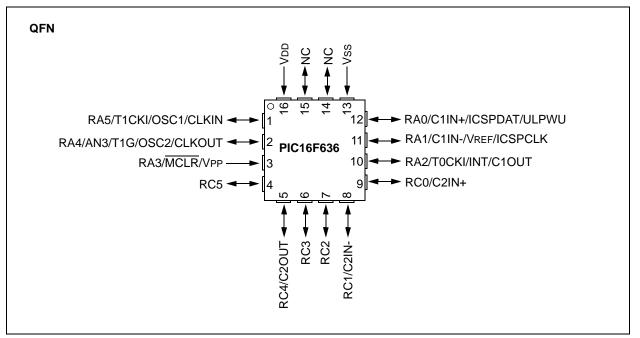
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	·
Peripherals	Brown-out Detect/Reset, LVD, POR, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f636-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-Pin Diagram

TABLE 3: 16-PIN SUMMARY

I/O	Pin	Comparators	Timer	Interrupts	Pull-ups	Basic
RA0	12	C1IN+		IOC	Y	ICSPDAT/ULPWU
RA1	11	C1IN-	—	IOC	Y	VREF/ICSPCLK
RA2	10	C1OUT	TOCKI	INT/IOC	Y	—
RA3 ⁽¹⁾	3	_	—	IOC	Y ⁽²⁾	MCLR/VPP
RA4	2		T1G	IOC	Y	OSC2/CLKOUT
RA5	1		T1CKI	IOC	Y	OSC1/CLKIN
RC0	9	C2IN+	—	—	—	—
RC1	8	C2IN-	—	—	—	—
RC2	7		—	—	—	—
RC3	6	_	_	_	—	—
RC4	5	C2OUT	—	—	—	—
RC5	4	—	_	_	—	—
_	16		—	—	—	Vdd
_	13	_		_		Vss
_	14	_	_	_	_	NC
	15					NC

Note 1: Input only.

2: Only when pin is configured for external MCLR.

PIC12F635 PINOUT DESCRIPTIONS TABLE 1-1:

Name	Function	Input Type	Output Type	Description
GP0/C1IN+/ICSPDAT/ULPWU	GP0	TTL		General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up/pull-down. Selectable Ultra Low-Power Wake-up pin.
	C1IN+	AN	_	Comparator 1 input – positive.
	ICSPDAT	TTL	CMOS	Serial programming data I/O.
	ULPWU	AN		Ultra Low-Power Wake-up input.
GP1/C1IN-/ICSPCLK	GP1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up/pull-down.
	C1IN-	AN	_	Comparator 1 input – negative.
	ICSPCLK	ST	_	Serial programming clock.
GP2/T0CKI/INT/C1OUT	GP2	ST	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up/pull-down.
	T0CKI	ST	_	External clock for Timer0.
	INT	ST	_	External interrupt.
	C1OUT	_	CMOS	Comparator 1 output.
GP3/MCLR/Vpp	GP3	TTL	_	General purpose input. Individually controlled interrupt-on-change.
	MCLR	ST	_	Master Clear Reset. Pull-up enabled when configured as MCL
	Vpp	HV		Programming voltage.
GP4/T1G/OSC2/CLKOUT	GP4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up/pull-down.
	T1G	ST	_	Timer1 gate.
	OSC2	_	XTAL	XTAL connection.
	CLKOUT	_	CMOS	TOSC/4 reference clock.
GP5/T1CKI/OSC1/CLKIN	GP5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up/pull-down.
	T1CKI	ST		Timer1 clock.
	OSC1	XTAL		XTAL connection.
	CLKIN	ST	_	Tosc reference clock.
Vdd	Vdd	D		Power supply for microcontroller.
	Vss	D		Ground reference for microcontroller.

HV = High Voltage TTL = TTL compatible input

ST

XTAL = Crystal

PIC12F635/PIC16F636/639

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register which contains the various enable and flag bits for TMR0 register overflow, PORTA change and external RA2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

Logondi							
bit 7							bit 0
GIE	PEIE	TOIE	INTE	RAIE ^(1,3)	T0IF ⁽²⁾	INTF	RAIF
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	T0IE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: RA2/INT External Interrupt Enable bit 1 = Enables the RA2/INT external interrupt 0 = Disables the RA2/INT external interrupt
bit 3	RAIE: PORTA Change Interrupt Enable bit ^(1,3) 1 = Enables the PORTA change interrupt 0 = Disables the PORTA change interrupt
bit 2	T0IF: Timer0 Overflow Interrupt Flag bit ⁽²⁾ 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTF: RA2/INT External Interrupt Flag bit 1 = The RA2/INT external interrupt occurred (must be cleared in software) 0 = The RA2/INT external interrupt did not occur
bit 0	 RAIF: PORTA Change Interrupt Flag bit 1 = When at least one of the PORTA general purpose I/O pins changed state (must be cleared in software) 0 = None of the PORTA general purpose I/O pins have changed state
Note 1: 10	OCA register must also be enabled.

