

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LVD, POR, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f636-i-st

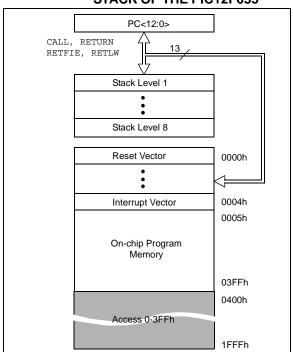
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

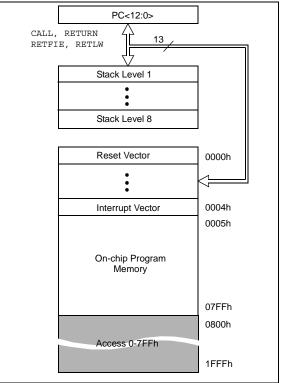
2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The PIC12F635/PIC16F636/639 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first $1K \times 14$ (0000h-03FFh, for the PIC12F635) and $2K \times 14$ (0000h-07FFh, for the PIC16F636/639) is physically implemented. Accessing a location above these boundaries will cause a wraparound within the first $2K \times 14$ space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).


2.2 Data Memory Organization

The data memory (see Figure 2-2) is partitioned into two banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. Register locations 20h-7Fh in Bank 0 and A0h-BFh in Bank 1 are GPRs, implemented as static RAM for the PIC16F636/639. For the PIC12F635, register locations 40h through 7Fh are GPRs implemented as static RAM. Register locations F0h-FFh in Bank 1 point to addresses 70h-7Fh in Bank 0. All other RAM is unimplemented and returns '0' when read. RP0 of the STATUS register is the bank select bit.


<u>RP1</u>	<u>RP0</u>
------------	------------

0	0	\rightarrow	Bank 0 is selected
0	1	\rightarrow	Bank 1 is selected
1	0	\rightarrow	Bank 2 is selected
1	1	\rightarrow	Bank 3 is selected

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK OF THE PIC12F635

FIGURE 2-2: PROGRAM MEMORY MAP AND STACK OF THE PIC16F636/639

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR/ WUR	Page
Bank ()										
00h	INDF		Addressing this location uses contents of FSR to address data memory (not a physical register)								32,137
01h	TMR0	Timer0 Mod	dule Registe	r						xxxx xxxx	61,137
02h	PCL	Program C	ounter's (PC	c) Least Sigr	nificant Byte					0000 0000	32,137
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	26,137
04h	FSR	Indirect Da	ta Memory A	Address Poir	nter	•	•	•		xxxx xxxx	32,137
05h	GPIO	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xx00	47,137
06h	_	Unimpleme	ented				•	•		—	_
07h	_	Unimpleme	ented							_	_
08h	_	Unimpleme	ented							_	_
09h	_	Unimpleme	ented							_	_
0Ah	PCLATH	_	_	_	Write Buffer	for upper 5 b	its of Progra	m Counter		0 0000	32,137
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF ⁽²⁾	0000 000x	28,137
0Ch	PIR1	EEIF	LVDIF	CRIF	—	C1IF	OSFIF	—	TMR1IF	000- 00-0	30,137
0Dh		Unimpleme	ented			1					
0Eh	TMR1L	Holding Re	gister for the	e Least Sign	ificant Byte o	f the 16-bit T	MR1			xxxx xxxx	64,137
0Fh	TMR1H	Holding Re	gister for the	e Most Signi	ficant Byte of	the 16-bit TM	/IR1			xxxx xxxx	64,137
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	68,137
11h	_	Unimpleme	ented		1					_	_
12h	_	Unimpleme	ented							_	_
13h	_	Unimpleme	ented							_	_
14h	_	Unimpleme	ented							_	_
15h	_	Unimpleme	ented							_	_
16h	_	Unimplemented								_	_
17h	_	Unimpleme	ented							_	_
18h	WDTCON	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	144,137
19h	CMCON0	_	COUT	-	CINV	CIS	CM2	CM1	CM0	-0-0 0000	79,137
1Ah	CMCON1	_	_	-	_	_	_	T1GSS	CMSYNC	10	82,137
1Bh	_	Unimpleme	ented							_	_
1Ch	_	Unimpleme	ented							_	_
1Dh		Unimpleme	ented							_	_
1Eh	_	Unimpleme	ented							_	_
1Fh	_	Unimpleme	ented							_	_

