

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16-Bit
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	1.6MB (1.6M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	112K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-176-12
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe169fh200f100labkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XE169x Revisio	H Data Sheet n History: V1.3 2011-07
Previous V1.2, 20 V1.1, 20	s Versions: 10-09 10-02 Preliminary
Page	Subjects (major changes since last revision)
10	Clarified available Flash and SRAM memory allocation.
82	USIC "QSPI" protocol shortcut removed due to ambiguity (interpreted as Queued SPI or Quad SPI).
110	Relaxed the conditions for short-term deviation of internal clock source frequency $\Delta f_{\rm INT}$.
110	Added startup time from power-on t _{SPO}
113	Removed the 128MHz conditions for N _{WSFLE}
120	Added the minimum PLL free running frequency. Reduced the min/max bandwidth.
145	Thermal resistance values updated.

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Summary of Features

1.2 Definition of Feature Variants

The XE169xH types are offered with several Flash memory sizes. **Table 2** and **Table 3** describe the location of the available Flash memory.

Table 2 Continuous Flash Memory Ranges

Total Flash Size	1st Range ¹⁾	2nd Range	3rd Range
1,600 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H D8'FFFF _H	n.a.
1,088 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H CF'FFFF _H	D8'0000 _H D8'FFF _H

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

Table 3 Flash Memory Module Allocation (in Kbytes)

Total Flash Size	Flash 0 ¹⁾	Flash 1	Flash 2	Flash 3	Flash 4	Flash 5	Flash 6
1,600	256	255	256	256	256	256	64
1,088	256	255	256	256	-	-	64

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFF_H).

The XE169xH types are offered with different interface options. **Table 4** lists the available channels for each option.

Total NumberAvailable Channels / Message Objects16 ADC0 channelsCH0 ... CH1514 ADC1 channelsCH0 ... CH7, CH16 ... CH216 CAN nodesCAN0, CAN1, CAN2, CAN3, CAN4, CAN5
256 message objects10 serial channelsU0C0, U0C1, U1C0, U1C1, U2C0, U2C1, U3C0, U3C1,
U4C0, U4C1

Table 4 Interface Channel Association

Table	Fin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
8	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output		
	T3OUT	01	St/B	GPT12E Timer T3 Toggle Latch Output		
	T6OUT	O2	St/B	GPT12E Timer T6 Toggle Latch Output		
	TDO_A	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.		
	ESR2_1	I	St/B	ESR2 Trigger Input 1		
	RxDC4B	I	St/B	CAN Node 4 Receive Data Input		
	U4C1_DX0C	I	St/B	USIC4 Channel 0 Receive Data Input		
9	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output		
	EMUX1	01	St/B	External Analog MUX Control Output 1 (ADC1)		
-	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output		
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output		
	CCU62_CCP OS1A	I	St/B	CCU62 Position Input 1		
	TMS_C	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it.		
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input		
10	P8.2	O0 / I	St/B	Bit 2 of Port 8, General Purpose Input/Output		
	CCU60_CC6 2	01	St/B	CCU60 Channel 2 Output		
	TxDC1	O2	St/B	CAN Node 1 Transmit Data Output		
	U1C1_DOUT	O3	St/B	USIC1 Channel 1 Shift Data output		
	CCU60_CC6 2INB	I	St/B	CCU60 Channel 2 Input		