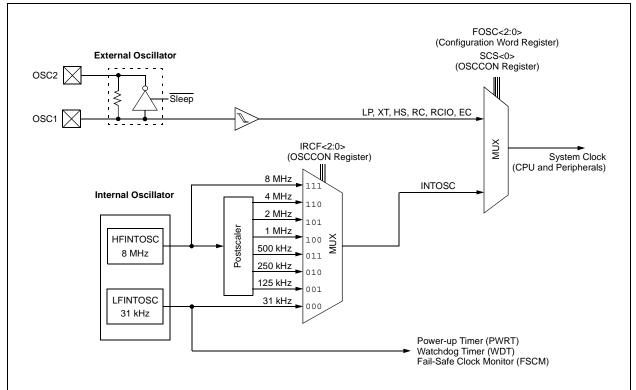
2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before clearing T0IF bit.

3: Includes ULPWU interrupt.

3.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

3.1 Overview

The Oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 3-1 illustrates a block diagram of the Oscillator module.


Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.

The Oscillator module can be configured in one of eight clock modes.

- 1. EC External clock with I/O on OSC2/CLKOUT.
- 2. LP 32 kHz Low-Power Crystal mode.
- 3. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode.
- 4. HS High Gain Crystal or Ceramic Resonator mode.
- 5. RC External Resistor-Capacitor (RC) with Fosc/4 output on OSC2/CLKOUT.
- 6. RCIO External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT.
- 7. INTOSC Internal oscillator with Fosc/4 output on OSC2 and I/O on OSC1/CLKIN.
- 8. INTOSCIO Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT.

Clock Source modes are configured by the FOSC<2:0> bits in the Configuration Word register (CONFIG). The internal clock can be generated from two internal oscillators. The HFINTOSC is a calibrated high-frequency oscillator. The LFINTOSC is an uncalibrated low-frequency oscillator.

FIGURE 3-1: PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

3.5.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). Select 31 kHz, via software, using the IRCF<2:0> bits of the OSCCON register. See **Section 3.5.4** "**Frequency Select Bits (IRCF)**" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<2:0> bits of the OSCCON register = 000) as the system clock source (SCS bit of the OSCCON register = 1), or when any of the following are enabled:

- Two-Speed Start-up IESO bit of the Configuration Word register = 1 and IRCF<2:0> bits of the OSCCON register = 000
- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The LF Internal Oscillator (LTS) bit of the OSCCON register indicates whether the LFINTOSC is stable or not.

3.5.4 FREQUENCY SELECT BITS (IRCF)

The output of the 8 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). The Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register select the frequency output of the internal oscillators. One of eight frequencies can be selected via software:

- 8 MHz
- 4 MHz (Default after Reset)
- 2 MHz
- 1 MHz
- 500 kHz
- 250 kHz
- 125 kHz
- 31 kHz (LFINTOSC)

Note:	Following any Reset, the IRCF<2:0> bits of			
	the OSCCON register are set to '110' and			
	the frequency selection is set to 4 MHz.			
	The user can modify the IRCF bits to			
	select a different frequency.			

3.5.5 HF AND LF INTOSC CLOCK SWITCH TIMING

When switching between the LFINTOSC and the HFINTOSC, the new oscillator may already be shut down to save power (see Figure 3-6). If this is the case, there is a delay after the IRCF<2:0> bits of the OSCCON register are modified before the frequency selection takes place. The LTS and HTS bits of the OSCCON register will reflect the current active status of the LFINTOSC and HFINTOSC oscillators. The timing of a frequency selection is as follows:

- 1. IRCF<2:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. CLKOUT is held low and the clock switch circuitry waits for a rising edge in the new clock.
- CLKOUT is now connected with the new clock. LTS and HTS bits of the OSCCON register are updated as required.
- 6. Clock switch is complete.

