18Ch
	0Dh		8Dh		10Dh		18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh		10Fh		18Fh
T1CON	10h	OSCTUNE	90h	CRCON	110h		190h
	11h		91h	CRDAT0 ⁽²⁾	111h		191h
	12h		92h	CRDAT1 ⁽²⁾	112h		192h
	13h		93h	CRDAT2 ⁽²⁾	113h		193h
	14h	LVDCON	94h	CRDAT3 ⁽²⁾	114h		194h
	15h	WPUDA	95h		115h		195h
	16h	IOCA	96h		116h		196h
	17h	WDA	97h		117h		197h
WDTCON	18h		98h		118h		198h
CMCON0	19h	VRCON	99h		119h		199h
CMCON1	1Ah	EEDAT	9Ah		11Ah		19Ah
	1Bh	EEADR	9Bh		11Bh		19Bh
	1Ch	EECON1	9Ch		11Ch		19Ch
	1Dh	EECON2 ⁽¹⁾	9Dh		11Dh		19Dh
	1Eh		9Eh		11Eh		19Eh
	1Fh		9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
	3Fh						
General	40h						
Purpose							
Register			EFh		16Fh		1EFh
64 Bytes		Accesses	F0h	Accesses	170h	Accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	Bank 0	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	

PIC12F635 SPECIAL FUNCTION REGISTERS

FIGURE 2-3:

2: CRDAT<3:0> registers are KEELOQ® hardware peripheral related registers and require the execution of the

"KEELOQ® Encoder License Agreement" regarding implementation of the module and access to related registers. The "KEELOQ® Encoder License Agreement" may be accessed through the Microchip web site located at <u>www.microchip.com/KEELOQ</u> or by contacting your local Microchip Sales Representative.

FIGURE 2-4: PIC16F636/639 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address		Address		Address
Indirect addr. ⁽¹⁾	00h	Indirect addr. (1)	80h	Accesses	100h	Accesses	180h
TMR0	01h	OPTION_REG	81h	00h-0Bh	101h	80h-8Bh	181h
PCL	02h	PCL	82h		102h		182h
STATUS	03h	STATUS	83h		103h		183h
FSR	04h	FSR	84h		104h		184h
PORTA	05h	TRISA	85h		105h		185h
	06h		86h		106h		186h
PORTC	07h	TRISC	87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah		10Ah		18Ah
INTCON	0Bh	INTCON	8Bh		10Bh		18Bh
PIR1	0Ch	PIE1	8Ch		10Ch		18Ch
	0Dh		8Dh		10Dh		18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh		10Fh		18Fh
T1CON	10h	OSCTUNE	90h	CRCON	110h		190h
	11h		91h	CRDAT0 ⁽²⁾	111h		191h
	12h		92h	CRDAT1 ⁽²⁾	112h		192h
	13h		93h	CRDAT2 ⁽²⁾	113h		193h
	14h	LVDCON	94h	CRDAT3 ⁽²⁾	114h		194h
	15h	WPUDA	95h		115h		195h
	16h	IOCA	96h		116h		196h
	17h	WDA	97h		117h		197h
WDTCON	18h		98h		118h		198h
CMCON0	19h	VRCON	99h		119h		199h
CMCON1	1Ah	EEDAT	9Ah		11Ah		19Ah
	1Bh	EEADR	9Bh		11Bh		19Bh
	1Ch	EECON1	9Ch		11Ch		19Ch
	1Dh	EECON2 ⁽¹⁾	9Dh		11Dh		19Dh
	1Eh		9Eh		11Eh		19Eh
	1Fh		9Fh		11Fh		19Fh
General	20h	General	A0h		120h		1A0h
Purpose		Purpose					
Register		Register					
90 Dytes		32 Dytes	BFh				
			C0h				
			EFh		16Fh		1EFh
		Accesses	F0h	Accesses	170h	Accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	Bank 0	1FFh
Bank 0	1	Bank 1	1	Bank 2	_	Bank 3	_

Unimplemented data memory locations, read as '0'.

