

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectano	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LVD, POR, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f636t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5.2.1 OSCTUNE Register

The HFINTOSC is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 3-2).

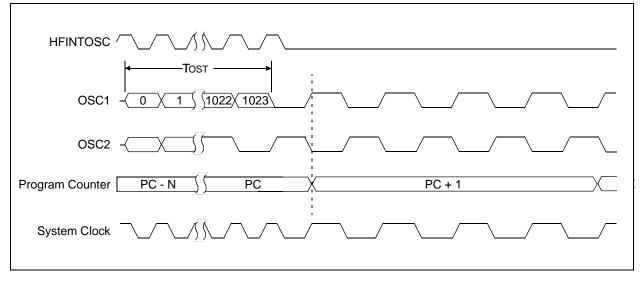
The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

REGISTER 3-2: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0


Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'			
bit 4-0	TUN<4:0>: Frequency Tuning bits			
	01111 = Maximum frequency			
	01110 =			
•				
•				
	•			
	00001 =			
	00000 = Oscillator module is running at the calibrated frequency.			
	11111 =			
	•			
	•			
	•			
	10000 = Minimum frequency			

3.7.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCCON register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word register (CONFIG), or the internal oscillator.

FIGURE 3-7:	TWO-SPEED	START-UP

	R/W-x	R/W-x	R-x	R/W-x	R/W-x	R/W-x
	RA5	RA4	RA3	RA2	RA1	RA0
					•	bit 0
	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown
		W = Writable I	W = Writable bit	W = Writable bit U = Unimpler	W = Writable bit U = Unimplemented bit, rea	W = Writable bit U = Unimplemented bit, read as '0'

REGISTER 4-1: PORTA: PORTA REGISTER

bit 7-6 Unimplemented: Read as '0' bit 5-0 RA<5:0>: PORTA I/O Pin bit

1 = Port pin is > VIH

0 = Port pin is < VIL

REGISTER 4-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **TRISA<5:0>:** PORTA Tri-State Control bits 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output

Note 1: TRISA<3> always reads '1'.

2: TRISA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

4.3 PORTC

PORTC is a general purpose I/O port consisting of 6 bidirectional pins. The pins can be configured for either digital I/O or analog input to comparator. For specific information about individual functions, refer to the appropriate section in this data sheet.

Note:	The CMCON0 register must be initialized
	to configure an analog channel as a digital
	input. Pins configured as analog inputs will
	read '0'.

EXAMPLE 4-3: INITIALIZING PORTC

BANKSEL	PORTC	;
CLRF	PORTC	;Init PORTC
MOVLW	07h	;Set RC<4,1:0> to
MOVWF	CMCON0	;digital I/O
BANKSEL	TRISC	;
MOVLW	0Ch	;Set RC<3:2> as inputs
MOVWF	TRISC	;and set RC<5:4,1:0>
		;as outputs

REGISTER 4-6: PORTC: PORTC REGISTER

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-0	R/W-0
—	—	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'

bit 5-0 RC<5:0>: PORTC General Purpose I/O Pin bits 1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 4-7: TRISC: PORTC TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
—	—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-6 Unimplemented: Read as '0'

bit 5-0

TRISC<5:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CMCON1	—	—	—	—	—	_	T1GSS	CMSYNC	10	0010
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 000x	0000 000x
PIE1	EEIE	LVDIE	CRIE	C2IE ⁽¹⁾	C1IE	OSFIE	_	TMR1IE	000- 00-0	000-00-0
PIR1	EEIF	LVDIF	CRIF	C2IF ⁽¹⁾	C1IF	OSFIF	_	TMR1IF	000-00-0	000-00-0
TMR1H	H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	uuuu uuuu
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	uuuu uuuu
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu

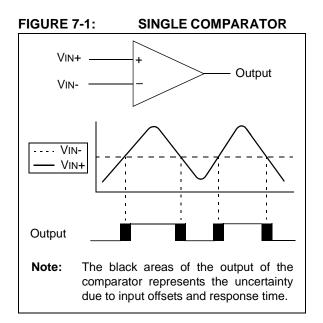
Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: PIC16F636/639 only.

