E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

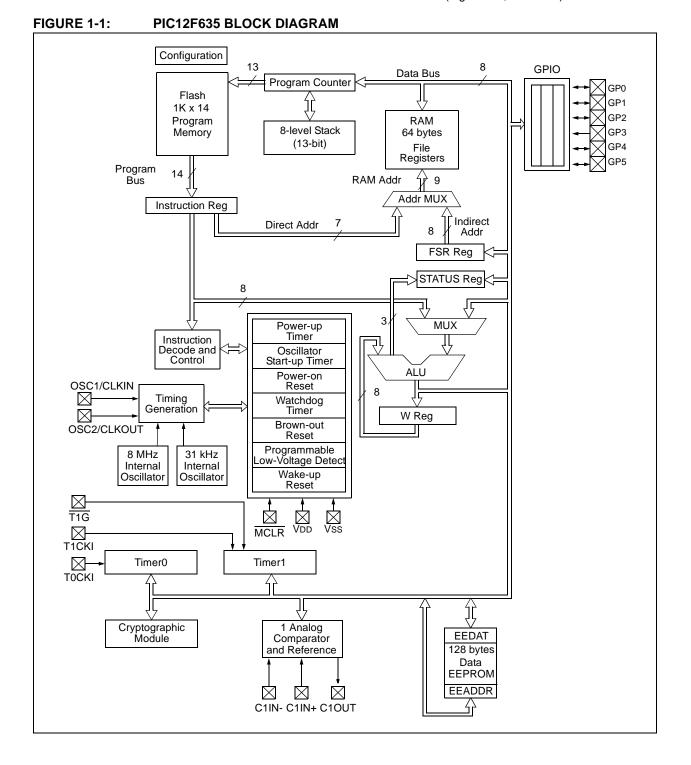
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LVD, POR, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f639-e-p

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

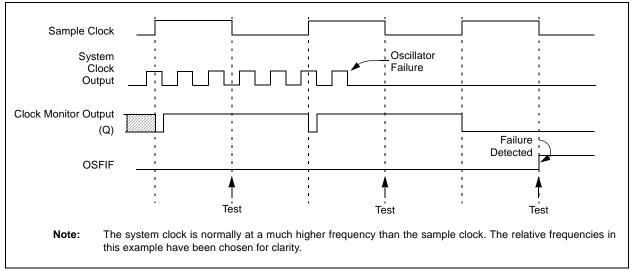
This document contains device specific information for the PIC12F635/PIC16F636/639 devices.

Block Diagrams and pinout descriptions of the devices are as follows:

- PIC12F635 (Figure 1-1, Table 1-1)
- PIC16F636 (Figure 1-2, Table 1-2)
- PIC16F639 (Figure 1-3, Table 1-3)

NOTES:

TABLE 2-5:	PIC12F635/PIC16F636/639 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2


Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR/ WUR	Page
Bank 2	3ank 2										
10Ch	_	Unimpleme	ented							_	—
10Dh	_	Unimpleme	ented							—	_
10Eh	_	Unimpleme	Inimplemented								_
10Fh	_	Unimpleme	Jnimplemented								—
110h	CRCON	GO/DONE	ENC/DEC	—	_	_	_	CRREG1	CRREG0	0000	0000
111h	CRDAT0 ⁽²⁾	Cryptograp	Cryptographic Data Register 0							0000 0000	0000 0000
112h	CRDAT1 ⁽²⁾	Cryptograp	hic Data Re	gister 1						0000 0000	0000 0000
113h	CRDAT2 ⁽²⁾	Cryptograp	hic Data Re	gister 2						0000 0000	0000 0000
114h	CRDAT3 ⁽²⁾	Cryptograp	Cryptographic Data Register 3 0000 0000 0000 0000 0000 0000 0000								0000 0000
115h	—	Unimpleme	ented							—	—
116h	—	Unimpleme	ented							—	—