Note 1: Not a physical register.

2: CRDAT<3:0> registers are KEELOQ hardware peripheral related registers and require the execution of the "KEELOQ[®] Encoder License Agreement" regarding implementation of the module and access to related registers. The "KEELOQ[®] Encoder License Agreement" may be accessed through the Microchip web site located at <u>www.microchip.com/KEELOQ</u> or by contacting your local Microchip Sales Representative.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR/ WUR	Page
Bank	0										
00h	INDF	Addressin (not a phy	ng this loca ysical regis	ition uses c ter)	ontents of F	SR to addr	ess data m	emory		XXXX XXXX	32,137
01h	TMR0	Timer0 M	lodule Reg	ister						xxxx xxxx	61,137
02h	PCL	Program	Counter's	(PC) Least	Significant	Byte				0000 0000	32,137
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	26,137
04h	FSR	Indirect D	ata Memo	ry Address	Pointer					xxxx xxxx	32,137
05h	PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xx00	48,137
06h	—	Unimplen	nented							—	
07h	PORTC	—	—	RC5	RC4	RC3	RC2	RC1	RC0	xx xx00	57,137
08h	_	Unimplen	nented							—	_
09h	—	Unimplen	nented							—	
0Ah	PCLATH	—	—	_	Write Buffe	er for upper	5 bits of Pro	ogram Coui	nter	0 0000	32,137
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF ⁽²⁾	0000 000x	28,137
0Ch	PIR1	EEIF	LVDIF	CRIF	C2IF	C1IF	OSFIF	—	TMR1IF	0000 00-0	30,137
0Dh	_	Unimplen	nented							—	_
0Eh	TMR1L	Holding F	Register for	the Least	Significant E	Byte of the 1	6-bit TMR1			xxxx xxxx	64,137
0Fh	TMR1H	Holding F	Register for	the Most S	Significant B	yte of the 1	6-bit TMR1			xxxx xxxx	64,137
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	0000 0000	68,137
11h	—	Unimplen	nented							—	—
12h	—	Unimplen	nented							—	—
13h	—	Unimplen	nented							—	—
14h	—	Unimplen	nented							—	—
15h	—	Unimplen	nented							—	—
16h	—	Unimplen	nented							—	—
17h	—	Unimplen	nented							—	—
18h	WDTCON	—	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	144,137
19h	CMCON0	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	79,137
1Ah	CMCON1	_			_	_	_	T1GSS	C2SYNC	10	82,137
1Bh	—	Unimplen	nented							—	—
1Ch	—	Unimplen	nented							_	—
1Dh	_	Unimplen	nented							_	
1Eh	—	Unimplen	nented							_	_
1Fh	—	Unimplen	Unimplemented								_

TABLE 2-3:	PIC16F636/639 SPECIAL	FUNCTION REGISTERS	SUMMARY BANK 0

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the mismatch exists.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- the arithmetic status of the ALU
- the Reset status
- the bank select bits for data memory (GPR and SFR)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see **Section 13.0 "Instruction Set Summary"**

Note 1:	The C and DC bits operate as a Borrow
	and Digit Borrow out bit, respectively, in
	subtraction.