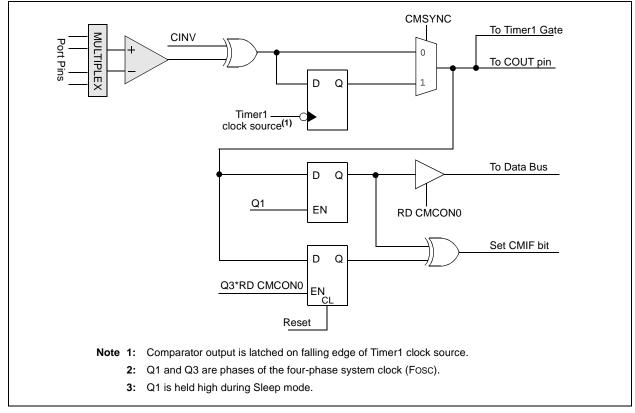
7.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The Analog Comparator module includes the following features:

- Dual comparators (PIC16F636/639 only)
- Multiple comparator configurations
- Comparator(s) output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- Wake-up from Sleep
- Timer1 gate (count enable)
- Output synchronization to Timer1 clock input
- Programmable voltage reference


7.1 Comparator Overview

A comparator is shown in Figure 7-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the


comparator is a digital low level. When the analog voltage at V_{IN+} is greater than the analog voltage at V_{IN-} , the output of the comparator is a digital high level.

The PIC12F635 contains a single comparator as shown in Figure 7-2.

The PIC16F636/639 devices contains two comparators as shown in Figure 7-3 and Figure 7-4. The comparators are not independently configurable.

FIGURE 7-2: COMPARATOR OUTPUT BLOCK DIAGRAM (PIC12F635)

7.9 Comparator Gating Timer1

This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CMCON1 register will enable Timer1 to increment based on the output of the comparator (or Comparator C2 for PIC16F636/639). This requires that Timer1 is on and gating is enabled. See **Section 6.0 "Timer1 Module with Gate Control"** for details.

It is recommended to synchronize the comparator with Timer1 by setting the CxSYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment.

Note:	Reference	ces	to	the	compa	arator	in	this
	section	sp	ecifi	ically	are	refer	ring	to
	Compara	ator	C2	on th	e PIC1	6F636	6/63	9.

7.10 Synchronizing Comparator Output to Timer1

The comparator (or Comparator C2 for PIC16F636/639) output can be synchronized with Timer1 by setting the CxSYNC bit of the CMCON1 register. When enabled, the comparator output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 7-2) and the Timer1 Block Diagram (Figure 6-1) for more information.

Note:	Reference	ces	to	the	compa	arator	in	this
	section	spe	ecifi	cally	are	referi	ring	to
	Comparator C2 on the PIC16F636/639.						9.	

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	
_	—	—	—	—	—	T1GSS	CMSYNC	
bit 7							bit 0	
Legend:								
R = Readable I	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
				'0' = Bit is cleared x = Bit is unknown				

REGISTER 7-3: CMCON1: COMPARATOR CONFIGURATION REGISTER (PIC12F635)

bit 7-2	Unimplemented:	Read as '0'
	•••••••••••••••••••••••••••••••••••••••	

bit 1	T1GSS: Timer1 Gate Source Select bit ⁽¹⁾ 1 = Timer1 Gate Source is T1G pin (pin should be configured as digital input) 0 = Timer1 Gate Source is comparator output
bit 0	CMSYNC: Comparator Output Synchronization bit ⁽²⁾ 1 = Output is synchronized with falling edge of Timer1 clock 0 = Output is asynchronous

- Note 1: Refer to Section 6.6 "Timer1 Gate".
 - 2: Refer to Figure 7-2.