See Figure 3-1 for more details.

If the internal oscillator speed selected is between 8 MHz and 125 kHz, there is no start-up delay before the new frequency is selected. This is because the old and new frequencies are derived from the HFINTOSC via the postscaler and multiplexer.

Start-up delay specifications are located in the A/C Specifications (Oscillator Module) in **Section 15.0 "Electrical Specifications"**.

4.3 PORTC

PORTC is a general purpose I/O port consisting of 6 bidirectional pins. The pins can be configured for either digital I/O or analog input to comparator. For specific information about individual functions, refer to the appropriate section in this data sheet.

Note:	The CMCON0 register must be initialized		
	to configure an analog channel as a digital		
	input. Pins configured as analog inputs will		
	read '0'.		

EXAMPLE 4-3: INITIALIZING PORTC

BANKSEL	PORTC	;
CLRF	PORTC	;Init PORTC
MOVLW	07h	;Set RC<4,1:0> to
MOVWF	CMCON0	;digital I/O
BANKSEL	TRISC	;
MOVLW	0Ch	;Set RC<3:2> as inputs
MOVWF	TRISC	;and set RC<5:4,1:0>
		;as outputs

REGISTER 4-6: PORTC: PORTC REGISTER

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-0	R/W-0
—	—	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'

bit 5-0 RC<5:0>: PORTC General Purpose I/O Pin bits 1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 4-7: TRISC: PORTC TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
—	—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0

TRISC<5:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

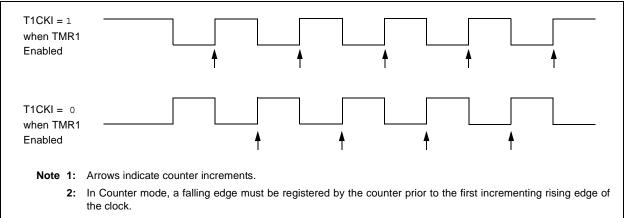
6.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- Timer1 interrupt enable bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TTMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.


6.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set

The device will wake-up on an overflow and execute the next instruction. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h).

FIGURE 6-2: TIMER1 INCREMENTING EDGE

6.9 Comparator Synchronization

The same clock used to increment Timer1 can also be used to synchronize the comparator output. This feature is enabled in the Comparator module.

When using the comparator for Timer1 gate, the comparator output should be synchronized to Timer1. This ensures Timer1 does not miss an increment if the comparator changes.

For more information, see **Section 7.0 "Comparator Module"**.

7.9 Comparator Gating Timer1

This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CMCON1 register will enable Timer1 to increment based on the output of the comparator (or Comparator C2 for PIC16F636/639). This requires that Timer1 is on and gating is enabled. See **Section 6.0 "Timer1 Module with Gate Control"** for details.

It is recommended to synchronize the comparator with Timer1 by setting the CxSYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment.

Note:	Reference	ces	to	the	compa	arator	in	this
	section	sp	ecifi	ically	are	refer	ring	to
	Compara	ator	C2	on th	e PIC1	6F636	6/63	9.

7.10 Synchronizing Comparator Output to Timer1

The comparator (or Comparator C2 for PIC16F636/639) output can be synchronized with Timer1 by setting the CxSYNC bit of the CMCON1 register. When enabled, the comparator output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 7-2) and the Timer1 Block Diagram (Figure 6-1) for more information.

Note:	Reference	ces	to	the	compa	arator	in	this
	section	spe	ecifi	cally	are	referi	ring	to
	Compara	ator	C2	on th	e PIC1	6F636	6/63	9.

10.0 KEELOQ[®] COMPATIBLE CRYPTOGRAPHIC MODULE

To obtain information regarding the implementation of the KEELOQ module, Microchip Technology requires the execution of the "KEELOQ[®] Encoder License Agreement".

The "KEELOQ[®] Encoder License Agreement" may be accessed through the Microchip web site located at <u>www.microchip.com/KEELOQ</u>. Further information may be obtained by contacting your local Microchip Sales Representative.

11.14.2 INACTIVITY TIMER

The Inactivity Timer is used to automatically return the AFE to Standby mode, if there is no input signal. The time-out period is approximately 16 ms (TINACT), based on the 32 kHz internal clock.

The purpose of the Inactivity Timer is to minimize AFE current draw by automatically returning the AFE to the lower current Standby mode, if there is no input signal for approximately 16 ms.

