

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LVD, POR, WDT
Number of I/O	11
Program Memory Size	3.5КВ (2К х 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f636-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the PIC12F635/PIC16F636/639 devices.

Block Diagrams and pinout descriptions of the devices are as follows:

- PIC12F635 (Figure 1-1, Table 1-1)
- PIC16F636 (Figure 1-2, Table 1-2)
- PIC16F639 (Figure 1-3, Table 1-3)

FIGURE 2-4: PIC16F636/639 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address		Address		Address
Indirect addr. ⁽¹⁾	00h	Indirect addr. (1)	80h	Accesses	100h	Accesses	180h
TMR0	01h	OPTION_REG	81h	00h-0Bh	101h	80h-8Bh	181h
PCL	02h	PCL	82h		102h		182h
STATUS	03h	STATUS	83h		103h		183h
FSR	04h	FSR	84h		104h		184h
PORTA	05h	TRISA	85h		105h		185h
	06h		86h		106h		186h
PORTC	07h	TRISC	87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah		10Ah		18Ah
INTCON	0Bh	INTCON	8Bh		10Bh		18Bh
PIR1	0Ch	PIE1	8Ch		10Ch		18Ch
	0Dh		8Dh		10Dh		18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh		10Fh		18Fh
T1CON	10h	OSCTUNE	90h	CRCON	110h		190h
	11h		91h	CRDAT0 ⁽²⁾	111h		191h
	12h		92h	CRDAT1 ⁽²⁾	112h		192h
	13h		93h	CRDAT2 ⁽²⁾	113h		193h
	14h	LVDCON	94h	CRDAT3 ⁽²⁾	114h		194h
	15h	WPUDA	95h		115h		195h
	16h	IOCA	96h		116h		196h
	17h	WDA	97h		117h		197h
WDTCON	18h		98h		118h		198h
CMCON0	19h	VRCON	99h		119h		199h
CMCON1	1Ah	EEDAT	9Ah		11Ah		19Ah
	1Bh	EEADR	9Bh		11Bh		19Bh
	1Ch	EECON1	9Ch		11Ch		19Ch
	1Dh	EECON2 ⁽¹⁾	9Dh		11Dh		19Dh
	1Eh		9Eh		11Eh		19Eh
	1Fh		9Fh		11Fh		19Fh
General	20h	General	A0h		120h		1A0h
Purpose		Purpose					
Register		Register					
90 Dytes		32 Dytes	BFh				
			C0h				
			EFh		16Fh		1EFh
		Accesses	F0h	Accesses	170h	Accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	Bank 0	1FFh
Bank 0	1	Bank 1	1	Bank 2	_	Bank 3	_

Unimplemented data memory locations, read as '0'.

Note 1: Not a physical register.