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: CRDAT<3:0> registers are KEELOQ[®] hardware peripheral related registers and require the execution of the "KEELOQ Encoder License Agreement" regarding implementation of the module and access to related registers. The "KEELOQ Encoder License Agreement" may be accessed through the Microchip web site located at <u>www.microchip.com/KEELOQ</u> or by contacting your local Microchip Sales Representative. NOTES:

FIGURE 3-9: FSCM TIMING DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	x000 000x	0000 000x
OSCCON	—	IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 x000	-110 x000
OSCTUNE	—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu
PIE1	EEIE	LVDIE	CRIE	C2IE ⁽³⁾	C1IE	OSFIE	—	TMR1IE	000- 00-0	000- 00-0
PIR1	EEIF	LVDIF	CRIF	C2IF ⁽³⁾	C1IF	OSFIF	—	TMR1IF	000- 00-0	000- 00-0

 $\label{eq:local_$

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (CONFIG) for operation of all register bits.

3: PIC16F636/639 only.

4.0 I/O PORTS

There are as many as twelve general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

4.1 PORTA and the TRISA Registers

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 4-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 4-1 shows how to initialize PORTA.

Note: PORTA = GPIO TRISA = TRISIO

Reading the PORTA register (Register 4-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLRE = 1.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

Note: The CMCON0 register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

EXAMPLE 4-1: INITIALIZING PORTA

BANKSEI	L PORTA	i
CLRF	PORTA	;Init PORTA
MOVLW	07h	;Set RA<2:0> to
MOVWF	CMCON0	;digital I/O
BSF	STATUS, RPO	;Bank 1
BCF	STATUS, RP1	;
MOVLW	0Ch	;Set RA<3:2> as inputs
MOVWF	TRISA	;and set RA<5:4,1:0>
		;as outputs

4.2 Additional Pin Functions

Every PORTA pin on the PIC12F635/PIC16F636/639 has an interrupt-on-change option and a weak pull-up/pull-down option. RA0 has an Ultra Low-Power Wake-up option. The next three sections describe these functions.

4.2.1 WEAK PULL-UP/PULL-DOWN

Each of the PORTA pins, except RA3, has an internal weak pull-up and pull-down. The WDA bits select either a pull-up or pull-down for an individual port bit. Individual control bits can turn on the pull-up or pull-down. These pull-ups/pull-downs are automatically turned off when the port pin is configured as an output, as an alternate function or on a Power-on Reset, setting the RAPU bit of the OPTION register. A weak pull-up on RA3 is enabled when configured as MCLR in the Configuration Word register and disabled when high voltage is detected, to reduce current consumption through RA3, while in Programming mode.

Note: PORTA = GPIO

TRISA = TRISIO

4.2.3 ULTRA LOW-POWER WAKE-UP

The Ultra Low-Power Wake-up (ULPWU) on RA0 allows a slow falling voltage to generate an interrupt-on-change on RA0 without excess current consumption. The mode is selected by setting the ULPWUE bit of the PCON register. This enables a small current sink which can be used to discharge a capacitor on RA0.

To use this feature, the RA0 pin is configured to output '1' to charge the capacitor, interrupt-on-change for RA0 is enabled and RA0 is configured as an input. The ULPWUE bit is set to begin the discharge and a SLEEP instruction is performed. When the voltage on RA0 drops below VIL, an interrupt will be generated which will cause the device to wake-up. Depending on the state of the GIE bit of the INTCON register, the device will either jump to the interrupt vector (0004h) or execute the next instruction when the interrupt event occurs. See Section 4.2.2 "Interrupt-on-Change" and Section 12.9.3 "PORTA Interrupt" more for information.

This feature provides a low-power technique for periodically waking up the device from Sleep. The time-out is dependent on the discharge time of the RC circuit on RA0. See Example 4-2 for initializing the Ultra Low Power Wake-up module.

The series resistor provides overcurrent protection for the RAO pin and can allow for software calibration of the time-out (see Figure 4-1). A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired interrupt delay. This technique will compensate for the affects of temperature, voltage and component accuracy. The Ultra Low-Power Wake-up peripheral can also be configured as a simple Programmable Low-Voltage Detect or temperature sensor.