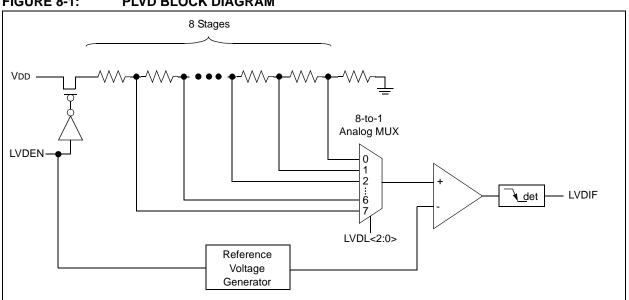
REGISTER 7-4: CMCON1: COMPARATOR CONFIGURATION REGISTER (PIC16F636/639)

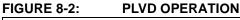
U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0		
—	—	—	—	—		T1GSS	C2SYNC		
bit 7	bit 7 bit 0								

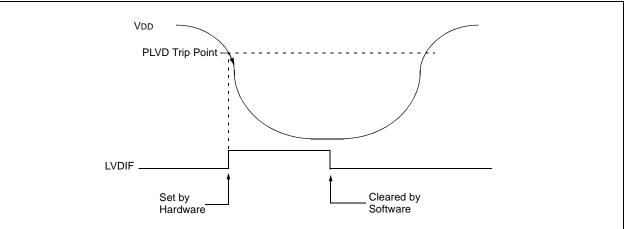
Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-2	Unimplemented: Read as '0'
bit 1	T1GSS: Timer1 Gate Source Select bit ⁽¹⁾
	 1 = Timer1 gate source is T1G pin (pin should be configured as digital input) 0 = Timer1 gate source is Comparator C2 output
bit 0	C2SYNC: Comparator C2 Output Synchronization bit ⁽²⁾ 1 = Output is synchronized with falling edge of Timer1 clock 0 = Output is asynchronous

- Note 1: Refer to Section 6.6 "Timer1 Gate".
 - 2: Refer to Figure 7-4.

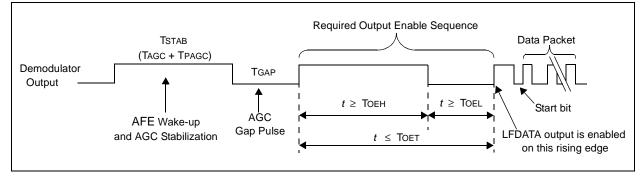

PROGRAMMABLE 8.0 LOW-VOLTAGE DETECT (PLVD) MODULE


The Programmable Low-Voltage Detect (PLVD) module is a power supply detector which monitors the internal power supply. This module is typically used in key fobs and other devices, where certain actions need to be taken as a result of a falling battery voltage.

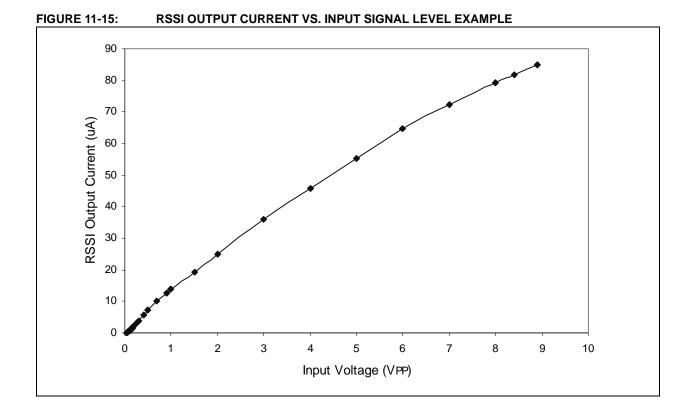

FIGURE 8-1: **PLVD BLOCK DIAGRAM** The PLVD module includes the following capabilities:

- · Eight programmable trip points
- Interrupt on falling VDD
- Stable reference indication
- · Operation during Sleep

A Block diagram of the PLVD module is shown in Figure 8-1.