2: CRDAT<3:0> registers are KEELOQ hardware peripheral related registers and require the execution of the "KEELOQ[®] Encoder License Agreement" regarding implementation of the module and access to related registers. The "KEELOQ[®] Encoder License Agreement" may be accessed through the Microchip web site located at <u>www.microchip.com/KEELOQ</u> or by contacting your local Microchip Sales Representative.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR/ WUR	Page
Bank (nk 0										
00h	INDF	Addressing (not a phys	g this locatio sical register	n uses conte)	ents of FSR to	o address dat	a memory			XXXX XXXX	32,137
01h	TMR0	Timer0 Mo	dule Registe	er						xxxx xxxx	61,137
02h	PCL	Program C	ounter's (PC	C) Least Sigr	nificant Byte					0000 0000	32,137
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	26,137
04h	FSR	Indirect Da	ta Memory	Address Poir	nter					xxxx xxxx	32,137
05h	GPIO	—	—	GP5	GP4	GP3	GP2	GP1	GP0	xx xx00	47,137
06h	—	Unimpleme	ented							—	_
07h	_	Unimpleme	ented							—	_
08h	_	Unimpleme	ented							—	_
09h	—	Unimpleme	ented							—	_
0Ah	PCLATH	_	_	_	Write Buffer	for upper 5 b	oits of Progra	m Counter		0 0000	32,137
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF ⁽²⁾	0000 000x	28,137
0Ch	PIR1	EEIF	LVDIF	CRIF	-	C1IF	OSFIF	-	TMR1IF	000- 00-0	30,137
0Dh	_	Unimplemented —								_	
0Eh	TMR1L	Holding Re	Holding Register for the Least Significant Byte of the 16-bit TMR1 xx								64,137
0Fh	TMR1H	Holding Re	egister for the	e Most Signi	ficant Byte of	the 16-bit TM	/IR1			xxxx xxxx	64,137
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	68,137
11h	—	Unimpleme	ented							—	
12h	—	Unimpleme	ented							—	
13h	_	Unimpleme	ented							—	_
14h	_	Unimpleme	ented							—	_
15h	—	Unimpleme	ented							—	_
16h	—	Unimpleme	Unimplemented —							_	
17h	—	Unimpleme	ented		_					—	_
18h	WDTCON	—	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	144,137
19h	CMCON0	—	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000	79,137
1Ah	CMCON1	_	—	_	-	—	—	T1GSS	CMSYNC	10	82,137
1Bh	—	Unimplemented —							_		
1Ch	—	Unimplemented —							_		
1Dh	—	Unimplemented —							_		
1Eh	—	Unimpleme	ented							-	_
1Fh	—	Unimpleme	nimplemented —							-	

TABLE 2-1:	PIC12F635 SPECIAL	FUNCTION REGISTERS	SUMMARY BANK 0

Legend: Note

1:

 – = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented
<u>Other (non Power-up)</u> Resets include MCLR Reset and Watchdog Timer Reset during normal operation.
MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the mismatch or units. 2: match exists.

3.3 Clock Source Modes

Clock Source modes can be classified as external or internal.

- External Clock modes rely on external circuitry for the clock source. Examples are: Oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.
- Internal clock sources are contained internally within the Oscillator module. The Oscillator module has two internal oscillators: the 8 MHz High-Frequency Internal Oscillator (HFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bit of the OSCCON register. See **Section 3.6 "Clock Switching"** for additional information.

3.4 External Clock Modes

3.4.1 OSCILLATOR START-UP TIMER (OST)

If the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the Oscillator module. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 3-1.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 3.7 "Two-Speed Clock Start-up Mode"**).

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	LFINTOSC HFINTOSC	31 kHz 125 kHz to 8 MHz	Oscillator Warm-Up Delay (Twarm)
Sleep/POR	EC, RC	DC – 20 MHz	2 instruction cycles
LFINTOSC (31 kHz)	EC, RC	DC – 20 MHz	1 cycle of each
Sleep/POR	LP, XT, HS	32 kHz to 20 MHz	1024 Clock Cycles (OST)
LFINTOSC (31 kHz)	HFINTOSC	125 kHz to 8 MHz	1 μs (approx.)

TABLE 3-1: OSCILLATOR DELAY EXAMPLES

3.4.2 EC MODE

The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 3-2 shows the pin connections for EC mode.

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 3-2:

EXTERNAL CLOCK (EC) MODE OPERATION

7.11 Comparator Voltage Reference

The Comparator Voltage Reference module provides an internally generated voltage reference for the comparators. The following features are available:

- Independent from Comparator operation
- Two 16-level voltage ranges
- · Output clamped to Vss
- Ratiometric with VDD
- Fixed Voltage Reference

The VRCON register (Register 7-5) controls the Voltage Reference module shown in Figure 7-10.

7.11.1 INDEPENDENT OPERATION

The comparator voltage reference is independent of the comparator configuration. Setting the VREN bit of the VRCON register will enable the voltage reference.