The timer is reset when:

- An amplitude change in LF input signal, either high-to-low or low-to-high
- CS pin is low (any SPI command)
- Timer-related Soft Reset

The timer starts when:

• AFE receives any LF signal

The timer causes an AFE Soft Reset when:

• A previously received LF signal does not change either high-to-low or low-to-high for TINACT

The Soft Reset returns the AFE to Standby mode where most of the analog circuits, such as the AGC, demodulator and RC oscillator, are powered down. This returns the AFE to the lower Standby Current mode.

11.14.3 ALARM TIMER

The Alarm Timer is used to notify the MCU that the AFE is receiving LF signal that does not pass the output enable filter requirement. The time-out period is approximately 32 ms (TALARM) in the presence of continuing noise.

The Alarm Timer time-out occurs if there is an input signal for longer than 32 ms that does not meet the output enable filter requirements. The Alarm Timer time-out causes:

- a) The ALERT pin to go low.
- b) The ALARM bit to set in the AFE Status Configuration 7 register (Register 11-8).

The MCU is informed of the Alarm timer time-out by monitoring the ALERT pin. If the Alarm timer time-out occurs, the MCU can take appropriate actions such as lowering channel sensitivity or disabling channels. If the noise source is ignored, the AFE can return to a lower standby current draw state. The timer is reset when the:

- CS pin is low (any SPI command).
- Output enable filter is disabled.
- LFDATA pin is enabled (signal passed output enable filter).

The timer starts when:

Receiving a LF signal.

The timer causes a low output on the ALERT pin when:

• Output enable filter is enabled and modulated input signal is present for TALARM, but does not pass the output enable filter requirement.

Note: The Alarm timer is disabled if the output enable filter is disabled.

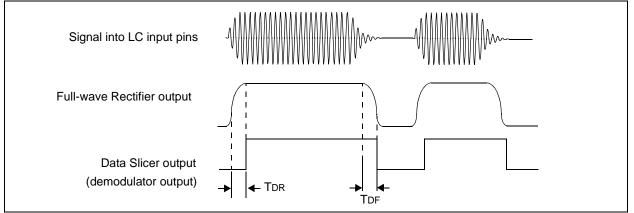
11.14.4 PULSE WIDTH TIMER

The Pulse Width Timer is used to verify that the received output enable sequence meets both the minimum TOEH and minimum TOEL requirements.

11.14.5 PERIOD TIMER

The Period Timer is used to verify that the received output enable sequence meets the maximum TOET requirement.

11.14.6 AGC SETTLING TIMER (TAGC)


This timer is used to keep the output enable filter in Reset while the AGC settles on the input signal. The time-out period is approximately 3.5 ms. At end of this time (TAGC), the input should remain high (TPAGC), otherwise the counting is aborted and a Soft Reset is issued. See Figure 11-6 for details.

- Note 1: The AFE needs continuous and uninterrupted high input signal during AGC settling time (TAGC). Any absence of signal during this time may reset the timer and a new input signal is needed for AGC settling time, or may result in improper AGC gain settings which will produce invalid output.
 - 2: The rest of the AFE section wakes up if any of these input channels receive the AGC settling time correctly. AFE Status Register 7 bits <4:2> (Register 11-8) indicate which input channels have waken up the AFE first. Valid input signal on multiple input pins can cause more than one channel's indicator bit to be set.

11.29 Demodulator

The demodulator recovers the modulation data from the received signal, containing carrier plus data, by appropriate envelope detection. The demodulator has a fast rise (charge) time (TDR) and a fall time (TDF) appropriate to an envelope of input signal (see **Section 15.0 "Electrical Specifications"** for TDR and TDF specifications). The demodulator contains the full-wave rectifier, low-pass filter, peak detector and data slicer.

FIGURE 11-9: DEMODULATOR CHARGE AND DISCHARGE

11.30 Power-On Reset

This circuit remains in a Reset state until a sufficient supply voltage is applied to the AFE. The Reset releases when the supply is sufficient for correct AFE operation, nominally VPOR of AFE.

The Configuration registers are all cleared on a Power-on Reset. As the Configuration registers are protected by odd row and column parity, the ALERT pin will be pulled down – indicating to the microcontroller section that the AFE configuration memory is cleared and requires loading.