Note: For more information, refer to the Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879).

EXAMPLE 4-2: ULTRA LOW-POWER

WAKE-UP INITIALIZATION

BANKSEI	J PORTA	;
BSF	PORTA,0	;Set RA0 data latch
MOVLW	H'7'	;Turn off
MOVWF	CMCON0	; comparators
BANKSEI	TRISA	;
BCF	TRISA,0	;Output high to
CALL	CapDelay	; charge capacitor
BSF	PCON,ULPWUE	;Enable ULP Wake-up
BSF	IOCA,0	;Select RA0 IOC
BSF	TRISA,0	;RA0 to input
MOVLW	B'10001000'	;Enable interrupt
MOVWF	INTCON	; and clear flag
SLEEP		;Wait for IOC
NOP		;

5.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are 8 prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module.

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

5.1.3.1 Switching Prescaler Between Timer0 and WDT Modules

As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 5-1, must be executed.

EXAMPLE 5-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

BANKSEL CLRWDT	TMR0	; ;Clear WDT
CLRF	TMR 0	;Clear TMR0 and ;prescaler
BANKSEL	OPTION REG	; prescarer
BSF	OPTION_REG, PSA	, ;Select WDT
CLRWDT		;
		;
MOVLW	b'11111000'	;Mask prescaler
ANDWF	OPTION_REG,W	;bits
IORLW	b'00000101'	;Set WDT prescaler
MOVWF	OPTION_REG	;to 1:32

When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 5-2).

EXAMPLE 5-2:	CHANGING PRESCALER
	(WDT \rightarrow TIMER0)

	Clear WDT and
BANKSEL OPTION_REG ;	Mask TMR0 select and
MOVLW b'11110000' ;	prescaler bits
ANDWF OPTION_REG,W ;	Set prescale to 1:16

5.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit must be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is frozen during Sleep.

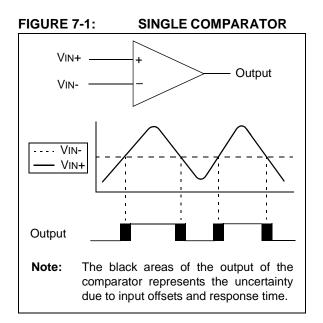
5.1.5 USING TIMER0 WITH AN EXTERNAL CLOCK

When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in the **Section 15.0 "Electrical Specifications"**.

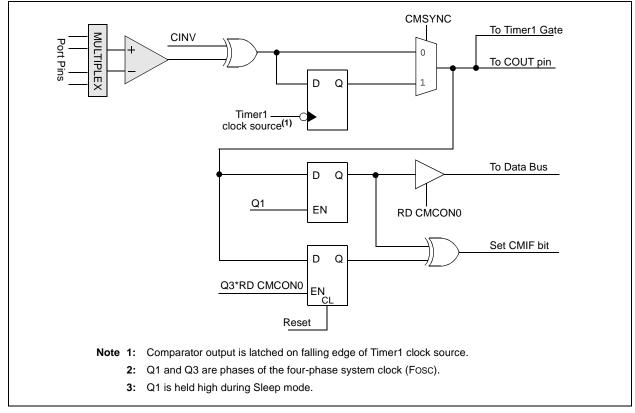
7.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The Analog Comparator module includes the following features:

- Dual comparators (PIC16F636/639 only)
- Multiple comparator configurations
- Comparator(s) output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- Wake-up from Sleep
- Timer1 gate (count enable)
- Output synchronization to Timer1 clock input
- Programmable voltage reference


7.1 Comparator Overview

A comparator is shown in Figure 7-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the


comparator is a digital low level. When the analog voltage at V_{IN+} is greater than the analog voltage at V_{IN-} , the output of the comparator is a digital high level.

The PIC12F635 contains a single comparator as shown in Figure 7-2.

The PIC16F636/639 devices contains two comparators as shown in Figure 7-3 and Figure 7-4. The comparators are not independently configurable.