7.11.2 OUTPUT VOLTAGE SELECTION

The CVREF voltage reference has 2 ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The 16 levels are set with the VR<3:0> bits of the VRCON register.

The CVREF output voltage is determined by the following equations:

EQUATION 7-1: CVREF OUTPUT VOLTAGE (INTERNAL CVREF)

VRR = 1 (low range): $CVREF = (VR < 3:0 > /24) \times VDD$ VRR = 0 (high range): $CVREF = (VDD/4) + (VR < 3:0 > \times VDD/32)$

EQUATION 7-2: CVREF OUTPUT VOLTAGE (EXTERNAL CVREF)

VRR = 1 (low range):

 $CVREF = (VR < 3:0 > /24) \times VLADDER$

VRR = 0 (high range):

 $CVREF = (VLADDER/4) + (VR < 3:0 > \times VLADDER/32)$

VLADDER = VDD or ([VREF+] - [VREF-]) or VREF+

The full range of VSS to VDD cannot be realized due to the construction of the module. See Figure 7-10.

7.11.3 OUTPUT CLAMPED TO Vss

The CVREF output voltage can be set to Vss with no power consumption by configuring VRCON as follows:

- VREN = 0
- VRR = 1
- VR<3:0> = 0000

This allows the comparator to detect a zero-crossing while not consuming additional CVREF module current.

7.11.4 OUTPUT RATIOMETRIC TO VDD

The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 15.0 "Electrical Specifications"**.

11.0 ANALOG FRONT-END (AFE) FUNCTIONAL DESCRIPTION (PIC16F639 ONLY)

The PIC16F639 device consists of the PIC16F636 device and low frequency (LF) Analog Front-End (AFE), with the AFE section containing three analog-input channels for signal detection and LF talk-back. This section describes the Analog Front-End (AFE) in detail.

The PIC16F639 device can detect a 125 kHz input signal as low as 1 mVpp and transmit data by using internal LF talk-back modulation or via an external transmitter. The PIC16F639 can also be used for various bidirectional communication applications. Figure 11-3 and Figure 11-4 show application examples of the device.

Each analog input channel has internal tuning capacitance, sensitivity control circuits, an input signal strength limiter and an LF talk-back modulation transistor. An Automatic Gain Control (AGC) loop is used for all three input channel gains. The output of each channel is OR'd and fed into a demodulator. The digital output is passed to the LFDATA pin. Figure 11-1 shows the block diagram of the AFE and Figure 11-2 shows the LC input path.

There are a total of eight Configuration registers. Six of them are used for AFE operation options, one for column parity bits and one for status indication of AFE operation. Each register has 9 bits including one row parity bit. These registers are readable and writable by SPI (Serial Protocol Interface) commands except for the STATUS register, which is read-only.

11.1 RF Limiter

The RF Limiter limits LC pin input voltage by de-Q'ing the attached LC resonant circuit. The absolute voltage limit is defined by the silicon process's maximum allowed input voltage (see **Section 15.0 "Electrical Specifications"**). The limiter begins de-Q'ing the external LC antenna when the input voltage exceeds VDE_Q, progressively de-Q'ing harder to reduce the antenna input voltage.

The signal levels from all 3 channels are combined such that the limiter attenuates all 3 channels uniformly, in respect to the channel with the strongest signal.

11.2 Modulation Circuit

The modulation circuit consists of a modulation transistor (FET), internal tuning capacitors and external LC antenna components. The modulation transistor and the internal tuning capacitors are connected between the LC input pin and LCCOM pin. Each LC input has its own modulation transistor.

When the modulation transistor turns on, its low Turn-on Resistance (RM) clamps the induced LC antenna voltage. The coil voltage is minimized when the modulation transistor turns-on and maximized when the modulation transistor turns-off. The modulation transistor's low Turn-on Resistance (RM) results in a high modulation depth.

The LF talk-back is achieved by turning on and off the modulation transistor.