11.31 LFDATA Output Selection

The LFDATA output can be configured to pass the Demodulator output, Received Signal Strength Indicator (RSSI) output, or Carrier Clock. See Configuration Register 1 (Register 11-2) for more details.

11.31.1 DEMODULATOR OUTPUT

The demodulator output is the default configuration of the output selection. This is the output of an envelope detection circuit. See Figure 11-9 for the demodulator output. For a clean data output or to save operating power, the input channels can be individually enabled or disabled. If more than one channel is enabled, the output is the sum of each output of all enabled channels. There will be no valid output if all three channels are disabled. When the demodulated output is selected, the output is available in two different conditions depending on how the options of Configuration Register 0 (Register 11-1) are set: Output Enable Filter is disabled or enabled.

Related Configuration register bits:

- Configuration Register 1 (Register 11-2), DATOUT <8:7>:
 - <u>bit 8</u> <u>bit 7</u>
 - 0 0: Demodulator Output
 - 0 1: Carrier Clock Output
 - 1 0: RSSI Output
 - 0 1: RSSI Output
- Configuration Register 0 (Register 11-1): all bits

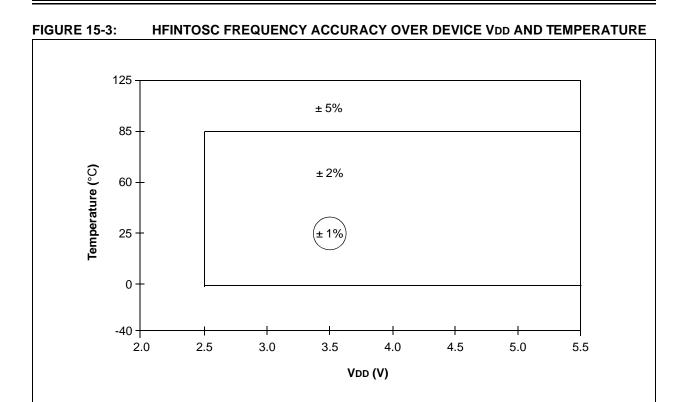
PIC12F635/PIC16F636/639

ADDLW	Add literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \le k \le 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.				

Instruction Descriptions

13.2

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

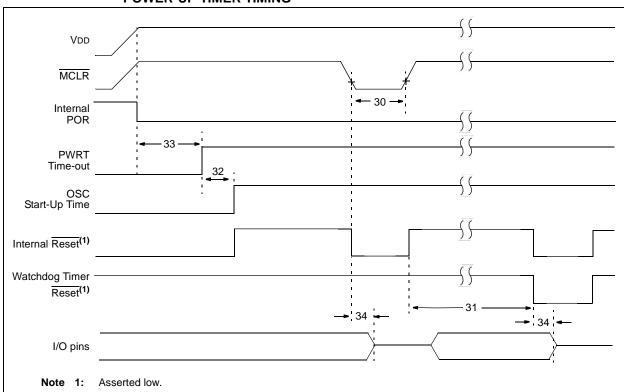

ADDWF	Add W and f						
Syntax:	[label] ADDWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) + (f) \rightarrow (destination)						
Status Affected:	C, DC, Z						
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W				
Syntax:	[<i>label</i>] ANDLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .AND. (k) \rightarrow (W)				
Status Affected:	Z				
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.				

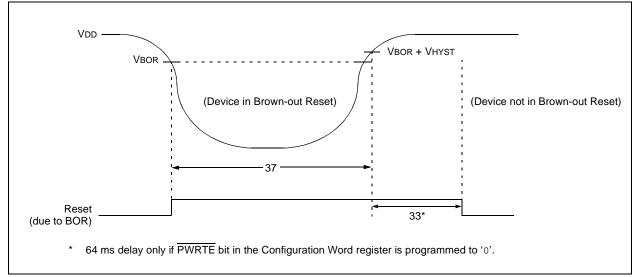
BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a two-cycle instruction.