11.15 Configurable Output Enable Filter


The purpose of this filter is to enable the LFDATA output and wake the microcontroller only after receiving a specific sequence of pulses on the LC input pins. Therefore, it prevents the AFE from waking up the microcontroller due to noise or unwanted input signals. The circuit compares the timing of the demodulated header waveform with a pre-defined value, and enables the demodulated LFDATA output when a match occurs.

The output enable filter consists of a high (TOEH) and low duration (TOEL) of a pulse immediately after the AGC settling gap time. The selection of high and low times further implies a max period time. The output enable high and low times are determined by SPI interface programming. Figure 11-5 and Figure 11-6 show the output enable filter waveforms.

There should be no missing cycles during TOEH. Missing cycles may result in failing the output enable condition.

FIGURE 11-5: OUTPUT ENABLE FILTER TIMING

_		-		-							
U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0				
—	_	—	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN ⁽¹				
bit 7						·	bit				
Legend:											
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value	e at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unk	nown				
bit 7-5	Unimpler	mented: Read as	'O'								
bit 4-1	WDTPS<	3:0>: Watchdog T	imer Period Se	elect bits							
	Bit Value	= Prescale Rate									
	0000 =	0000 = 1:32									
	0001 = '	0001 = 1:64									
	0010 = 7	0010 = 1:128									
		0011 = 1 :256									
		0100 = 1:512 (Reset value)									
		0101 = 1:1024									
		0110 = 1:2048 0111 = 1:4096									
		1000 = 1.8192									
		1000 = 1.0132 1001 = 1.16384									
	1010 = '	1010 = 1:32768									
		1011 = 1:65536									
		1100 = Reserved									
		1101 = Reserved									
		1110 = Reserved 1111 = Reserved									
					(1)						
bit 0		I: Software Enable	e or Disable the	e Watchdog Tir	ner bit(")						
		is turned on									
		is turned off (Rese	,								
Note 1:		guration bit = 1, th bit = 0, then it is p					If WDTE				

REGISTER 12-2: WDTCON: WATCHDOG TIMER CONTROL REGISTER

TABLE 12-8: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
WDTCON	—	—	_	WDTPS3	WDTPS2	WSTPS1	WDTPS0	SWDTEN	0 1000	0 1000
OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
CONFIG	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	—

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 12-1 for operation of all Configuration Word register bits.