Legend: Note

1:

 – = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented
 <u>Other (non Power-up)</u> Resets include MCLR Reset and Watchdog Timer Reset during normal operation.
 MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the mismatch or units. 2: match exists.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR/ WUR	Page
Bank (C										
00h	INDF		ng this loca ysical regis		ontents of F	SR to addr	ess data m	emory		XXXX XXXX	32,137
01h	TMR0	Timer0 M	odule Reg	ster						xxxx xxxx	61,137
02h	PCL	Program	Counter's	PC) Least	Significant	Byte				0000 0000	32,137
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	26,137
04h	FSR	Indirect D	ata Memo	y Address	Pointer	•				xxxx xxxx	32,137
05h	PORTA	_	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xx00	48,137
06h	_	Unimplen	nented								
07h	PORTC	_	—	RC5	RC4	RC3	RC2	RC1	RC0	xx xx00	57,137
08h	_	Unimplen	nented								_
09h	_	Unimplen	nented							—	_
0Ah	PCLATH	_			Write Buffe	er for upper	5 bits of Pro	ogram Coui	nter	0 0000	32,137
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF ⁽²⁾	0000 000x	28,137
0Ch	PIR1	EEIF	LVDIF	CRIF	C2IF	C1IF	OSFIF	_	TMR1IF	0000 00-0	30,137
0Dh	—	Unimplen	nented							_	_
0Eh	TMR1L	Holding F	Register for	the Least S	Significant E	Byte of the 1	6-bit TMR1			xxxx xxxx	64,137
0Fh	TMR1H	Holding F	Register for	the Most S	Significant B	yte of the 1	6-bit TMR1			xxxx xxxx	64,137
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	0000 0000	68,137
11h	_	Unimplen	nented							_	_
12h	_	Unimplen	nented							—	_
13h	_	Unimplen	nented							—	_
14h	_	Unimplen	nented							—	_
15h		Unimplemented								_	
16h		Unimplemented							_		
17h		Unimplen	nented								_
18h	WDTCON	—	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	144,137
19h	CMCON0	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	79,137
1Ah	CMCON1	—	—			—	_	T1GSS	C2SYNC	10	82,137
1Bh	—	Unimplen	nented							_	_
1Ch	—	Unimplen	nented							_	_
1Dh	—	Unimplen	nented							—	_
1Eh	—	Unimplen	nented							—	_
1Fh	—	Unimplen	nented							—	_

TABLE 2-3:	PIC16F636/639 SPECIAL	FUNCTION REGISTERS SUMMARY BANK 0

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the mismatch exists.

REGISTER 4-3: WDA: WEAK PULL-UP/PULL-DOWN DIRECTION REGISTER

U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1
—	—	WDA5	WDA4	—	WDA2	WDA1	WDA0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-6	Unimplemented: Read as '0'
bit 5-4	WDA<5:4>: Pull-up/Pull-down Selection bits 1 = Pull-up selected 0 = Pull-down selected
bit 3	Unimplemented: Read as '0'
bit 2-0	WDA<2:0>: Pull-up/Pull-down Selection bits 1 = Pull-up selected 0 = Pull-down selected