FIGURE 7-2: COMPARATOR OUTPUT BLOCK DIAGRAM (PIC12F635)

TABLE 7-2:SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE
REFERENCE MODULES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CMCON0	—	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000	-0-0 0000
CMCON1	_	—	_	_	—	_	T1GSS	CMSYNC	10	10
INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	x000 000x	x000 000x
PIE1	EEIE	LVDIE	CRIE		C1IE	OSFIE		TMR1IE	000- 00-0	000- 00-0
PIR1	EEIF	LVDIF	CRIF	_	C1IF	OSFIF	_	TMR1IF	000- 00-0	000- 00-0
PORTA	_	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
PORTC	_	—	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu
TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC	_	—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111
VRCON	VREN	_	VRR	_	VR3	VR2	VR1	VR0	0-0- 0000	0-0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for comparator.

U-0	U-0	R-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	IRVST ⁽¹⁾	LVDEN	—	LVDL2	LVDL1	LVDL0				
bit 7							bit				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7-6	Unimplemen	nted: Read as '	٥'								
bit 5	•	nal Reference V		Status Flag bit	(1)						
on o											
		 1 = Indicates that the PLVD is stable and PLVD interrupt is reliable 0 = Indicates that the PLVD is not stable and PLVD interrupt must not be enabled 									
bit 4	LVDEN: Low-Voltage Detect Module Enable bit										
	1 = Enables	PLVD Module, j	powers up PL	VD circuit and	supporting refer	ence circuitry					
	0 = Disables	PLVD Module,	powers down	PLVD circuit a	nd supporting r	eference circui	try				
bit 3	Unimplemer	nted: Read as '	0'								
bit 2-0	LVDL<2:0>:	Low-Voltage De	etection Level	bits (nominal v	values)						
	111 = 4.5V										
	110 = 4.2V										
		101 = 4.0V									
		100 = 2.3V (default)									
	011 = 2.2V 010 = 2.1V										
	010 = 2.1V $001 = 2.0V^{(2)}$)									
	001 = 2.000										

REGISTER 8-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER

- **Note 1:** The IRVST bit is usable only when the HFINTOSC is running.
 - 2: Not tested and below minimum operating conditions.

TABLE 8-1: REGISTERS ASSOCIATED WITH PROGRAMMABLE LOW-VOLTAGE DETECT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	x000 000x	0000 000x
PIE1	OSFIE	C2IE	C1IE	LCDIE	_	LVDIE	—	CCP2IE	0000 -0-0	0000 -0-0
PIR1	OSFIF	C2IF	C1IF	LCDIF	_	LVDIF	—	CCP2IF	0000 -0-0	0000 -0-0
LVDCON	_	_	IRVST	LVDEN		LVDL2	LVDL1	LVDL0	00 -100	00 -100

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the PLVD module.

9.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are four SFRs used to read and write this memory:

- EECON1
- EECON2 (not a physically implemented register)
- EEDAT
- EEADR

REGISTER 9-1:

EEDAT holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. PIC16F636/639 has 256 bytes of data EEPROM and the PIC12F635 has 128 bytes.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature as well as from chip-to-chip. Please refer to A/C specifications in **Section 15.0 "Electrical Specifications"** for exact limits.

When the data memory is code-protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access the data EEPROM data and will read zeroes.

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| EEDAT7 | EEDAT6 | EEDAT5 | EEDAT4 | EEDAT3 | EEDAT2 | EEDAT1 | EEDAT0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **EEDATn**: Byte Value to Write To or Read From Data EEPROM bits

EEDAT: EEPROM DATA REGISTER

REGISTER 9-2: EEADR: EEPROM ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EEADR7 ⁽¹⁾	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **EEADR**: Specifies One of 256 Locations for EEPROM Read/Write Operation bits

Note 1: PIC16F636/639 only. Read as '0' on PIC12F635.

9.1 EECON1 AND EECON2 Registers

EECON1 is the control register with four low-order bits physically implemented. The upper four bits are non-implemented and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit, clear it and rewrite the location. The data and address will be cleared. Therefore, the EEDAT and EEADR registers will need to be re-initialized.