REGISTER 2-1: STATUS: STATUS REGISTER

R/W-0) R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7		·			·		bit 0
l egend:							
R = Read	able bit	W = Writable I	hit	U = Unimple	mented bit rea	d as '0'	
-n = Value	at POR	'1' = Bit is set	~	'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 7	IRP: Registe	er Bank Select bi	it (used for in	direct address	ing)		
	1 = Bank 2, 0 = Bank 0,	3 (100h-1FFh) 1 (00h-FFh)					
bit 6-5	RP<1:0>: R	egister Bank Sel	ect bits (used	d for direct add	Iressing)		
	00 = Bank 0	(00h-7Fh)					
	01 = Bank 1	(80h-FFh)					
	10 = Bank 2 11 = Bank 3	(180h-1FFh)					
bit 4	TO: Time-ou	ıt bit					
	1 = After pov	wer-up, CLRWDT	instruction o	r SLEEP instru	ction		
	0 = A WDT 1	time-out occurre	d				
bit 3	PD: Power-o	down bit					
	1 = After pov 0 = By exect	wer-up or by the ution of the SLEE	CLRWDT inst	ruction			
bit 2	Z: Zero bit						
	1 = The resu 0 = The resu	ult of an arithmet ult of an arithmet	ic or logic op ic or logic op	eration is zero eration is not z	zero		
bit 1	DC: Digit Ca	arry/Borrow bit (A	DDWF, ADDLI	W,SUBLW,SUE	WF instructions)(1)	
	1 = A carry-	out from the 4th	low-order bit	of the result of	ccurred		
	0 = No carry	-out from the 4th	n low-order b	it of the result			
bit 0	C: Carry/Bo	rrow bit ⁽¹⁾ (ADDW	F, ADDLW, S	SUBLW, SUBW	F instructions)	1)	
	1 = A carry- 0 = No carry	out from the Mos -out from the Mo	st Significant ost Significan	bit of the resul t bit of the resu	t occurred ult occurred		
Note 1:	For $\overline{\text{Borrow}}$, the p second operand. bit of the source r	olarity is reverse For rotate (RRF, 3 register.	ed. A subtrac RLF) instruct	tion is execute ions, this bit is	d by adding the loaded with eith	two's complem er the high-orde	ent of the er or low-order

3.4.3 LP, XT, HS MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 3-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 3-3 and Figure 3-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

2: The value of RF varies with the Oscillator mode selected (typically between 2 M Ω to 10 M Ω).

- **Note 1:** Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

operation.

4.0 I/O PORTS

There are as many as twelve general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

4.1 PORTA and the TRISA Registers

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 4-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 4-1 shows how to initialize PORTA.

Note: PORTA = GPIO TRISA = TRISIO

Reading the PORTA register (Register 4-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLRE = 1.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

Note: The CMCON0 register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

EXAMPLE 4-1: INITIALIZING PORTA

BANKSEI	D PORTA	i
CLRF	PORTA	;Init PORTA
MOVLW	07h	;Set RA<2:0> to
MOVWF	CMCON0	;digital I/O
BSF	STATUS, RPO	;Bank 1
BCF	STATUS, RP1	;
MOVLW	0Ch	;Set RA<3:2> as inputs
MOVWF	TRISA	;and set RA<5:4,1:0>
		;as outputs

4.2 Additional Pin Functions

Every PORTA pin on the PIC12F635/PIC16F636/639 has an interrupt-on-change option and a weak pull-up/pull-down option. RA0 has an Ultra Low-Power Wake-up option. The next three sections describe these functions.

4.2.1 WEAK PULL-UP/PULL-DOWN

Each of the PORTA pins, except RA3, has an internal weak pull-up and pull-down. The WDA bits select either a pull-up or pull-down for an individual port bit. Individual control bits can turn on the pull-up or pull-down. These pull-ups/pull-downs are automatically turned off when the port pin is configured as an output, as an alternate function or on a Power-on Reset, setting the RAPU bit of the OPTION register. A weak pull-up on RA3 is enabled when configured as MCLR in the Configuration Word register and disabled when high voltage is detected, to reduce current consumption through RA3, while in Programming mode.

Note: PORTA = GPIO

TRISA = TRISIO

4.2.4.5 RA4/T1G/OSC2/CLKOUT

Figure 4-5 shows the diagram for this pin. The RA4 pin is configurable to function as one of the following:

- a general purpose I/O
- a Timer1 gate input
- a crystal/resonator connection
- a clock output

4.2.4.6 RA5/T1CKI/OSC1/CLKIN

Figure 4-6 shows the diagram for this pin. The RA5 pin is configurable to function as one of the following:

BLOCK DIAGRAM OF RA5

- a general purpose I/O
- a Timer1 clock input
- a crystal/resonator connection
- · a clock input

FIGURE 4-6:

FIGURE 7-7: COMPARATOR I/O OPERATING MODES (PIC16F636/639)

PROGRAMMABLE 8.0 LOW-VOLTAGE DETECT (PLVD) MODULE

The Programmable Low-Voltage Detect (PLVD) module is a power supply detector which monitors the internal power supply. This module is typically used in key fobs and other devices, where certain actions need to be taken as a result of a falling battery voltage.