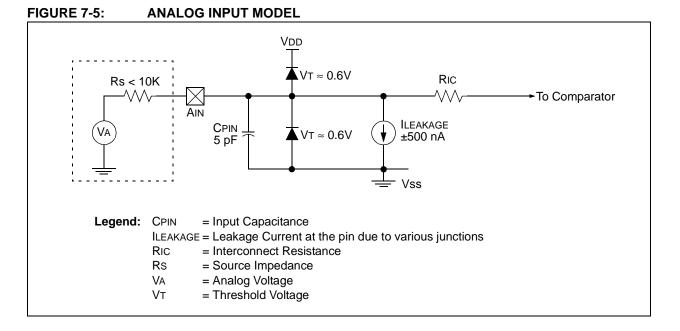
- **Note 1:** The weak pull-up/pull-down device is enabled only when the global RAPU bit is enabled, the pin is in Input mode (TRIS = 1), the individual WDA bit is enabled (WDA = 1) and the pin is not configured as an analog input or clock function.
 - 2: RA3 pull-up is enabled when the pin is configured as MCLR in the Configuration Word register and the device is not in Programming mode.

REGISTER 4-4: WPUDA: WEAK PULL-UP/PULL-DOWN ENABLE REGISTER

U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1
—	—	WPUDA5 ⁽³⁾	WPUDA4 ⁽³⁾		WPUDA2	WPUDA1	WPUDA0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	WPUDA<5:4>: Pull-up/Pull-down Direction Selection bits ⁽³⁾ 1 = Pull-up/pull-down enabled 0 = Pull-up/pull-down disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	WPUDA<2:0>: Pull-up/Pull-down Direction Selection bits 1 = Pull-up/pull-down enabled 0 = Pull-up/pull-down disabled


- Note 1: The weak pull-up/pull-down direction device is enabled only when the global RAPU bit is enabled, the pin is in Input mode (TRIS = 1), the individual WPUDA bit is enabled (WPUDA = 1) and the pin is not configured as an analog input or clock function.
 - 2: RA3 pull-up is enabled when the pin is configured as MCLR in the Configuration Word register and the device is not in Programming mode.
 - 3: WPUDA5 bit can be written if INTOSC is enabled and T1OSC is disabled; otherwise, the bit can not be written and reads as '1'. WPUDA4 bit can be written if not configured as OSC2; otherwise, the bit can not be written and reads as '1'

7.2 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 7-5. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSs. The analog input, therefore, must be between VSs and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

9.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are four SFRs used to read and write this memory:

- EECON1
- EECON2 (not a physically implemented register)
- EEDAT
- EEADR

REGISTER 9-1:

EEDAT holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. PIC16F636/639 has 256 bytes of data EEPROM and the PIC12F635 has 128 bytes.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature as well as from chip-to-chip. Please refer to A/C specifications in **Section 15.0 "Electrical Specifications"** for exact limits.

When the data memory is code-protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access the data EEPROM data and will read zeroes.

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| EEDAT7 | EEDAT6 | EEDAT5 | EEDAT4 | EEDAT3 | EEDAT2 | EEDAT1 | EEDAT0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **EEDATn**: Byte Value to Write To or Read From Data EEPROM bits

EEDAT: EEPROM DATA REGISTER

REGISTER 9-2: EEADR: EEPROM ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EEADR7 ⁽¹⁾	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **EEADR**: Specifies One of 256 Locations for EEPROM Read/Write Operation bits

Note 1: PIC16F636/639 only. Read as '0' on PIC12F635.

9.1 EECON1 AND EECON2 Registers

EECON1 is the control register with four low-order bits physically implemented. The upper four bits are non-implemented and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

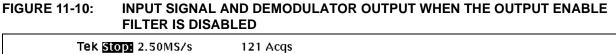
The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit, clear it and rewrite the location. The data and address will be cleared. Therefore, the EEDAT and EEADR registers will need to be re-initialized.