The modulation data comes from the microcontroller section via the digital SPI interface as "Clamp On", "Clamp Off" commands. Only those inputs that are enabled will execute the clamp command. A basic block diagram of the modulation circuit is shown in Figure 11-1 and Figure 11-2.

The modulation FET is also shorted momentarily after Soft Reset and Inactivity timer time-out.

11.3 Tuning Capacitor

Each channel has internal tuning capacitors for external antenna tuning. The capacitor values are programmed by the Configuration registers up to 63 pF, 1 pF per step.

Note: The user can control the tuning capacitor by programming the AFE Configuration registers.

11.4 Variable Attenuator

The variable attenuator is used to attenuate, via AGC control, the input signal voltage to avoid saturating the amplifiers and demodulators.

Note: The variable attenuator function is accomplished by the device itself. The user cannot control its function.

11.5 Sensitivity Control

The sensitivity of each channel can be reduced by the channel's Configuration register sensitivity setting. This is used to desensitize the channel from optimum.

Note: The user can desensitize the channel sensitivity by programming the AFE Configuration registers.

TABLE 11-1:TYPICAL OUTPUT ENABLEFILTER TIMING

OEH <1:0>	OEL <1:0>	Тоен (ms)	TOEL (ms)	Toet (ms)
01	00	1	1	3
01	01	1	1	3
01	10	1	2	4
01	11	1	4	6
10	00	2	1	4
10	01	2	1	4
10	10	2	2	5
10	11	2	4	8
11	00	4	1	6
11	01	4	1	6
11	10	4	2	8
11	11	4	4	10
00	XX	Fi	ilter Disable	ed

Note 1: Typical at room temperature and VDD = 3.0V, 32 kHz oscillator.

TOEH is measured from the rising edge of the demodulator output to the first falling edge. The pulse width must fall within TOEH $\leq t \leq$ TOET.

TOEL is measured from the falling edge of the demodulator output to the rising edge of the next pulse. The pulse width must fall within TOEL $\leq t \leq$ TOET.

TOET is measured from rising edge to the next rising edge (i.e., the sum of TOEH and TOEL). The pulse width must be $t \leq$ TOET. If the Configuration Register 0 (Register 11-1), OEL<8:7> is set to '00', then TOEH must not exceed TOET and TOEL must not exceed TINACT.

The filter will reset, requiring a complete new successive high and low period to enable LFDATA, under the following conditions.

- The received high is not greater than the configured minimum TOEH value.
- During TOEH, a loss of signal > 56 μs. A loss of signal < 56 μs may or may not cause a filter Reset.
- The received low is not greater than the configured minimum TOEL value.
- The received sequence exceeds the maximum TOET value:
 - TOEH + TOEL > TOET
 - or TOEH > TOET
 - or TOEL > TOET
- A Soft Reset SPI command is received.

If the filter resets due to a long high (TOEH > TOET), the high-pulse timer will not begin timing again until after a gap of TE and another low-to-high transition occurs on the demodulator output.

Disabling the output enable filter disables the TOEH and TOEL requirement and the AFE passes all received LF data. See Figure 11-10, Figure 11-11 and Figure 11-12 for examples.

When viewed from an application perspective, from the pin input, the actual output enable filter timing must factor in the analog delays in the input path (such as demodulator charge and discharge times).

- TOEH TDR + TDF
- TOEL + TDR TDF

The output enable filter starts immediately after TgAP, the gap after AGC stabilization period.

11.16 Input Sensitivity Control

The AFE is designed to have typical input sensitivity of 3 mVPP. This means any input signal with amplitude greater than 3 mVPP can be detected. The AFE's internal AGC loop regulates the detecting signal amplitude when the input level is greater than approximately 20 mVPP. This signal amplitude is called "AGC-active level". The AGC loop regulates the input voltage so that the input signal amplitude range will be kept within the linear range of the detection circuits without saturation. The AGC Active Status bit AGCACT<5>, in the AFE Status Register 7 (Register 11-8) is set if the AGC loop regulates the input voltage.