ANDWF	AND W with f					
Syntax:	[label] ANDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .AND. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					


DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage	2.0	—	3.6	V	Fosc ≤ 10 MHz	
D001A	Vddt	Supply Voltage (AFE)	2.0	_	3.6	V	Analog Front-End VDD voltage. Treated as VDD in this document.	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5*	_	_	V	Device in Sleep mode	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See Section 12.3 " Power-on Reset " for details.	
D003A	VPORT	VDD Start Voltage (AFE) to ensure internal Power- on Reset signal		_	1.8	V	Analog Front-End POR voltage.	
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05*	—		V/ms	See Section 12.3 " Power-on Reset " for details.	
D005	VBOD	Brown-out Reset	2.0	2.1	2.2	V		
D006	Rм	Turn-on Resistance or Modulation Transistor	_	50	100	Ohm	VDD = 3.0V	
D007	Rpu	Digital Input Pull-Up Resistor CS, SCLK	50	200	350	kOhm	VDD = 3.6V	
D008	Iail	Analog Input Leakage Current LCX, LCY, LCZ LCCOM	_	_	±1 ±1	μΑ μΑ	VDD = 3.6V, VSS \leq VIN \leq VDD, tested at Sleep mode	

DC Characteristics: PIC16F639-I (Industrial) 15.5

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.


Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

PIC12F635/PIC16F636/639

FIGURE 15-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-6: COMPARATOR SPECIFICATIONS

Standard O	neratina	Conditions	(unlass	otherwise stated	۱
Stanuaru U	perating	Conditions	(uniess	otherwise stated)

Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Characteristics		Min	Тур†	Max	Units	Comments
CM01	Vos	Input Offset Voltage		—	± 5.0	± 10	mV	(Vdd - 1.5)/2
CM02	Vсм	Input Common Mode Voltage		0	_	Vdd - 1.5	V	
CM03*	CMRR	Common Mode Rejection Ratio		+55	_	_	dB	
CM04*	Trt	Response Time	Falling	_	150	600	ns	(NOTE 1)
			Rising	_	200	1000	ns	
CM05*	Тмc2coV	Comparator Mode Change to Output Valid		_		10	μs	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.

TABLE 15-7: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

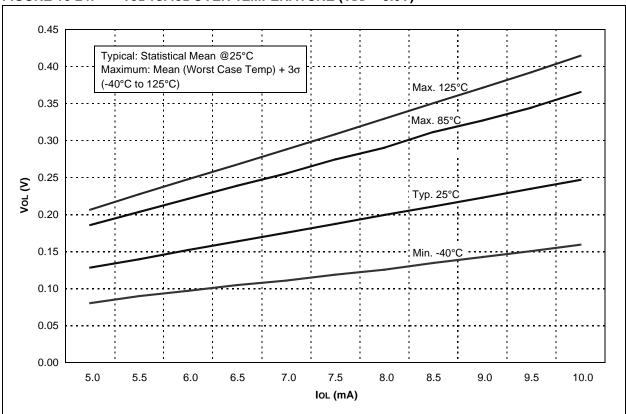
Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym	Characteristics	Min	Тур†	Max	Units	Comments
CV01*	CLSB	Step Size ⁽²⁾	_	VDD/24 VDD/32		V V	Low Range (VRR = 1) High Range (VRR = 0)
CV02*	CACC	Absolute Accuracy		_	± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)
CV03*	CR	Unit Resistor Value (R)	_	2k	_	Ω	
CV04*	CST	Settling Time ⁽¹⁾	—	—	10	μs	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

2: See Section 7.11 "Comparator Voltage Reference" for more information.


TABLE 15-8: PIC12F635/PIC16F636 PLVD CHARACTERISTICS:

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating VoltageVDD Range 2.0V-5.5V				
Sym.	Cł	naracteristic	Min	Тур†	Мах	Units	Conditions
Vplvd	PLVD	LVDL<2:0> = 001	1.900	2.0	2.125	V	
Voltage	LVDL<2:0> = 010	2.000	2.1	2.225	V		
		LVDL<2:0> = 011	2.100	2.2	2.325	V	
		LVDL<2:0> = 100	2.200	2.3	2.425	V	
		LVDL<2:0> = 101	3.825	4.0	4.200	V	
		LVDL<2:0> = 110	4.025	4.2	4.400	V	
		LVDL<2:0> = 111	4.325	4.5	4.700	V	
*TPLVDS	PLVD Settling	ı time	_	50 25	_	μs	VDD = 5.0V VDD = 3.0V