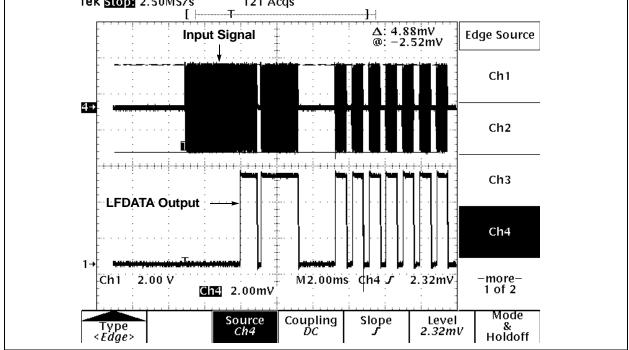
Interrupt flag, EEIF bit of the PIR1 register, is set when write is complete. This bit must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence.

Note: The EECON1, EEDAT and EEADR registers should not be modified during a data EEPROM write (WR bit = 1).

REGISTER 9-3: EECON1: EEPROM CONTROL REGISTER


U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0
—	—	—	—	WRERR	WREN	WR	RD
bit 7							bit 0


Legend:			
S = Bit can only be set			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Read as '0'
bit 3	WRERR: EEPROM Error Flag bit
	 1 = A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during normal operation or BOR Reset) 0 = The write operation completed
bit 2	WREN: EEPROM Write Enable bit
	 1 = Allows write cycles 0 = Inhibits write to the data EEPROM
bit 1	WR: Write Control bit
	 1 = Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only be set, not cleared, in software.) 0 = Write cycle to the data EEPROM is complete
bit 0	RD: Read Control bit
	 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set, not cleared, in software.)

0 = Does not initiate an EEPROM read

Case I. When Output Enable Filter is disabled: Demodulated output is available immediately after the AGC stabilization time (TAGC). Figure 11-10 shows an example of demodulated output when the Output Enable Filter is disabled.

Case II. When Output Enable Filter is enabled: Demodulated output is available only if the incoming signal meets the enable filter timing criteria that is defined in the Configuration Register 0 (Register 11-1). If the criteria is met, the output is available after the low timing (TOEL) of the Enable Filter. Figure 11-11 and Figure 11-12 shows examples of demodulated output when the Output Enable Filter is enabled.

REGISTER 12-1: CONFIG: CONFIGURATION WORD REGISTER

	—	_	WURE	FCMEN	IESO	BOREN1	BOREN0
bit 15				•			bit 8
				1	1	-	1
CPD	D CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
bit 7							bit 0
Legend:	- L L - L - L - L			D D			
R = Reada		W = Writable bit		P = Programm		U = Unimplement x = Bit is unknow	nted bit, read as '0'
-n = Value	alfor	'1' = Bit is set		'0' = Bit is clea	lieu	X = DILIS UNKNOV	VII
bit 15-13	Unimplement	ed: Read as '1'					
bit 12	<u> </u>	up Reset Enable	bit				
		ake-up and conti					
		nd Reset enabled					
bit 11	1 = Fail-Safe C	Safe Clock Monito Clock Monitor is en Clock Monitor is di	nabled				
bit 10	IESO: Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled						
bit 9-8	11 = BOR ena 10 = BOR ena 01 = BOR con	Brown-out Rese bled, SBOREN bi bled during opera trolled by SBORE SBOREN bits dis	t disabled tion and disabl N bit of the PC	ed in Sleep, SB	OREN bit disable	ed	
bit 7	1 = Data memo	de Protection bit ⁽² bry code protectio	n is disabled				
bit 6	CP : Code Prot 1 = Program m	ory code protectic ection bit ⁽³⁾ lemory code prote lemory code prote	ection is disable				
bit 5	$1 = \overline{\text{MCLR}} \text{ pin}$	R pin function sele function is MCLR function is digital		ternally tied to \	/DD		
bit 4	0 = MCLR pin function is digital input, MCLR internally tied to VDD PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled						
bit 3	WDTE: Watcher 1 = WDT enab	dog Timer Enable		OTEN bit of the V	NDTCON registe	er	
bit 2-0	FOSC<2:0>: C 111 = EXTRC 110 = EXTRC 101 = INTOS 100 = INTOS 011 = EC: I/C 010 = HS osc 001 = XT osc	Descillator Selectio Coscillator: Exter CIO oscillator: Exter CIO oscillator: CLK CIO oscillator: I/C 0 function on RA4 cillator: High-spee cillator: Crystal/res illator: Low-powe	n bits nal RC on RA5 ernal RC on RA OUT function o) function on R /OSC2/CLKOU od crystal/reson sonator on RA4	/OSC1/CLKIN, 1 5/OSC1/CLKIN, n RA4/OSC2/C A4/OSC2/CLKC IT pin, CLKIN of ator on RA4/OS /OSC2/CLKOU	CLKOUT function I/O function on I LKOUT pin, I/O f DUT pin, I/O func n RA5/OSC1/CL SC2/CLKOUT an T and RA5/OSC	n on RA4/OSC2/0 RA4/OSC2/CLKO function on RA5/0 tion on RA5/OSC KIN d RA5/OSC1/CLP 1/CLKIN	UT pin DSC1/CLKIN 1/CLKIN
Note 1: 2:	Enabling Brown-out The entire data EEF						