Table 11-2 shows the input sensitivity comparison when the AGCSIG option is used. When AGCSIG option bit is set, the demodulated output is available only when the AGC loop is active (see Table 11-1). The AFE has also input sensitivity reduction options per each channel. The Configuration Register 3 (Register 11-4), Configuration Register 4 (Register 11-5) and Configuration Register 5 (Register 11-6) have the option to reduce the channel gains from 0 dB to approximately -30 dB.

12.7 Time-out Sequence

On power-up, the time-out sequence is as follows: first, PWRT time-out is invoked after POR has expired, then OST is activated after the PWRT time-out has expired. The total time-out will vary based on oscillator Configuration and <u>PWRTE</u> bit status. For example, in EC mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no time-out at all. Figure 12-4, Figure 12-5 and Figure 12-6 depict time-out sequences. The device can execute code from the INTOSC, while OST is active, by enabling Two-Speed Start-up or Fail-Safe Clock Monitor (See Section 3.7.2 "Two-Speed Start-up Sequence" and Section 3.8 "Fail-Safe Clock Monitor").

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 12-5). This is useful for testing purposes or to synchronize more than one PIC12F635/PIC16F636/639 device operating in parallel.

Table 12-5 shows the Reset conditions for some special registers, while Table 12-4 shows the Reset conditions for all the registers.

TABLE 12-1:

12.8 Power Control (PCON) Register

The Power Control register, PCON (address 8Eh), has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a Brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 4.2.3 "Ultra Low-Power Wake-up" and Section 12.6 "Brown-out Reset (BOR)".

Oscillator	Power-	ир	Brown-out I	Wake-up	
Configuration	PWRTE = 0	PWRTE = 1	$\overline{\text{PWRTE}} = 0 \qquad \overline{\text{PWRTE}} = 1$		from Sleep
XT, HS, LP	TPWRT + 1024 • TOSC	1024 • Tosc	TPWRT + 1024 • TOSC	1024 • Tosc	1024 • Tosc
RC, EC, INTOSC	TPWRT	—	TPWRT	—	—

TABLE 12-2: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET

Name	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	BOREN1	BOREN0	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
PCON			_	_	ULPWUE	SBOREN	WUR	_	POR	BOR	01qq	0uuu
STATUS			IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR. Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (Register 12-1) for operation of all register bits.

TIME-OUT IN VARIOUS SITUATIONS

TABLE 12-3: PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	WUR	то	PD	Condition	
0	x	x	1	1	Power-on Reset	
u	0	u	1	1	Brown-out Reset	
u	u	u	0	u	WDT Reset	
u	u	u	0	0	WDT Wake-up	
u	u	u	u	u	MCLR Reset during normal operation	
u	u	u	1	0	MCLR Reset during Sleep	
u	u	0	1	0	Wake-up Reset during Sleep	
u	0	u	1	1	Brown-out Reset during Sleep	

Legend: u = unchanged, x = unknown

12.9.2 TIMER INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF bit of the INTCON register. The interrupt can be enabled/disabled by setting/clearing T0IE bit of the INTCON register. See **Section 5.0 "Timer0 Module**" for operation of the Timer0 module.

12.9.3 PORTA INTERRUPT

An input change on PORTA change sets the RAIF bit of the INTCON register. The interrupt can be enabled/disabled by setting/clearing the RAIE bit of the INTCON register. Plus, individual pins can be configured through the IOCA register.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RAIF interrupt flag may not get set.

FIGURE 12-7: INTERRUPT LOGIC

12.15 In-Circuit Serial Programming

The PIC12F635/PIC16F636/639 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for:

- Power
- Ground
- Programming Voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RA0 and RA1 pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the 'PIC12F6XX/16F6XX *Memory Programming Specification*" (DS41204) for more information. RA0 becomes the programming data and RA1 becomes the programming clock. Both RA0 and RA1 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Program/Verify mode, the Program Counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending on whether the command was a load or a read. For complete details of serial programming, please refer to the "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204).