14.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

14.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

14.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

DC CHARACTERISTICS		Standard Operating Operating temperate Supply Voltage	se stated) ºC for industrial /				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports:					
D030A		with TTL buffer	Vss	—	0.15 Vdd	V	
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	
D032		MCLR, OSC1 (RC mode)	Vss	—	0.2 Vdd	V	
D033		OSC1 (XT and LP modes) ⁽¹⁾	Vss	—	0.3	V	
D033A		OSC1 (HS mode) ⁽¹⁾	Vss	_	0.3 Vdd	V	
D034		Digital Input Low Voltage	Vss	_	0.3 Vdd	V	Analog Front-End section
	VIH	Input High Voltage					
		I/O ports:					
D040		with TTL buffer					
D040A			(0.25 VDD + 0.8)	_	Vdd	V	
D041		with Schmitt Trigger buffer	0.8 VDD	_	Vdd	V	
D042		MCLR	0.8 VDD	_	Vdd	V	
D043		OSC1 (XT and LP modes)	1.6	_	Vdd	V	(Note 1)
D043A		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V	(Note 1)
D043B		OSC1 (RC mode)	0.9 Vdd	_	Vdd	V	
		Digital Input High Voltage					Analog Front-End section
D044		SCLK, CS, SDIO for Analog Front-End (AFE)	0.8 Vdd	-	Vdd	V	
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O ports	-	± 0.1	± 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
D060A		Analog inputs	_	± 0.1	± 1	μΑ	$VSS \leq VPIN \leq VDD$
D060B		VREF	_	± 0.1	± 1	μΑ	$VSS \leq VPIN \leq VDD$
D061		MCLR ⁽³⁾	_	± 0.1	± 5	μΑ	$VSS \leq VPIN \leq VDD$
D063		OSC1	-	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration
		Digital Input Leakage Current ⁽²⁾					VDD = 3.6V, Analog Front-End section
D064		SDI for Analog Front-End (AFE)	_	—	± 1	μΑ	$VSS \leq VPIN \leq VDD$
D064A		SCLK, CS for Analog Front-End (AFE)	-	-	± 1	μA	$VPIN \leq VDD$
D070	IPUR	PORTA Weak Pull-up Current	50*	250	400	μΑ	VDD = 3.6V, VPIN = VSS
D071	IPDR	PORTA Weak Pull-down Current	50	250	400	μΑ	VDD = 3.6V, VPIN = VDD
	Vol	Output Low Voltage					
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 3.6V (Ind.)
D083		OSC2/CLKOUT (RC mode)	-	-	0.6	V	IOL = 1.6 mA, VDD = 3.6V (Ind.) IOL = 1.2 mA, VDD = 3.6V (Ext.)
		Digital Output Low Voltage					Analog Front-End section
D084		ALERT, LFDATA/SDIO for Analog Front-End (AFE)	-	—	VSS + 0.4	V	IOL = 1.0 mA, VDD = 2.0V

15.7 DC Characteristics: PIC16F639-I (Industrial)

These parameters are characterized but not tested.

t Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC 1: mode.

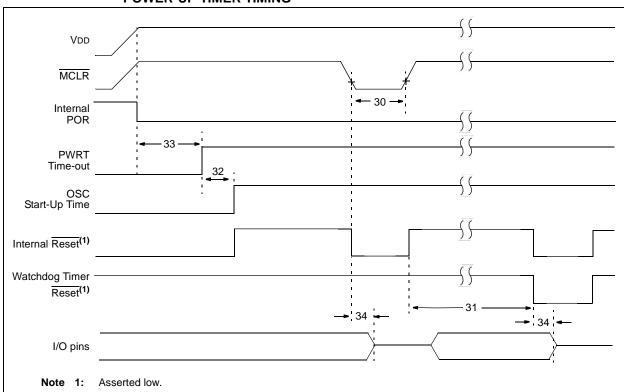
2:

Negative current is defined as current sourced by the pin. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating 3: conditions. Higher leakage current may be measured at different input voltages.

4: See Section 9.4.1 "Using the Data EEPROM" for additional information

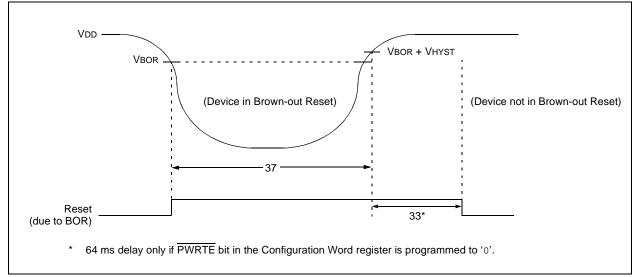
DC Characteristics: PIC16F639-I (Industrial) (Continued) 15.7