These parameters are characterized but not tested

Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†

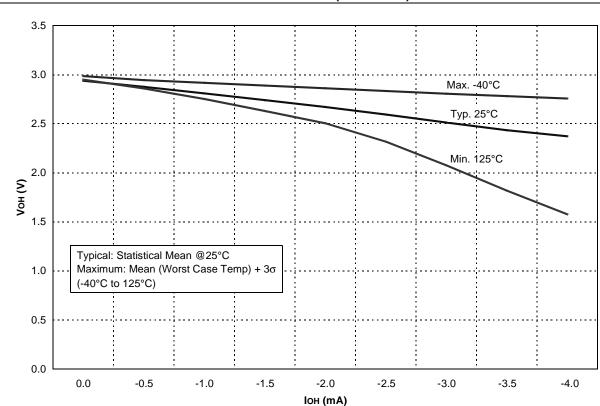
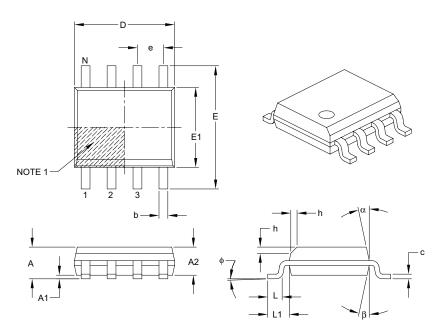



FIGURE 16-25: VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)

8-Lead Plastic Small Outline (SN or OA) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е	1.27 BSC			
Overall Height	А	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.04 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.17	-	0.25	
Lead Width	b	0.31	_	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	_	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

This is a new data sheet.

Revision B

Added PIC16F639 to the data sheet.

Revision C (12/2006)

Added Characterization data; Updated Package Drawings; Added Comparator Voltage Reference section.

Revision D (03/2007)

Replaced Package Drawings (Rev. AM); Replaced Development Support Section. Updated Product ID System.

INDEX

Α
Absolute Maximum Ratings
AC Characteristics
Analog Front-End (AFE) for PIC16F639187
Industrial and Extended 179
Load Conditions178
AGC Settling
Analog Front-End
Configuration Registers
Summary Table
Analog Front-End (AFE)
AFE Status Register Bit Condition
AGC
AGC Preserve
Battery Back-up and Batteryless Operation
Block Diagrams
Bidirectional PKE System Application Example 102
Functional100
LC Input Path 101
Output Enable Filter Timing103
Output Enable Filter Timing (Detailed)104
Carrier Clock Detector
Carrier Clock Output
Examples
Command Decoder/Controller
Data Slicer
Demodulator
De-Q'ing of Antenna Circuit
Error Detection
Factory Calibration
Fixed Gain Amplifiers
Input Sensitivity Control
LF Field Powering/Battery Back-up
Examples 110
LFDATA Output Selection111
Case I 112
Case II
Low Current Modes
Operating
Sleep
Modulation Circuit
Modulation Circuit
Examples
Output Enable Filter
Configurable Smart
Output Enable Filter Timing (Table)
Power-on Reset
RF Limiter97
RSSI
Output Path Diagram116
Power-up Sequence Diagram118
SPI Read Sequence Diagram
SPI Write Sequence Diagram
RSSI Output Current vs. Input Signal Level
Example
Soft Reset
Soft Reset
Timers
Alarm

Auto Channel Selection	98
Inactivity	99
Period	99
Preamble Counters	99
Pulse Width	99
RC Oscillator	
Tuning Capacitor	97
Variable Attenuator	97
Analog Input Connection Considerations	73
Assembler	
MPASM Assembler	160

В

Block Diagrams
Analog Input Model73
Clock Source
Comparator71
Comparator C1
Comparator C2
Comparator Modes
Crystal Operation
External RC Mode
Fail-Safe Clock Monitor (FSCM)
Functional (AFE)
In-Circuit Serial Programming Connection
Interrupt Logic140
On-Chip Reset Circuit
PIC12F635 Device
PIC16F636 Device 10
PIC16F639 Device 11
RA0 Pin 52
RA1 Pin 53
RA2 Pin 53
RA3 Pin 54
RA4 Pin 55
RA5 Pin 55
RC0 and RC1 Pins 58
RC2, RC3 and RC5 Pins 58
RC4 Pin 59
Recommended MCLR Circuit
Resonator Operation
Timer1 65
TMR0/WDT Prescaler 61
Watchdog Timer (WDT) 143
Brown-out Reset (BOR) 134
Associated 135
Specifications 183
Timing and Characteristics

С

C Compilers	
MPLAB C18	160
MPLAB C30	160
Clock Sources	
External Modes	37
EC	37
HS	38
LP	38
OST	37
RC	39
XT	38
Internal Modes	39
Frequency Selection	41
HFINTOSC	