Interrupt flag, EEIF bit of the PIR1 register, is set when write is complete. This bit must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence.

Note: The EECON1, EEDAT and EEADR registers should not be modified during a data EEPROM write (WR bit = 1).

REGISTER 9-3: EECON1: EEPROM CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0
—	—	—	—	WRERR	WREN	WR	RD
bit 7							bit 0

Legend:			
S = Bit can only be set			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Read as '0'
bit 3	WRERR: EEPROM Error Flag bit
	 1 = A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during normal operation or BOR Reset) 0 = The write operation completed
bit 2	WREN: EEPROM Write Enable bit
	 1 = Allows write cycles 0 = Inhibits write to the data EEPROM
bit 1	WR: Write Control bit
	 1 = Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only be set, not cleared, in software.) 0 = Write cycle to the data EEPROM is complete
bit 0	RD: Read Control bit
	 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set, not cleared, in software.)

0 = Does not initiate an EEPROM read

REGISTER 11-4: CONFIGURATION REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	LCZTUN5	LCZTUN4	LCZTUN3	LCZTUN2	LCZTUN1	LCZTUN0	R3PAR
bit 8								bit 0

Legend:		
R = Readable bit W = Writa	ble bit U = Unimplemen	ted bit, read as '0'
-n = Value at POR '1' = Bit is	set '0' = Bit is cleared	d x = Bit is unknown

bit 8-7 Unimplemented: Read as '0'

- bit 6-1 LCZTUN<5:0>: LCZ Tuning Capacitance bit 000000 = +0 pF (Default) : 111111 = +63 pF
- bit 0 **R3PAR**: Register Parity Bit set/cleared so the 9-bit register contains odd parity an odd number of set bits

REGISTER 11-5: CONFIGURATION REGISTER 4

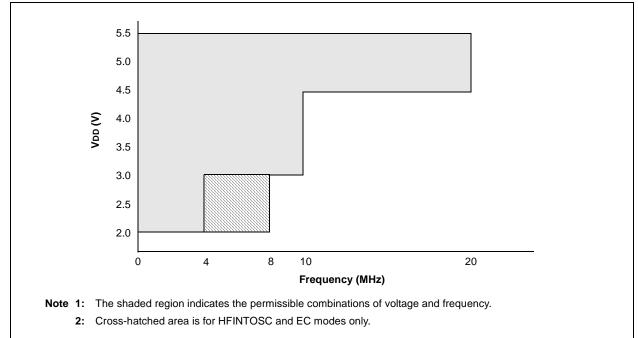
R/W-0	R/W-0							
LCXSEN3	LCXSEN2	LCXSEN1	LCXSEN0	LCYSEN3	LCYSEN2	LCYSEN1	LCYSEN0	R4PAR
bit 8								bit 0

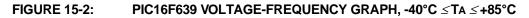
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

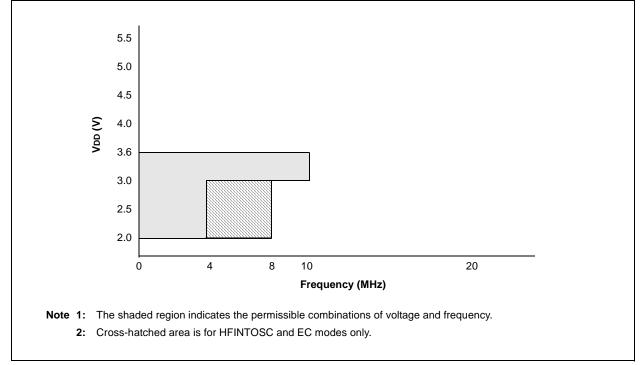
bit 8-5 LCXSEN<3:0>⁽¹⁾: Typical LCX Sensitivity Reduction bit

	0000 = -0 dB (Default)
	0001 = -2 dB
	0010 = -4 dB
	0011 = -6 dB
	0100 = -8 dB
	0101 = -10 dB
	0110 = -12 dB
	0111 = -14 dB
	1000 = -16 dB
	1001 = -18 dB
	1010 = -20 dB
	1011 = -22 dB
	1100 = -24 dB
	1101 = -26 dB
	1110 = -28 dB
	1111 = -30 dB
bit 4-1	LCYSEN<3:0> ⁽¹⁾ : Typical LCY Sensitivity Reduction bit
	0000 = -0 dB (Default)
	1111 = -30 dB
L:1.0	
bit 0	R4PAR : Register Parity Bit – set/cleared so the 9-bit register contains odd parity – an odd number of set
	bits

Note 1: Assured monotonic increment (or decrement) by design.