FIGURE 8-1: **PLVD BLOCK DIAGRAM** The PLVD module includes the following capabilities:

- · Eight programmable trip points
- Interrupt on falling VDD
- Stable reference indication
- · Operation during Sleep

A Block diagram of the PLVD module is shown in Figure 8-1.

11.0 ANALOG FRONT-END (AFE) FUNCTIONAL DESCRIPTION (PIC16F639 ONLY)

The PIC16F639 device consists of the PIC16F636 device and low frequency (LF) Analog Front-End (AFE), with the AFE section containing three analog-input channels for signal detection and LF talk-back. This section describes the Analog Front-End (AFE) in detail.

The PIC16F639 device can detect a 125 kHz input signal as low as 1 mVpp and transmit data by using internal LF talk-back modulation or via an external transmitter. The PIC16F639 can also be used for various bidirectional communication applications. Figure 11-3 and Figure 11-4 show application examples of the device.

Each analog input channel has internal tuning capacitance, sensitivity control circuits, an input signal strength limiter and an LF talk-back modulation transistor. An Automatic Gain Control (AGC) loop is used for all three input channel gains. The output of each channel is OR'd and fed into a demodulator. The digital output is passed to the LFDATA pin. Figure 11-1 shows the block diagram of the AFE and Figure 11-2 shows the LC input path.

There are a total of eight Configuration registers. Six of them are used for AFE operation options, one for column parity bits and one for status indication of AFE operation. Each register has 9 bits including one row parity bit. These registers are readable and writable by SPI (Serial Protocol Interface) commands except for the STATUS register, which is read-only.

11.1 RF Limiter

The RF Limiter limits LC pin input voltage by de-Q'ing the attached LC resonant circuit. The absolute voltage limit is defined by the silicon process's maximum allowed input voltage (see **Section 15.0 "Electrical Specifications"**). The limiter begins de-Q'ing the external LC antenna when the input voltage exceeds VDE_Q, progressively de-Q'ing harder to reduce the antenna input voltage.

The signal levels from all 3 channels are combined such that the limiter attenuates all 3 channels uniformly, in respect to the channel with the strongest signal.

11.2 Modulation Circuit

The modulation circuit consists of a modulation transistor (FET), internal tuning capacitors and external LC antenna components. The modulation transistor and the internal tuning capacitors are connected between the LC input pin and LCCOM pin. Each LC input has its own modulation transistor.

When the modulation transistor turns on, its low Turn-on Resistance (RM) clamps the induced LC antenna voltage. The coil voltage is minimized when the modulation transistor turns-on and maximized when the modulation transistor turns-off. The modulation transistor's low Turn-on Resistance (RM) results in a high modulation depth.

The LF talk-back is achieved by turning on and off the modulation transistor.

The modulation data comes from the microcontroller section via the digital SPI interface as "Clamp On", "Clamp Off" commands. Only those inputs that are enabled will execute the clamp command. A basic block diagram of the modulation circuit is shown in Figure 11-1 and Figure 11-2.

The modulation FET is also shorted momentarily after Soft Reset and Inactivity timer time-out.

11.3 Tuning Capacitor

Each channel has internal tuning capacitors for external antenna tuning. The capacitor values are programmed by the Configuration registers up to 63 pF, 1 pF per step.

Note: The user can control the tuning capacitor by programming the AFE Configuration registers.

11.4 Variable Attenuator

The variable attenuator is used to attenuate, via AGC control, the input signal voltage to avoid saturating the amplifiers and demodulators.

Note: The variable attenuator function is accomplished by the device itself. The user cannot control its function.