Table	Fable 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
106	P0.3	O0 / I	St/B	Bit 3 of Port 0, General Purpose Input/Output			
	U1C0_SELO 0	01	St/B	USIC1 Channel 0 Select/Control 0 Output			
	U1C1_SELO 1	02	St/B	USIC1 Channel 1 Select/Control 1 Output			
	CCU61_COU T60	O3	St/B	CCU61 Channel 0 Output			
	A3	ОН	St/B	External Bus Interface Address Line 3			
	U1C0_DX2A	I	St/B	USIC1 Channel 0 Shift Control Input			
_	RxDC0B	I	St/B	CAN Node 0 Receive Data Input			
107	P3.1	O0 / I	St/B	Bit 1 of Port 3, General Purpose Input/Output			
	U2C0_DOUT	01	St/B	USIC2 Channel 0 Shift Data Output			
	TxDC3	O2	St/B	CAN Node 3 Transmit Data Output			
_	U2C0_DX0B	I	St/B	USIC2 Channel 0 Shift Data Input			
108	P12.4	O0 / I	St/B	Bit 4 of Port 12, General Purpose Input/Output			
	CC1_CC4	O1 / I	St/B	CAPCOM1 CC4IO Capture Inp./ Compare Out.			
	U4C0_SELO 3	02	St/B	USIC4 Channel 0 Master Clock Output			
	CCU63_T12 HRF	I	St/B	External Run Control Input for T12 of CCU63			
109	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output			
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output			
	CCU60_CC6 2	02	St/B	CCU60 Channel 2 Output			
	U3C0_SELO 1	O3	St/B	USIC3 Channel 0 Select/Control 1 Output			
	AD2	OH / IH	St/B	External Bus Interface Address/Data Line 2			
	CCU60_CC6 2INA	I	St/B	CCU60 Channel 2 Input			
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input			
	U3C0_DX2B	I	St/B	USIC3 Channel 0 Shift Control Input			

Table	able 5 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
143	P10.11	O0 / I	St/B	Bit 11 of Port 10, General Purpose Input/Output				
	U1C0_SCLK OUT	O1	St/B	USIC1 Channel 0 Shift Clock Output				
	BRKOUT	02	St/B	OCDS Break Signal Output				
	U3C0_SELO 0	O3	St/B	USIC3 Channel 0 Select/Control 0 Output				
	AD11	OH / IH	St/B	External Bus Interface Address/Data Line 11				
	U1C0_DX1D	I	St/B	USIC1 Channel 0 Shift Clock Input				
	RxDC2B	I	St/B	CAN Node 2 Receive Data Input				
	TMS_B	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.				
	U3C0_DX2A	I	St/B	B USIC3 Channel 0 Shift Control Input				
144	P13.1	O0 / I	Bit 1 of Port 13, General Purpose Input/Output					
	T3OUT	01	St/B	GPT12E Timer T3 Toggle Latch Output				
_	CCU60_CC6 2	O2	St/B	CCU60 Channel 2 Output				
	TxDC4	O3	St/B	CAN Node 4 Transmit Data Output				
	U3C0_DX0D	I	St/B	USIC3 Channel 0 Shift Data Input				
	CCU60_CC6 2INC	1	St/B	CCU60 Channel 2 Input				
	U4C1_DX2B	I	St/B	USIC4 Channel 1 Shift Control Input				
	TxDC4	O3	St/B	CAN Node 4 transmit Data Output				
145	P9.2	O0 / I	St/B	Bit 2 of Port 9, General Purpose Input/Output				
	CCU63_CC6 2	O1	St/B	CCU63 Channel 2 Output				
	CC1_CC4	02	St/B	CAPCOM1 CC4 Compare Output				
	CCU63_CC6 2INA	1	St/B	CCU63 Channel 2 Input				
	CAPINB	I	St/B	GPT12E Register CAPREL Capture Input				

Table	Fable 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
148	P13.2	O0 / I	St/B	Bit 2 of Port 13, General Purpose Input/Output			
	CC1_CC10	O1 / I	St/B	CAPCOM1 CC10IO Capture Inp./ Compare Out.			
	CCU60_CC6 1	O2	St/B	CCU60 Channel 1Output			
	U3C0_DOUT	O3	St/B	USIC3 Channel 0 Shift Data Output			
	T3EUDC	I	St/B	GPT12E Timer T3 External Up/Down Control Input			
	CCU60_CC6 1INC	I	St/B	CCU60 Channel 2 Input			
	U4C1_DX1B	I	St/B	USIC4 Channel 0 Shift Control Input			
149	P9.3	O0 / I	St/B	Bit 3 of Port 9, General Purpose Input/Output			
	CCU63_COU T60	01	St/B	CCU63 Channel 0 Output			
	BRKOUT	O2	St/B	OCDS Break Signal Output			
150	P10.13	O0 / I	St/B	Bit 13 of Port 10, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC3	O2	St/B	CAN Node 3 Transmit Data Output			
	U1C0_SELO 3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output			
	WR/WRL	ОН	St/B	External Bus Interface Write Strobe Output Active for each external write access, when \overline{WR} , active for ext. writes to the low byte, when \overline{WRL} .			
	U1C0_DX0D	I	St/B	USIC1 Channel 0 Shift Data Input			

Figure 6 CAPCOM Unit Block Diagram

3.9 Capture/Compare Units CCU6x

The XE169xH types feature the CCU60, CCU61, CCU62 and CCU63 unit(s).