- 3: The entire program memory will be erased when the code protection is turned off.
- 4: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.

12.10 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and STATUS registers). This must be implemented in software.

Since the lower 16 bytes of all banks are common in the PIC12F635/PIC16F636/639 (see Figure 2-2), temporary holding registers, W_TEMP and STATUS_TEMP, should be placed in here. These 16 locations do not require banking and therefore, make it easier to context save and restore. The same code shown in Example 12-1 can be used to:

- Store the W register.
- Store the STATUS register.
- · Execute the ISR code.
- · Restore the Status (and Bank Select Bit register).
- Restore the W register.

Note:	The PIC12F635/PIC16F636/639 normally
	does not require saving the PCLATH.
	However, if computed GOTO's are used in
	the ISR and the main code, the PCLATH
	must be saved and restored in the ISR.

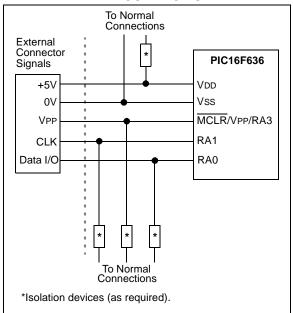
EXAMPLE 12-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF	W_TEMP STATUS,W	;Copy W to TEMP register ;Swap status to be saved into W
SWAFT	SIA105,W	;Swap status to be saved into w ;Swaps are used because they do not affect the status bits
	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		;Insert user code here
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

12.15 In-Circuit Serial Programming

The PIC12F635/PIC16F636/639 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for:

- Power
- Ground
- Programming Voltage


This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RA0 and RA1 pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the 'PIC12F6XX/16F6XX *Memory Programming Specification*" (DS41204) for more information. RA0 becomes the programming data and RA1 becomes the programming clock. Both RA0 and RA1 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Program/Verify mode, the Program Counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending on whether the command was a load or a read. For complete details of serial programming, please refer to the "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204).

A typical In-Circuit Serial Programming connection is shown in Figure 12-11.

FIGURE 12-11: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

12.16 In-Circuit Debugger

Since in-circuit debugging requires the loss of clock, data and MCLR pins, MPLAB[®] ICD 2 development with a 14-pin device is not practical. A special 20-pin PIC16F636 ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user.

Use of the ICD device requires the purchase of a special header. On the top of the header is an MPLAB ICD 2 connector. On the bottom of the header is a 14-pin socket that plugs into the user's target via the 14-pin stand-off connector.