11.5 Sensitivity Control

The sensitivity of each channel can be reduced by the channel's Configuration register sensitivity setting. This is used to desensitize the channel from optimum.

Note: The user can desensitize the channel sensitivity by programming the AFE Configuration registers.

11.6 AGC Control

The AGC controls the variable attenuator to limit the internal signal voltage to avoid saturation of internal amplifiers and demodulators (Refer to **Section 11.4** "**Variable Attenuator**").

The signal levels from all 3 channels are combined such that AGC attenuates all 3 channels uniformly in respect to the channel with the strongest signal.

Note:	The AGC control function is accomplished								
	by the device itself. The user cannot								
	control its function.								

11.7 Fixed Gain Amplifiers 1 and 2

FGA1 and FGA2 provides a maximum two-stage gain of 40 dB.

Note: The user cannot control the gain of these two amplifiers.

11.8 Auto Channel Selection

The Auto Channel Selection feature is enabled if the Auto Channel Select bit AUTOCHSEL<8> in Configuration Register 5 (Register 11-6) is set, and disabled if the bit is cleared. When this feature is active (i.e., AUTOCHSE <8> = 1), the control circuit checks the demodulator output of each input channel immediately after the AGC settling time (TSTAB). If the output is high, it allows this channel to pass data, otherwise it is blocked.

The status of this operation is monitored by AFE Status Register 7 bits <8:6> (Register 11-8). These bits indicate the current status of the channel selection activity, and automatically updates for every Soft Reset period. The auto channel selection function resets after each Soft Reset (or after Inactivity timer time-out). Therefore, the blocked channels are reenabled after Soft Reset.

This feature can make the output signal cleaner by blocking any channel that was not high at the end of TAGC. This function works only for demodulated data output, and is not applied for carrier clock or RSSI output.

11.9 Carrier Clock Detector

The Detector senses the input carrier cycles. The output of the Detector switches digitally at the signal carrier frequency. Carrier clock output is available when the output is selected by the DATOUT bit in the AFE Configuration Register 1 (Register 11-2).

11.10 Demodulator

The Demodulator consists of a full-wave rectifier, low pass filter, peak detector and Data Slicer that detects the envelope of the input signal.

11.11 Data Slicer

The Data Slicer consists of a reference generator and comparator. The Data Slicer compares the input with the reference voltage. The reference voltage comes from the minimum modulation depth requirement setting and input peak voltage. The data from all 3 channels are OR'd together and sent to the output enable filter.

11.12 Output Enable Filter

The Output Enable Filter enables the LFDATA output once the incoming signal meets the wake-up sequence requirements (see Section 11.15 "Configurable Output Enable Filter").

11.13 RSSI (Received Signal Strength Indicator)

The RSSI provides a current which is proportional to the input signal amplitude (see Section 11.31.3 "Received Signal Strength Indicator (RSSI) Output").

11.14 Analog Front-End Timers

The AFE has an internal 32 kHz RC oscillator. The oscillator is used in several timers:

- Inactivity timer
- Alarm timer
- Pulse Width timer
- Period timer
- · AGC settling timer

11.14.1 RC OSCILLATOR

The RC oscillator is low power, $32 \text{ kHz} \pm 10\%$ over temperature and voltage variations.

Case I. When Output Enable Filter is disabled: Demodulated output is available immediately after the AGC stabilization time (TAGC). Figure 11-10 shows an example of demodulated output when the Output Enable Filter is disabled.

Case II. When Output Enable Filter is enabled: Demodulated output is available only if the incoming signal meets the enable filter timing criteria that is defined in the Configuration Register 0 (Register 11-1). If the criteria is met, the output is available after the low timing (TOEL) of the Enable Filter. Figure 11-11 and Figure 11-12 shows examples of demodulated output when the Output Enable Filter is enabled.