CCU6 is a high-resolution capture and compare unit with application-specific modes. It provides inputs to start the timers synchronously, an important feature in devices with several CCU6 modules.

The module provides two independent timers (T12, T13), that can be used for PWM generation, especially for AC motor control. Additionally, special control modes for block commutation and multi-phase machines are supported.

Timer 12 Features

- Three capture/compare channels, where each channel can be used either as a capture or as a compare channel.
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and low-side switches)
- 16-bit resolution, maximum count frequency = peripheral clock
- · Dead-time control for each channel to avoid short circuits in the power stage
- Concurrent update of the required T12/13 registers
- Center-aligned and edge-aligned PWM can be generated
- Single-shot mode supported
- Many interrupt request sources
- Hysteresis-like control mode
- Automatic start on a HW event (T12HR, for synchronization purposes)

Timer 13 Features

- One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock
- Can be synchronized to T12
- Interrupt generation at period match and compare match
- Single-shot mode supported
- Automatic start on a HW event (T13HR, for synchronization purposes)

Additional Features

- Block commutation for brushless DC drives implemented
- Position detection via Hall sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- Control modes for multi-channel AC drives
- Output levels can be selected and adapted to the power stage

3.13 Universal Serial Interface Channel Modules (USIC)

The XE169xH features the USIC modules USIC0, USIC1, USIC2, USIC3, USIC4. Each module provides two serial communication channels.

The Universal Serial Interface Channel (USIC) module is based on a generic data shift and data storage structure which is identical for all supported serial communication protocols. Each channel supports complete full-duplex operation with a basic data buffer structure (one transmit buffer and two receive buffer stages). In addition, the data handling software can use FIFOs.

The protocol part (generation of shift clock/data/control signals) is independent of the general part and is handled by protocol-specific preprocessors (PPPs).

The USIC's input/output lines are connected to pins by a pin routing unit. The inputs and outputs of each USIC channel can be assigned to different interface pins, providing great flexibility to the application software. All assignments can be made during runtime.

Figure 11 General Structure of a USIC Module

The regular structure of the USIC module brings the following advantages:

- Higher flexibility through configuration with same look-and-feel for data management
- Reduced complexity for low-level drivers serving different protocols
- Wide range of protocols with improved performances (baud rate, buffer handling)

3.19 Instruction Set Summary

 Table 10 lists the instructions of the XE169xH.

The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "**Instruction Set Manual**".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16- \times 16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise exclusive OR, (word/byte operands)	2/4
BCLR/BSET	Clear/Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL/SHR	Shift left/right direct word GPR	2

Table 10 Instruction Set Summary

4.3.3 Power Consumption

The power consumed by the XE169xH depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

Figure 14 Supply Current in Active Mode as a Function of Frequency

Note: Operating Conditions apply.

Table 18	Leakage F	Power	Consumption
----------	-----------	-------	-------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Leakage supply current ¹⁾²⁾	$I_{\rm LK1}$ CC	-	0.04	0.06	mA	<i>T</i> _J = 25 °C
		-	0.7	1.8	mA	<i>T</i> _J = 85 °C
		-	3.1	8.6	mA	<i>T</i> _J = 125 °C
		-	6.6	19.2	mA	<i>T</i> _J = 150 °C

- 1) The supply current caused by leakage depends mainly on the junction temperature and the supply voltage. The temperature difference between the junction temperature T_J and the ambient temperature T_A must be taken into account. As this fraction of the supply current does not depend on device activity, it must be added to other power consumption values.
- All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at V_{DDP} 0.1 V to V_{DDP} and all outputs (including pins configured as outputs) are disconnected.

Note: A fraction of the leakage current flows through domain DMP_A (pin V_{DDPA}). This current can be calculated as 7,000 × $e^{-\alpha}$, with $\alpha = 5000 / (273 + 1.3 \times T_J)$. For $T_J = 150^{\circ}$ C, this results in a current of 160 μ A.