DC CHARACTERISTICS						(unless otherwise stated) $40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $2.0V \le VDD \le 3.6V$		
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
	Voн	Output High Voltage						
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = -3.0 mA, VDD = 3.6V (Ind.)	
D092		OSC2/CLKOUT (RC mode)	Vdd - 0.7	—	—	V	IOH = -1.3 mA, VDD = 3.6V (Ind.) IOH = -1.0 mA, VDD = 3.6V (Ext.)	
		Digital Output High Voltage					Analog Front-End (AFE) section	
D093		LFDATA/SDIO for Analog Front-End (AFE)	Vdd - 0.5	—	—	V	$IOH = -400 \ \mu A, \ VDD = 2.0V$	
		Capacitive Loading Specs on Output Pins						
D100	COSC2	OSC2 pin	_	—	15*	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101	Сю	All I/O pins	_	_	50*	pF		
D102	IULP	Ultra Low-power Wake-up Current	_	200	_	nA		
		Data EEPROM Memory						
D120	ED	Byte Endurance	100K	1M	_	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$	
D120A	ED	Byte Endurance	10K	100K	—	E/W	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	
D121	Vdrw	VDD for Read/Write	Vmin	—	5.5	V	Using EECON1 to read/write VMIN = Minimum operating voltage	
D122	TDEW	Erase/Write cycle time	—	5	6	ms		
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated	
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽¹⁾	1M	10M	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$	
		Program Flash Memory						
D130	Eр	Cell Endurance	10K	100K	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$	
D130A	ED	Cell Endurance	1K	10K	—	E/W	$+85^{\circ}C \le TA \le +125^{\circ}C$	
D131	Vpr	VDD for Read	VMIN	_	5.5	V	VMIN = Minimum operating voltage	
D132	VPEW	VDD for Erase/Write	4.5	-	5.5	V		
D133	TPEW	Erase/Write cycle time	—	2	2.5	ms		
D134	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated	


t

These parameters are characterized but not tested. Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC Note 1: mode.

2:


Negative current is defined as current sourced by the pin. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating 3: conditions. Higher leakage current may be measured at different input voltages.

See Section 9.4.1 "Using the Data EEPROM" for additional information 4:

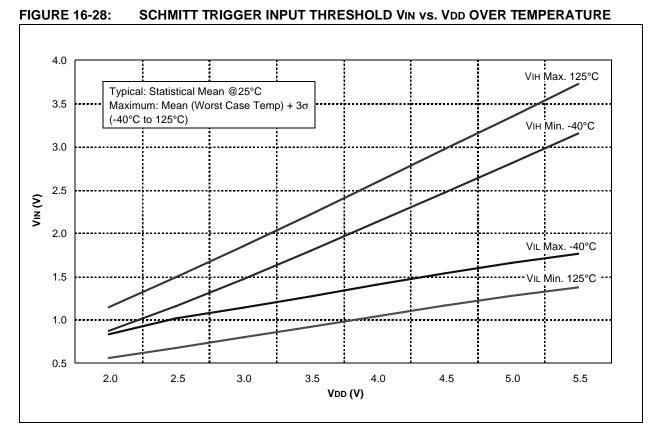
FIGURE 15-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS

	Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
30	ТмсL	MCLR Pulse Width (low)	2 5			μs μs	VDD = 5V, -40°C to +85°C VDD = 5V		
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	10 10	16 16	29 31	ms ms	VDD = 5V, -40°C to +85°C VDD = 5V		
32	Tost	Oscillation Start-up Timer Period ^(1, 2)		1024	—	Tosc	(NOTE 3)		
33*	TPWRT	Power-up Timer Period	40	65	140	ms			
34*	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset		—	2.0	μs			
35	VBOR	Brown-out Reset Voltage	2.0	_	2.2	V	(NOTE 4)		
36*	VHYST	Brown-out Reset Hysteresis	_	50	—	mV			
37*	TBOR	Brown-out Reset Minimum Detection Period	100	—	—	μs	Vdd ≤ Vbor		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

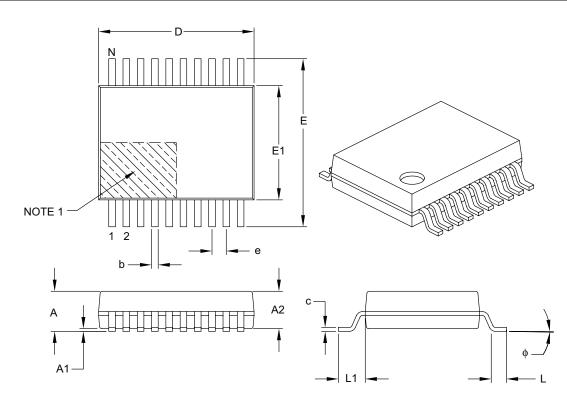

- 2: By design.
- **3:** Period of the slower clock.
- 4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