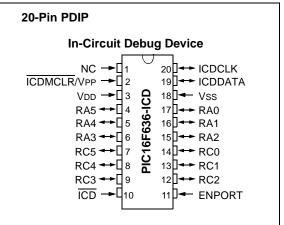

When the $\overline{\text{ICD}}$ pin on the PIC16F636 ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 12-9 shows which features are consumed by the background debugger:

TABLE 12-9:DEBUGGER RESOURCES

Resource	Description
I/O pins	ICDCLK, ICDDATA
Stack	1 level
Program Memory	Address 0h must be NOP 700h-7FFh

For more information, see the "*MPLAB*[®] *ICD 2 In-Circuit Debugger User's Guide*" (DS51331), available on Microchip's web site (www.microchip.com).

FIGURE 12-12: 20-PIN ICD PINOUT

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

Instruction Descriptions

13.2

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a two-cycle instruction.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ensuremath{\left[0,1\right]} \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a two-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a two-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

15.1 DC Characteristics: PIC12F635/PIC16F636-I (Industrial) PIC12F635/PIC16F636-E (Extended)

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Sym	Characteristic	Min Typ† Max Units Conditions							
D001 D001A D001B D001C	Vdd	Supply Voltage	2.0 2.0 3.0 4.5		5.5 5.5 5.5 5.5 5.5	> > > >	Fosc < = 4 MHz Fosc < = 8 MHz, HFINTOSC, EC Fosc < = 10 MHz Fosc < = 20 MHz			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5*	—	_	V	Device in Sleep mode			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See Section 12.3 "Power-on Reset" for details.			
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05*	—	—	V/ms	See Section 12.3 "Power-on Reset" for details.			
D005	VBOD	Brown-out Reset	2.0	2.1	2.2	V				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

TABLE 15-6: COMPARATOR SPECIFICATIONS

Standard O	neratina	Conditions	(unlass	otherwise stated	۱
Stanuaru U	perating	Conditions	(uniess	otherwise stated)

Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Characteristics		Min	Тур†	Max	Units	Comments
CM01	Vos	Input Offset Voltage		—	± 5.0	± 10	mV	(Vdd - 1.5)/2
CM02	Vсм	Input Common Mode Voltage		0	_	Vdd - 1.5	V	
CM03*	CMRR	Common Mode Rejection Ratio		+55	_	_	dB	
CM04*	Trt	Response Time	Falling	_	150	600	ns	(NOTE 1)
			Rising	—	200	1000	ns	
CM05*	Тмc2coV	Comparator Mode Change to Output Valid		_		10	μs	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.

TABLE 15-7: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Characteristics	Min	Тур†	Max	Units	Comments	
CV01*	CLSB	Step Size ⁽²⁾	_	VDD/24 VDD/32		V V	Low Range (VRR = 1) High Range (VRR = 0)	
CV02*	CACC	Absolute Accuracy		_	± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)	
CV03*	CR	Unit Resistor Value (R)	_	2k	_	Ω		
CV04*	CST	Settling Time ⁽¹⁾	—	—	10	μs		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

2: See Section 7.11 "Comparator Voltage Reference" for more information.

TABLE 15-8: PIC12F635/PIC16F636 PLVD CHARACTERISTICS:

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating VoltageVDD Range 2.0V-5.5V					
Sym.	Cł	naracteristic	Min	Тур†	Мах	Units	Conditions	
Vplvd	PLVD	LVDL<2:0> = 001	1.900	2.0	2.125	V		
	Voltage	LVDL<2:0> = 010	2.000	2.1	2.225	V		
		LVDL<2:0> = 011	2.100	2.2	2.325	V		
		LVDL<2:0> = 100	2.200	2.3	2.425	V		
		LVDL<2:0> = 101	3.825	4.0	4.200	V		
		LVDL<2:0> = 110	4.025	4.2	4.400	V		
		LVDL<2:0> = 111	4.325	4.5	4.700	V		
*TPLVDS	PLVD Settling	ı time	_	50 25	_	μs	VDD = 5.0V VDD = 3.0V	