Register Name	Address	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Configuration Register 0	0000	OEH	ł	OEL		ALRTIND	LCZEN	LCYEN	LCXEN	R0PAR
Configuration Register 1	0001	DATO	UT	Channel X Tuning Capacitor					R1PAR	
Configuration Register 2	0010	RSSIFET	CLKDIV	Channel Y Tuning Capacitor					R2PAR	
Configuration Register 3	0011	Unimplem	nented		Ch	annel Z Tuni	ng Capacito	or		R3PAR
Configuration Register 4	0100	Cha	innel X Sensi	itivity Control		Cha	annel Y Sen	sitivity Cont	rol	R4PAR
Configuration Register 5	0101	AUTOCHSEL	AGCSIG	MODMIN MODMIN Channel Z Sensitivity Control					R5PAR	
Column Parity Register 6	0110			Column Parity Bits						R6PAR
AFE Status Register 7	0111	Active C	hannel Indic	ators	AGCACT	Wake-up	Channel In	dicators	ALARM	PEI

TABLE 11-6: ANALOG FRONT-END CONFIGURATION REGISTERS SUMMARY

REGISTER 11-1: CONFIGURATION REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OEH1	OEH0	OEL1	OEL0	ALRTIND	LCZEN	LCYEN	LCXEN	R0PAR
bit 8								bit 0

Legend:				
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at I	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 8-7	OEH<1:0> : O 00 = Output 01 = 1 ms 10 = 2 ms 11 = 4 ms	utput Enable Filter High Time Enable Filter disabled (no wa	(Тоен) bit lke-up sequence required, pa	isses all signal to LFDATA)
bit 6-5	OEL<1:0>: O 00 = 1 ms 01 = 1 ms 10 = 2 ms 11 = 4 ms	utput Enable Filter Low Time	(TOEL) bit	
bit 4	ALRTIND: AL 1 = Parity er 0 = Parity er	ERT bit, output triggered by: ror and/or expired Alarm time ror	r (receiving noise, see Sectio	on 11.14.3 "Alarm Timer")
bit 3	LCZEN: LCZ 1 = Disabled 0 = Enabled	Enable bit I		
bit 2	LCYEN: LCY 1 = Disabled 0 = Enabled	Enable bit I		
bit 1	LCXEN: LCX 1 = Disabled 0 = Enabled	Enable bit		
bit 0	R0PAR: Regi	ster Parity bit – set/cleared sc	the 9-bit register contains oc	ld parity – an odd number of set bits

12.2 Reset

The PIC12F635/PIC16F636/639 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) Wake-up Reset (WUR)
- c) WDT Reset during normal operation
- d) WDT Reset during Sleep
- e) MCLR Reset during normal operation
- f) MCLR Reset during Sleep
- g) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- Power-on Reset
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset

They are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. TO and \overline{PD} bits are set or cleared differently in different Reset situations, as indicated in Table 12-3. These bits are used in software to determine the nature of the Reset. See Table 12-4 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 12-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 15.0** "**Electrical Specifications**" for pulse width specifications.

FIGURE 12-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

12.3 Power-on Reset

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, simply connect the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See **Section 15.0** "Electrical Specifications" for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOD (see Section 12.6 "Brown-out Reset (BOR)").

Note:	The POR circuit does not produce an
	internal Reset when VDD declines. To
	re-enable the POR, VDD must reach VSS
	for a minimum of 100 μs.

When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to the Application Note *AN607, "Power-up Trouble Shooting"* (DS00607).

12.4 Wake-up Reset (WUR)

The PIC12F635/PIC16F636/639 has a modified wake-up from Sleep mechanism. When waking from Sleep, the WUR function resets the device and releases Reset when VDD reaches an acceptable level.

If the WURE bit is enabled ('0') in the Configuration Word register, the device will Wake-up Reset from Sleep through one of the following events:

- 1. On any event that causes a wake-up event. The peripheral must be enabled to generate an interrupt or wake-up, GIE state is ignored.
- 2. When WURE is enabled, RA3 will always generate an interrupt-on-change signal during Sleep.

The \overline{WUR} , \overline{POR} and \overline{BOR} bits in the PCON register and the \overline{TO} and \overline{PD} bits in the STATUS register can be used to determine the cause of device Reset.