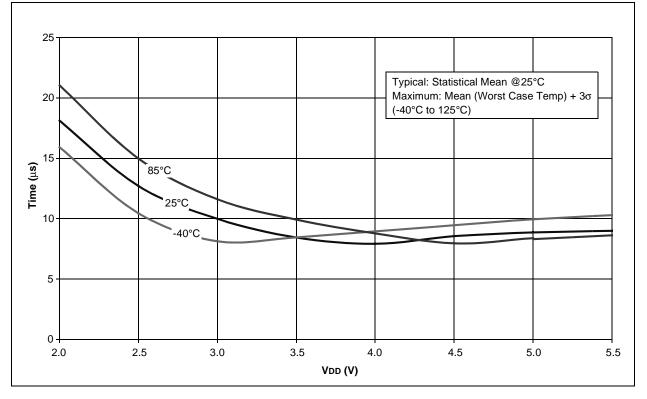

SUBWF	Subtract W from f			
Syntax:	[<i>label</i>] SUBWF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(f) - (W) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.			
	C = 0 W > f			


C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0>>f<3:0>
DC = 1	$W < 3:0 > \le f < 3:0 >$

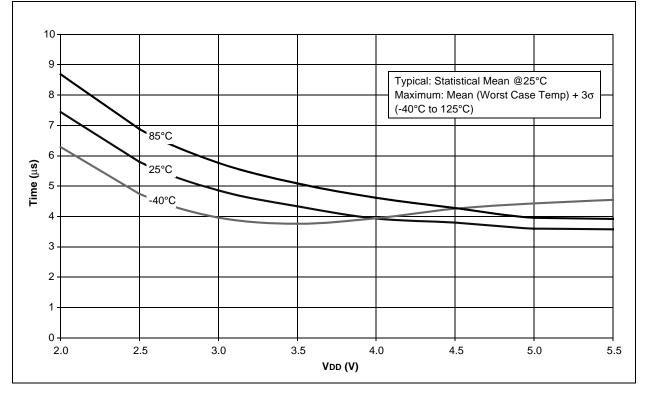

XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.

SWAPF	Swap Nibbles in f	XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] SWAPF f,d	Syntax:	[<i>label</i>] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$	Operation:	(W) .XOR. (f) \rightarrow (destination)
	$(f < 7:4 >) \rightarrow (destination < 3:0 >)$	Status Affected:	Z
Status Affected:	None	Description:	Exclusive OR the contents of the
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.		W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