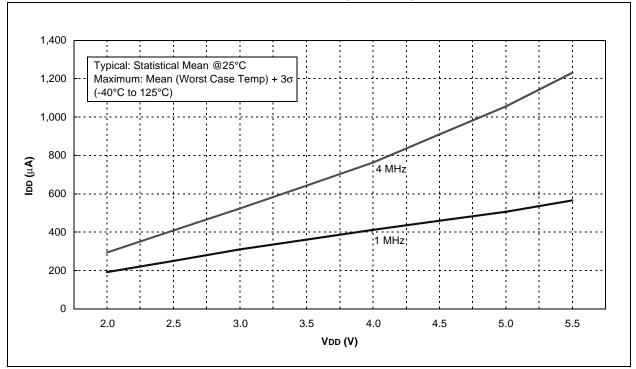
These parameters are characterized but not tested

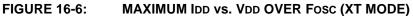
Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†

TABLE 15-9: PIC16F639 PLVD CHARACTERISTICS:

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ Operating VoltageVDD Range 2.0V-5.5V					
Sym.	Ch	naracteristic	Min	Тур†	Мах	Units	Conditions	
Vplvd	PLVD	LVDL<2:0> = 001	1.900	2.0	2.100	V		
	Voltage	LVDL<2:0> = 010	2.000	2.1	2.200	V		
		LVDL<2:0> = 011	2.100	2.2	2.300	V		
		LVDL<2:0> = 100	2.200	2.3	2.400	V		
		LVDL<2:0> = 101	3.825	4.0	4.175	V		
		LVDL<2:0> = 110	4.025	4.2	4.375	V		
		LVDL<2:0> = 111	4.325	4.5	4.675	V		
*TPLVDS	PLVD Settling	time	_	50	_	μs	VDD = 5.0V	
				25			VDD = 3.0V	


* These parameters are characterized but not tested


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

15.11 AC Characteristics: Analog Front-End for PIC16F639 (Industrial) (Continued)

AC CH	ARACTERIS	STICS	Standard O Supply Volta Operating te LC Signal Ir Carrier Freq LCCOM cor	age emperatu put juency	t herwise stated) D ≤ 3.6V MB ≤ +85°C for industrial I 300 mVPP		
Param No.	Sym.	Characteristic	Min	Тур†	Max	Units	Conditions
AF14	TlfdataR	Rise time of LFDATA	_	0.5	_	μs	VDD = 3.0V Time is measured from 10% to 90% of amplitude
AF15	TlfdataF	Fall time of LFDATA	-	0.5	_	μs	VDD = 3.0V Time is measured from 10% to 90% of amplitude
AF16	TAGC	AGC initialization time	_	3.5*	-	ms	Time required for AGC stabilization
AF17	TPAGC	High time after AGC settling time	—	62.5		μs	Equivalent to two Internal clock cycle (Fosc)
AF18	TSTAB	AGC stabilization time plus high time (after AGC settling time) (TAGC + TPAGC)	4	_		ms	AGC stabilization time
AF19	TGAP	Gap time after AGC settling time	200	_		μs	Typically 1 TE
AF20	Trdy	Time from exiting Sleep or POR to being ready to receive signal	—		50*	ms	
AF21	TPRES	Minimum time AGC level must be held after receiving AGC Preserve command	5*	_	—	ms	AGC level must not change more than 10% during TPRES.
AF22	Fosc	Internal RC oscillator frequency (±10%)	28.8	32	35.2	kHz	Internal clock trimmed at 32 kHz during test
AF23	TINACT	Inactivity timer time-out	14.4	16	17.6	ms	512 cycles of RC oscillator @ Fosc
AF24	TALARM	Alarm timer time-out	28.8	32	35.2	ms	1024 cycles of RC oscillator @ Fosc
AF25	RLC	LC Pin Input Impedance LCX, LCY, LCZ	_	1*	_	MOhm	Device in Standby mode
AF26	CIN	LC Pin Input Capacitance LCX, LCY, LCZ	_	24		pF	LCCOM grounded. Vdd = 3.0V, FCARRIER = 125 kHz
AF27	TE	Time element of pulse	100	_		μs	
AF28	Тоен	Minimum output enable filter high time OEH (Bits Config0<7:6>) 01 = 1 ms 10 = 2 ms 11 = 4 ms 00 = Filter Disabled	32 (~1ms) 64 (~2ms) 128 (~4ms) —			clock count	RC oscillator = FOSC Viewed from the pin input: (Note 1)
AF29	Toel	Minimum output enable filter low time OEL (Bits Config0<5:4>) 00 = 1 ms 01 = 1 ms 10 = 2 ms 11 = 4 ms	32 (~1ms) 32 (~1ms) 64 (~2ms) 128 (~4ms)			clock count	RC oscillator = FOSC Viewed from the pin input: (Note 2)