To allow WUR upon RA3 change:

- Enable the WUR function, WURE Configuration Bit = 0.
- 2. Enable RA3 as an input, MCLRE Configuration Bit = 0.
- 3. Read PORTA to establish the current state of RA3.
- 4. Execute **SLEEP** instruction.
- 5. When RA3 changes state, the device will wake-up and then reset. The WUR bit in PCON will be cleared to '0'.

12.4.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from the 31 kHz LFINTOSC oscillator. For more information, see **Section 3.5 "Internal Clock Modes**". The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A Configuration bit, PWRTE, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required.

The Power-up Timer delay will vary from chip-to-chip due to:

- VDD variation
- Temperature variation
- Process variation

See DC parameters for details (Section 15.0 "Electrical Specifications").

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin, rather than pulling this pin directly to Vss.

12.5 MCLR

PIC12F635/PIC16F636/639 has a noise filter in the MCLR Reset path. The filter will ignore small pulses.

It should be noted that a WDT Reset does not drive $\frac{MCLR}{MCLR}$ pin low. See Figure 12-2 for the recommended MCLR circuit.

An internal MCLR option is enabled by clearing the MCLRE bit in the Configuration Word register. When cleared, MCLR is internally tied to VDD and an internal weak pull-up is enabled for the MCLR pin. In-Circuit Serial Programming is not affected by selecting the internal MCLR option.

BTFSS	Bit Test f, Skip if Set			
Syntax:	[label] BTFSS f,b			
Operands:	$0 \le f \le 127$ $0 \le b < 7$			
Operation:	skip if (f) = 1			
Status Affected:	None			
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.			

CLRWDT	Clear Watchdog Timer			
Syntax:	[label] CLRWDT			
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \overline{TO} \ \overline{PD} \end{array}$			
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.			

CALL	Call Subroutine			
Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \le k \le 2047$			
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC < 10:0>, \\ (PCLATH < 4:3>) \rightarrow PC < 12:11> \end{array}$			
Status Affected:	None			
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.			

COMF	Complement f			
Syntax:	[label] COMF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ensuremath{\left[0,1\right]} \end{array}$			
Operation:	$(\overline{f}) \rightarrow (destination)$			
Status Affected:	Z			
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.			

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f				
Syntax:	[label] DECF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - 1 \rightarrow (destination)				
Status Affected:	Z				
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

15.8 Thermal Considerations

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Para m No.	Sym	Characteristic		Тур	Units	Conditions
TH01	θJA	Thermal Resistance		84.6	°C/W	8-pin PDIP package
		Junction to Ambient	PIC12E635	163.0	°C/W	8-pin SOIC package
			110121 000	52.4	°C/W	8-pin DFN 4x4x0.9 mm package
				52.4	°C/W	8-pin DFN-S 6x5 mm package
				69.8	°C/W	14-pin PDIP package
			PIC16E636	85.0	°C/W	14-pin SOIC package
			1 10 101 000	100.4	°C/W	14-pin TSSOP package
				46.3	°C/W	16-pin QFN 4x0.9mm package
			PIC16F639	108.1	°C/W	20-pin SSOP package
TH02	θJC	Thermal Resistance		41.2	°C/W	8-pin PDIP package
		Junction to Case		38.8	°C/W	8-pin SOIC package
			10121033	3.0	°C/W	8-pin DFN 4x4x0.9 mm package
				3.0	°C/W	8-pin DFN-S 6x5 mm package
				32.5	°C/W	14-pin PDIP package
			PIC16E636	31.0	°C/W	14-pin SOIC package
			1 10 101 000	31.7	°C/W	14-pin TSSOP package
				2.6	°C/W	16-pin QFN 4x0.9mm package
			PIC16F639	32.2	°C/W	20-pin SSOP package
TH03	TJ	Junction Temperature		150	°C	For derated power calculations
TH04	PD	Power Dissipation		_	W	PD = PINTERNAL + PI/O
TH05	Pinternal	Internal Power Dissipation			W	PINTERNAL = IDD x VDD (NOTE 1)
TH06	PI/O	I/O Power Dissipation		_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	PDER	Derated Power			W	Pder = (TJ - TA)/θJA (NOTE 2, 3)

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature.