15.11 AC Characteristics: Analog Front-End for PIC16F639 (Industrial) (Continued)

AC CH	ARACTERIS	STICS	Standard Operating Conditions (unless otherwise stated) Supply Voltage 2.0V ≤ VDD ≤ 3.6V Operating temperature -40°C ≤ TAMB ≤ +85°C for industrial LC Signal Input Sinusoidal 300 mVPP Carrier Frequency 125 kHz LCCOM connected to Vss -					
Param No.	Sym.	Characteristic	Min	Тур†	Max	Units	Conditions	
AF14	TlfdataR	Rise time of LFDATA	_	0.5	_	μs	VDD = 3.0V Time is measured from 10% to 90% of amplitude	
AF15	TlfdataF	Fall time of LFDATA	-	0.5	_	μs	VDD = 3.0V Time is measured from 10% to 90% of amplitude	
AF16	TAGC	AGC initialization time	_	3.5*	-	ms	Time required for AGC stabilization	
AF17	TPAGC	High time after AGC settling time	—	62.5		μs	Equivalent to two Internal clock cycle (Fosc)	
AF18	TSTAB	AGC stabilization time plus high time (after AGC settling time) (TAGC + TPAGC)	4	_		ms	AGC stabilization time	
AF19	TGAP	Gap time after AGC settling time	200	_		μs	Typically 1 TE	
AF20	Trdy	Time from exiting Sleep or POR to being ready to receive signal	—		50*	ms		
AF21	TPRES	Minimum time AGC level must be held after receiving AGC Preserve command	5*	_	—	ms	AGC level must not change more than 10% during TPRES.	
AF22	Fosc	Internal RC oscillator frequency (±10%)	28.8	32	35.2	kHz	Internal clock trimmed at 32 kHz during test	
AF23	TINACT	Inactivity timer time-out	14.4	16	17.6	ms	512 cycles of RC oscillator @ Fosc	
AF24	TALARM	Alarm timer time-out	28.8	32	35.2	ms	1024 cycles of RC oscillator @ Fosc	
AF25	RLC	LC Pin Input Impedance LCX, LCY, LCZ	_	1*	_	MOhm	Device in Standby mode	
AF26	CIN	LC Pin Input Capacitance LCX, LCY, LCZ	_	24		pF	LCCOM grounded. Vdd = 3.0V, FCARRIER = 125 kHz	
AF27	TE	Time element of pulse	100	_		μs		
AF28	Тоен	Minimum output enable filter high time OEH (Bits Config0<7:6>) 01 = 1 ms 10 = 2 ms 11 = 4 ms 00 = Filter Disabled	32 (~1ms) 64 (~2ms) 128 (~4ms) —			clock count	RC oscillator = FOSC Viewed from the pin input: (Note 1)	
AF29	Toel	Minimum output enable filter low time OEL (Bits Config0<5:4>) 00 = 1 ms 01 = 1 ms 10 = 2 ms 11 = 4 ms	32 (~1ms) 32 (~1ms) 64 (~2ms) 128 (~4ms)			clock count	RC oscillator = FOSC Viewed from the pin input: (Note 2)	

* Parameter is characterized but not tested.
 † Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: Required output enable filter high time must account for input path analog delays (= ТОЕН - TDR + TDF).
 2: Required output enable filter low time must account for input path analog delays (= TOEL + TDR - TDF).



20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N		20			
Pitch	e		0.65 BSC			
Overall Height	A	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	6.90	7.20	7.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B