The leakage power consumption can be calculated according to the following formulas:

 ${\rm I}_{\rm LK1}$ = 600,000 \times e^- $\!\!\!^\alpha$ with α = 5000 / (273 + B \times $T_{\rm J})$

Parameter B must be replaced by

- 1.1 for typical values
- 1.4 for maximum values

4.4 Analog/Digital Converter Parameters

These parameters describe the conditions for optimum ADC performance. *Note: Operating Conditions apply.*

Table 19ADC Parameters

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Switched capacitance at an analog input	C _{AINSW} CC	-	-	6	pF	not subject to production test	
Total capacitance at an analog input	C_{AINT} CC	-	_	14	pF	not subject to production test	
Switched capacitance at the reference input	C_{AREFSW} CC	-	_	10	pF	not subject to production test	
Total capacitance at the reference input	C_{AREFT} CC	-	_	21	pF	not subject to production test	
Differential Non-Linearity Error	EA _{DNL} CC	-	0.8	1	LSB		
Gain Error	EA _{GAIN} CC	-	0.4	0.8	LSB		
Integral Non-Linearity	EA _{INL} CC	-	0.8	1.2	LSB		
Offset Error	EA _{OFF} CC	-	0.5	0.8	LSB		
Analog clock frequency	$f_{\sf ADCI}{\sf SR}$	0.5	-	16.5	MHz	voltage_range= lower	
		0.5	-	20	MHz	voltage_range= upper	
Input resistance of the selected analog channel	R _{AIN} CC	-	-	2	kOh m	not subject to production test	
Input resistance of the reference input	R _{AREF} CC	-	_	2	kOh m	not subject to production test	

4.7 AC Parameters

These parameters describe the dynamic behavior of the XE169xH.

4.7.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

Figure 17 Input Output Waveforms

Table 28	Standard Pad Parameters for Lower Voltage Range
----------	---

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Maximum output driver current (absolute value) ¹⁾	I _{Omax} CC	-	-	2.5	mA	Driver_Strength = Medium
		-	-	10	mA	Driver_Strength = Strong
		_	-	0.5	mA	Driver_Strength = Weak
Nominal output driver current (absolute value)	I _{Onom} CC	_	-	1.0	mA	Driver_Strength = Medium
		_	-	2.5	mA	Driver_Strength = Strong
		_	-	0.1	mA	Driver_Strength = Weak

duration of an asynchronous READY signal for safe synchronization is one CLKOUT period plus the input setup time.

An active READY signal can be deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR).

If the next bus cycle is controlled by READY, an active READY signal must be disabled before the first valid sample point in the next bus cycle. This sample point depends on the programmed phases of the next cycle.

Figure 25 READY Timing

Table 40 JTAG Interface Timing for Lower Voltage Range (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ¹⁾	t ₈ CC	-	32	36	ns	
TDO high impedance to valid output from TCK falling edge ²⁾¹⁾	t ₉ CC	-	32	36	ns	
TDO valid output to high impedance from TCK falling edge ¹⁾	<i>t</i> ₁₀ CC	-	32	36	ns	
TDO hold after TCK falling edge ¹⁾	<i>t</i> ₁₈ CC	5	-	_	ns	

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.

Figure 30 Test Clock Timing (TCK)

Package and Reliability

5.3 Quality Declarations

The operation lifetime of the XE169xH depends on the operating temperature. The life time decreases with increasing temperature as shown in **Table 43**.

Table 42 Quality Parameters

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Operation lifetime	t _{OP} CC	-	-	20	а	See Table 43
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	-	-	2 000	V	EIA/JESD22- A114-B
Moisture sensitivity level	MSL CC	-	-	3	_	JEDEC J-STD-020C

Table 43 Lifetime dependency from Temperature

Operating Time	Operating Temperature
20 a	$T_{\rm J} \leq 110^{\circ}{ m C}$
95 500 h	$T_{\rm J} = 120^{\circ}{\rm C}$
68 500 h	$T_{\rm J} = 125^{\circ}{\rm C}$
49 500 h	$T_{\rm J}=130^{\circ}{\rm C}$
26 400 h	$T_{\rm J}=140^{\circ}{\rm C}$
14 500 h	$T_{\rm J}=150^{\circ}{ m C}$