3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power dissipation or derated power (PDER).

FIGURE 16-30: COMPARATOR RESPONSE TIME (RISING EDGE)

FIGURE 16-31: COMPARATOR RESPONSE TIME (FALLING EDGE)

8-Lead Plastic Small Outline (SN or OA) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
[Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		1.27 BSC		
Overall Height	А	-	-	1.75	
Molded Package Thickness	A2	1.25	_	_	
Standoff §	A1	0.10	-	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (optional)	h	0.25	_	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.04 REF			
Foot Angle	¢	0°	-	8°	
Lead Thickness	С	0.17	_	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B

INTOSC 30
Clock Switching 42
CMCONO Register 80
CMCONI Register
CivicONT Register
Code Examples
Assigning Prescaler to Timeru
Assigning Prescaler to WD1
Data EEPROM Read
Data EEPROM Write
Indirect Addressing
Initializing PORTA47
Initializing PORTC57
Saving Status and W Registers in RAM142
Ultra Low-Power Wake-up Initialization51
Write Verify93
Code Protection
Comparator71
Associated registers85
C2OUT as T1 Gate81
Configurations74
I/O Operating Modes74
Interrupts77
Operation
Operation During Sleep
Response Time
Svnchronizing CxOUT w/Timer1
Comparator Voltage Reference (CVREF)
Response Time
Specifications 185, 186
Comparator Voltage Reference (CVREE) 83
Effects of a Reset 79
Specifications 185
Comparators
C20UT as T1 Gate 66
Effects of a Reset
Specifications 195
CONEIC Register 120
Configuration Bits
Configuration Bits
Cro reatures
Customer Change Notification Service
Customer Notification Service
Customer Support

D

Data EEPROM Memory
Associated Registers94
Code Protection
Protection Against Spurious Write
Using
Data Memory17
DC and AC Characteristics
Graphs and Tables191
DC Characteristics
Extended (PIC12F635/PIC16F636)169
Industrial (PIC12F635/PIC16F636)167
Industrial (PIC16F639)174
Industrial/Extended (PIC12F635/PIC16F636) 166, 171
Industrial/Extended (PIC16F639) 173, 175
Development Support159
Device Overview9
E

EEADR Register	
EECON1 (EEPROM Control 1) Register	

EECON1 Register	92
EECON2 (EEPROM Control 2) Register	92
EEDAT Register	91
EEPROM Data Memory	
Reading	93
Write Verify	93
Writing	93
Electrical Specifications	163
Errata	7

F

Fail-Safe Clock Monitor	
Fail-Safe Condition Clearing	45
Fail-Safe Detection	45
Fail-Safe Operation	45
Reset or Wake-up from Sleep	45
Firmware Instructions	149
Fuses. See Configuration Bits	

G

General Purpose Register (GPR)	File	18
--------------------------------	------	----

I

ID Locations	146
In-Circuit Debugger	147
In-Circuit Serial Programming (ICSP)	147
Indirect Addressing, INDF and FSR Registers	. 32
Instruction Format	149
Instruction Set	149
ADDLW	151
ADDWF	151
ANDLW	151
ANDWF	151
BCF	151
BSF	151
BTFSC	151
BTFSS	152
CALL	152
CLRF	152
CLRW	152
CLRWDT	152
COMF	152
DECF	152
DECFSZ	153
GOTO	153
INCF	153
INCFSZ	153
IORLW	153
IORWF	153
MOVF	154
MOVLW	154
MOVWF	154
NOP	154
RETFIE	155
RETLW	155
RETURN	155
RLF	156
RRF	156
SLEEP	156
SUBLW	156
SUBWF	157
SWAPF	157
XORLW	157
XORWF	157
Summary Table	150
INTCON Register	. 28