A typical In-Circuit Serial Programming connection is shown in Figure 12-11.

FIGURE 12-11: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

12.16 In-Circuit Debugger

Since in-circuit debugging requires the loss of clock, data and MCLR pins, MPLAB[®] ICD 2 development with a 14-pin device is not practical. A special 20-pin PIC16F636 ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user.

Use of the ICD device requires the purchase of a special header. On the top of the header is an MPLAB ICD 2 connector. On the bottom of the header is a 14-pin socket that plugs into the user's target via the 14-pin stand-off connector.

When the $\overline{\text{ICD}}$ pin on the PIC16F636 ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 12-9 shows which features are consumed by the background debugger:

TABLE 12-9:DEBUGGER RESOURCES

Resource	Description
I/O pins	ICDCLK, ICDDATA
Stack	1 level
Program Memory	Address 0h must be NOP 700h-7FFh

For more information, see the "*MPLAB*[®] *ICD 2 In-Circuit Debugger User's Guide*" (DS51331), available on Microchip's web site (www.microchip.com).

FIGURE 12-12: 20-PIN ICD PINOUT

NOTES:

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \overline{TO} \ \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC < 10:0>, \\ (PCLATH < 4:3>) \rightarrow PC < 12:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f				
Syntax:	[<i>label</i>] CLRF f				
Operands:	$0 \le f \le 127$				
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Description:	The contents of register 'f' are cleared and the Z bit is set.				

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param	Sum	Device Characteristics	Min	Tunt	Max	l lu ita	Conditions			
No.	Sym	Device Characteristics	WIIII	турт	Wax	Units	Vdd	Note		
D010	IDD	Supply Current ^(1,2)	—	11	16	μA	2.0	Fosc = 32.768 kHz		
			—	18	28	μΑ	3.0	LP Oscillator mode		
			—	35	54	μΑ	5.0			
D011			_	140	240	μΑ	2.0	Fosc = 1 MHz		
			_	220	380	μA	3.0	XT Oscillator mode		
			_	380	550	μA	5.0			
D012			_	260	360	μΑ	2.0	Fosc = 4 MHz		
			_	420	650	μA	3.0	XT Oscillator mode		
			_	0.8	1.1	mA	5.0	-		
D013			_	130	220	μΑ	2.0	Fosc = 1 MHz		
			—	215	360	μΑ	3.0	EC Oscillator mode		
			—	360	520	μΑ	5.0			
D014			—	220	340	μA	2.0	Fosc = 4 MHz		
			—	375	550	μΑ	3.0	EC Oscillator mode		
			—	0.65	1.0	mA	5.0			
D015			—	8	20	μA	2.0	Fosc = 31 kHz		
			—	16	40	μΑ	3.0	LFINTOSC mode		
			—	31	65	μΑ	5.0			
D016			—	340	450	μA	2.0	Fosc = 4 MHz		
			—	500	700	μA	3.0	HFINTOSC mode		
			—	0.8	1.2	mA	5.0			
D017			_	410	650	μΑ	2.0	Fosc = 8 MHz		
		—	700	950	μA	3.0	HFINTOSC mode			
			—	1.30	1.65	mA	5.0			
D018			_	230	400	μA	2.0	Fosc = 4 MHz		
			_	400	680	μA	3.0	EXTRC mode		
			_	0.63	1.1	mA	5.0			
D019			—	2.6	3.25	mA	4.5	Fosc = 20 MHz		
	— 2.6		3.25	mA	5.0	HS Oscillator mode				

15.2 DC Characteristics: PIC12F635/PIC16F636-I (Industrial)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. MCU only, Analog Front-End not included.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. MCU only, Analog Front-End not included.