15.1 DC Characteristics: PIC12F635/PIC16F636-I (Industrial) PIC12F635/PIC16F636-E (Extended)

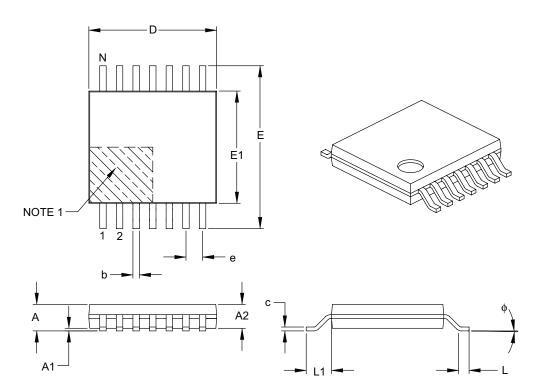

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}\mbox{C} \leq \mbox{Ta} \leq +85^{\circ}\mbox{C for industrial} \\ & -40^{\circ}\mbox{C} \leq \mbox{Ta} \leq +125^{\circ}\mbox{C for extended} \end{array}$					
Param No.	Sym	Characteristic	Min Typ† Max Units Conditions				
D001 D001A D001B D001C	Vdd	Supply Voltage	2.0 2.0 3.0 4.5		5.5 5.5 5.5 5.5	> > > >	Fosc < = 4 MHz Fosc < = 8 MHz, HFINTOSC, EC Fosc < = 10 MHz Fosc < = 20 MHz
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5*	_	_	V	Device in Sleep mode
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See Section 12.3 "Power-on Reset" for details.
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05*	—	—	V/ms	See Section 12.3 "Power-on Reset" for details.
D005	VBOD	Brown-out Reset	2.0	2.1	2.2	V	

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

FIGURE 16-34: MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE



14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		14	
Pitch	e		0.65 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	E		6.40 BSC	
Molded Package Width	E1	4.30	4.40	4.50
Molded Package Length	D	4.90	5.00	5.10
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.19	-	0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B

INTOSC
INTOSCIO
LFINTOSC
Clock Switching
CMCON0 Register
CMCON1 Register
Code Examples
Assigning Prescaler to Timer0
Assigning Prescaler to WDT
Data EEPROM Read
Data EEPROM Write
Indirect Addressing
Initializing PORTA47
Initializing PORTC57
Saving Status and W Registers in RAM142
Ultra Low-Power Wake-up Initialization51
Write Verify93
Code Protection146
Comparator71
Associated registers85
C2OUT as T1 Gate81
Configurations74
I/O Operating Modes74
Interrupts77
Operation
Operation During Sleep79
Response Time
Synchronizing CxOUT w/Timer181
Comparator Voltage Reference (CVREF)
Response Time
Specifications
Comparator Voltage Reference (CVREF)
Effects of a Reset
Specifications
Comparators
C2OUT as T1 Gate
Effects of a Reset
Specifications
CONFIG Register
Configuration Bits
CPU Features
Customer Change Notification Service
Customer Notification Service
Customer Support

D

Data EEPROM Memory
Associated Registers94
Code Protection
Protection Against Spurious Write
Using
Data Memory17
DC and AC Characteristics
Graphs and Tables191
DC Characteristics
Extended (PIC12F635/PIC16F636)169
Industrial (PIC12F635/PIC16F636)167
Industrial (PIC16F639)174
Industrial/Extended (PIC12F635/PIC16F636) 166, 171
Industrial/Extended (PIC16F639) 173, 175
Development Support159
Device Overview
E

EEADR Register	
EECON1 (EEPROM Control 1) Register	

EECON1 Register EECON2 (EEPROM Control 2) Register	
EEDAT Register	
EEPROM Data Memory	
Reading	93
Write Verify	93
Writing	
Electrical Specifications	163
Errata	

F

Fail-Safe Clock Monitor	45
Fail-Safe Condition Clearing	
Fail-Safe Detection	
Fail-Safe Operation	45
Reset or Wake-up from Sleep	45
Firmware Instructions	149
Fuses. See Configuration Bits	

G

General Purpose Register (GPR)	File 18
--------------------------------	---------

I

ID Locations	146
In-Circuit Debugger	147
In-Circuit Serial Programming (ICSP)	
Indirect Addressing, INDF and FSR Registers	32
Instruction Format	
Instruction Set	149
ADDLW	
ADDWF	151
ANDLW	
ANDWF	-
BCF	
BSF	
BTFSC	151
BTFSS	
CALL	
CLRF	
CLRW	152
CLRWDT	152
COMF	152
DECF	152
DECFSZ	153
GOTO	
INCF	153
INCFSZ	153
IORLW	153
IORWF	153
MOVF	154
MOVLW	154
MOVWF	154
NOP	154
RETFIE	155
RETLW	155
RETURN	155
RLF	156
RRF	156
SLEEP	156
SUBLW	156
SUBWF	157
SWAPF	157
XORLW	
XORWF	-
Summary Table	150
INTCON Register	