* Parameter is characterized but not tested.
 † Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: Required output enable filter high time must account for input path analog delays (= ТОЕН - TDR + TDF).
 2: Required output enable filter low time must account for input path analog delays (= TOEL + TDR - TDF).

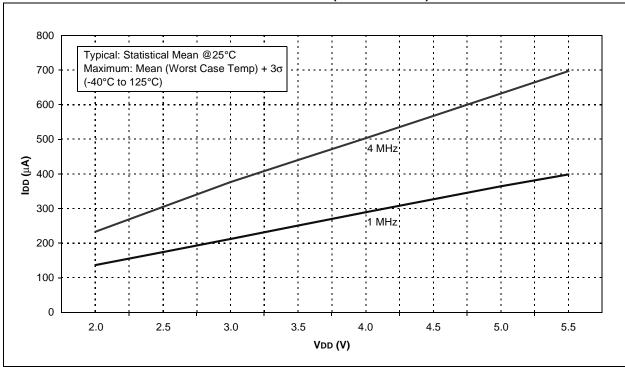
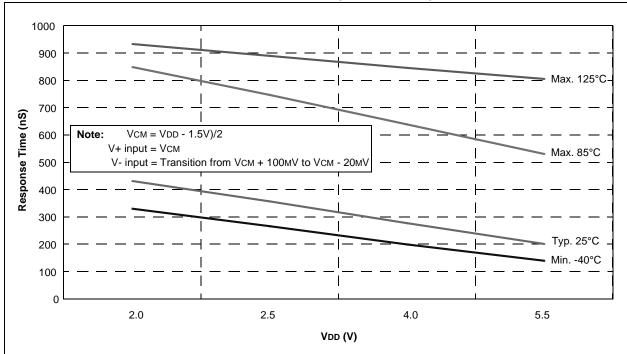
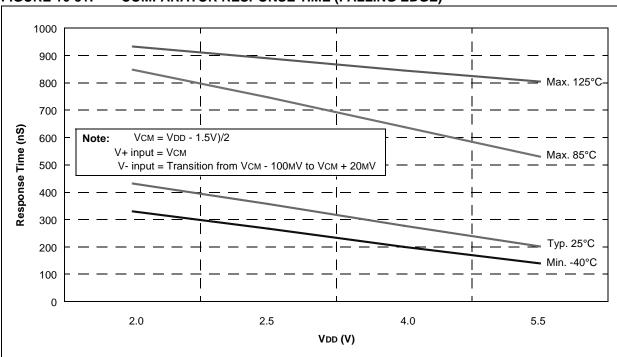




FIGURE 16-7: TYPICAL IDD vs. VDD OVER Fosc (EXTRC MODE)

FIGURE 16-30: COMPARATOR RESPONSE TIME (RISING EDGE)

FIGURE 16-31: COMPARATOR RESPONSE TIME (FALLING EDGE)

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820