3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Sym	Characteristic	Min	Min Typ† Max Units Conditions					
D001	Vdd	Supply Voltage	2.0	—	3.6	V	Fosc ≤ 10 MHz		
D001A	Vddt	Supply Voltage (AFE)	2.0	—	3.6	V	Analog Front-End VDD voltage. Treated as VDD in this document.		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5*	_	—	V	Device in Sleep mode		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	—	V	See Section 12.3 "Power-on Reset" for details.		
D003A	VPORT	VDD Start Voltage (AFE) to ensure internal Power- on Reset signal	—	—	1.8	V	Analog Front-End POR voltage.		
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05*	_	—	V/ms	See Section 12.3 "Power-on Reset" for details.		
D005	VBOD	Brown-out Reset	2.0	2.1	2.2	V			
D006	Rм	Turn-on Resistance or Modulation Transistor	_	50	100	Ohm	VDD = 3.0V		
D007	Rpu	Digital Input Pull-Up Resistor CS, SCLK	50	200	350	kOhm	VDD = 3.6V		
D008	Iail	Analog Input Leakage Current LCX, LCY, LCZ LCCOM		_	±1 ±1	μΑ μΑ	VDD = 3.6V, VSS \leq VIN \leq VDD, tested at Sleep mode		

DC Characteristics: PIC16F639-I (Industrial) 15.5

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

FIGURE 15-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

15.12 SPI Timing: Analog Front-End (AFE) for PIC16F639

AC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)						
			Supply Voltage Operating temperature LC Signal Input Carrier Frequency LCCOM connected to Vss			$2.0V \le VDD \le 3.6V$ -40°C \le TAMB \le +85°C for industrial Sinusoidal 300 mVPP 125 kHz		
Param	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
AF33	FSCLK	SCLK Frequency	—	—	3	MHz		
AF34	Tcssc	CS fall to first SCLK edge setup time	100	_	_	ns		
AF35	Ts∪	SDI setup time	30	—	—	ns		
AF36	THD	SDI hold time	50	—	—	ns		
AF37	Тні	SCLK high time	150	—	—	ns		
AF38	TLO	SCLK low time	150	—	—	ns		
AF39	TDO	SDO setup time	—	_	150	ns		
AF40	Tsccs	SCLK last edge to CS rise setup time	100	—	_	ns		
AF41	Тсѕн	CS high time	500	_	—	ns		
AF42	Tcs1	CS rise to SCLK edge setup time	50	—	—	ns		
AF43	Tcs0	SCLK edge to \overline{CS} fall setup time	50	—	—	ns	SCLK edge when \overline{CS} is high	
AF44	TSPIR	Rise time of SPI data (SPI Read command)	_	10	—	ns	VDD = 3.0V. Time is measured from 10% to 90% of amplitude	
AF45	TSPIF	Fall time of SPI data (SPI Read command)	-	10	—	ns	VDD = 3.0V. Time is measured from 90% to 10% of amplitude	

* Parameter is characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 16-16: BOR IPD vs. VDD OVER TEMPERATURE

17.2 Package Details

The following sections give the technical details of the packages.

8-Lead Plastic Dual In-Line (P or PA) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N				
Pitch	e		.100 BSC		
Top to Seating Plane	А	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.348	.365	.400	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	_	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B

8-Lead Plastic Small Outline (SN or OA) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
1	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N	8				
Pitch	е		1.27 BSC			
Overall Height	А	-	-	1.75		
Molded Package Thickness	A2	1.25	-	_		
Standoff §	A1	0.10	-	0.25		
Overall Width	E	6.00 BSC				
Molded Package Width	E1	3.90 BSC				
Overall Length	D	4.90 BSC				
Chamfer (optional)	h	0.25	_	0.50		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.04 REF				
Foot Angle	¢	0°	_	8°		
Lead Thickness	С	0.17	_	0.25		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B