

Welcome to **E-XFL.COM**

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM® Cortex®-A9 MPCore™ with CoreSight™
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	1.05GHz
Primary Attributes	FPGA - 462K Logic Elements
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA, FC (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5astfd5g3f35i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature		Description			
Embedded Hard IP blocks	Memory controller (Arria V GX, GT, SX, and ST only) Embedded transceiver I/O	 Native support for up to four signal processing precision levels: Three 9 x 9, two 18 x 18, or one 27 x 27 multiplier in the same variable-precision DSP block One 36 x 36 multiplier using two variable-precision DSP blocks (Arria V GZ devices only) 64-bit accumulator and cascade for systolic finite impulse responses (FIRs) Embedded internal coefficient memory Preadder/subtractor for improved efficiency DDR3 and DDR2 Custom implementation: Arria V GX and SX devices—up to 6.5536 Gbps Arria V GT and ST devices—up to 10.3125 Gbps Arria V GZ devices—up to 12.5 Gbps PCI Express® (PCIe®) Gen2 (x1, x2, or x4) and Gen1 (x1, x2, x4, or x8) hard IP with multifunction support, endpoint, and root port PCIe Gen3 (x1, x2, x4, or x8) support (Arria V GZ only) Gbps Ethernet (GbE) and XAUI physical coding sublayer (PCS) Common Public Radio Interface (CPRI) PCS Gigabit-capable passive optical network (GPON) PCS 10-Gbps Ethernet (10GbE) PCS (Arria V GZ only) Serial RapidIO® (SRIO) PCS Interlaken PCS (Arria V GZ only) 			
Clock networks	 Up to 650 MHz global clock network Global, quadrant, and peripheral clock networks Clock networks that are not used can be powered down to reduce dynamic power 				
Phase-locked loops (PLLs)	 High-resolution fractional PLLs Precision clock synthesis, clock delay compensation, and zero delay buffering (ZDB) Integer mode and fractional mode LC oscillator ATX transmitter PLLs (Arria V GZ only) 				

Posc	Resource		Member Code						
nesc	Juice	A1	А3	A 5	A7	B1	В3	B5	В7
6 Gbps Transc		9	9	24	24	24	24	36	36
GPIO ⁽	(3)	416	416	544	544	704	704	704	704
LVD S	Transmi tter	67	67	120	120	160	160	160	160
3	Receiver	80	80	136	136	176	176	176	176
PCIe I Block	Hard IP	1	1	2	2	2	2	2	2
Hard I Contro	Memory oller	2	2	4	4	4	4	4	4

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 5: Package Plan for Arria V GX Devices

Member Code		72 mm)		F896 (31 mm)		F1152 (35 mm)		F1517 (40 mm)	
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	
A1	336	9	416	9	_	_	_	_	
A3	336	9	416	9	_	_	_	_	
A5	336	9	384	18	544	24	_	_	
A7	336	9	384	18	544	24	_	_	
B1	_	_	384	18	544	24	704	24	
В3	_	_	384	18	544	24	704	24	
B5	_	_	_	_	544	24	704	36	
В7	_	_	_	_	544	24	704	36	

Arria V GT

This section provides the available options, maximum resource counts, and package plan for the Arria V GT devices.

⁽³⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus[®] Prime software, the number of user I/Os includes transceiver I/Os.

Resource		Member Code						
Neso	ui ce	C 3	C 7	D3	D7			
Transceiver	6 Gbps ⁽⁴⁾	3 (9)	6 (24)	6 (24)	6 (36)			
Transcerver	10 Gbps ⁽⁵⁾	4	12	12	20			
GPIO ⁽⁶⁾	GPIO ⁽⁶⁾		544	704	704			
LVDS	Transmitter	68	120	160	160			
LVD3	Receiver	80	136	176	176			
PCIe Hard IP Block		1	2	2	2			
Hard Memor	Hard Memory Controller		4	4	4			

 High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

• Transceiver Architecture in Arria V Devices

Describes 10 Gbps channels usage conditions and SFF-8431 compliance requirements.

Package Plan

Table 7: Package Plan for Arria V GT Devices

Memb		F672 (27 mm)		F896 (31 mm)		F1152 (35 mm)		F1517 (40 mm)				
er Code		ХС	VR		ХС	VR		ХС	VR		2	KCVR
	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10-Gbps
C3	336	3 (9)	4	416	3 (9)	4	_	_	_	_	_	_
C7	_	_	_	384	6 (18)	8	544	6 (24)	12	_	_	_
D3	_	_	_	384	6 (18)	8	544	6 (24)	12	704	6 (24)	12
D7	_	_	_	_	_	_	544	6 (24)	12	704	6 (36)	20

The 6-Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10-Gbps channels as three 6-Gbps channels—the total number of 6-Gbps channels are shown in brackets. For example, you can also configure the Arria V GT D7 device in the F1517 package with nine 6-Gbps

⁽⁴⁾ The 6 Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10 Gbps channels as three 6 Gbps channels-the total number of 6 Gbps channels are shown in brackets.

⁽⁵⁾ Chip-to-chip connections only. For 10 Gbps channel usage conditions, refer to the Transceiver Architecture in Arria V Devices chapter.

⁽⁶⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

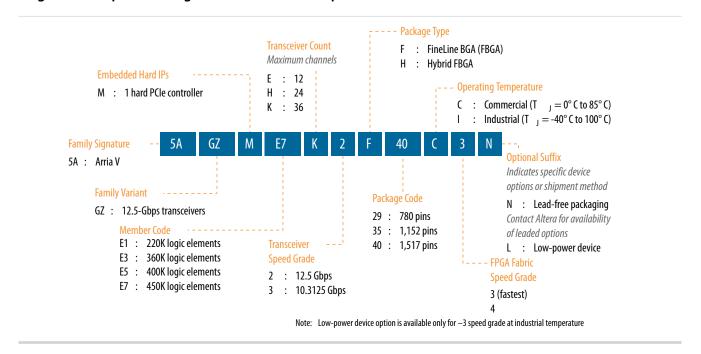
AV-51001 2015.12.21

and eighteen 10-Gbps, twelve 6-Gbps and sixteen 10-Gbps, fifteen 6-Gbps and fourteen 10-Gbps, or up to thirty-six 6-Gbps with no 10-Gbps channels.

Arria V GZ

This section provides the available options, maximum resource counts, and package plan for the Arria V GZ devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


Related Information

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 3: Sample Ordering Code and Available Options for Arria V GZ Devices

Maximum Resources

Table 8: Maximum Resource Counts for Arria V GZ Devices

Resource	Member Code					
	E1	E 3	E 5	E 7		
Logic Elements (LE) (K)	220	360	400	450		
ALM	83,020	135,840	150,960	169,800		
Register	332,080	543,360	603,840	679,200		

Pose	Resource		Member Code						
nesc			E 3	E 5	E 7				
Memory	M20K	11,700	19,140	28,800	34,000				
(Kb)	MLAB	2,594	4,245	4,718	5,306				
Variable-pred	cision DSP Block	800	1,044	1,092	1,139				
18 x 18 Multi	18 x 18 Multiplier		2,088	2,184	2,278				
PLL		20	20	24	24				
12.5 Gbps Tr	ansceiver	24	24	36	36				
GPIO ⁽⁷⁾		414	414	674	674				
LVDS	Transmitter	99	99	166	166				
LVDS	Receiver	108	108	168	168				
PCIe Hard IF	Block	1	1	1	1				

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 9: Package Plan for Arria V GZ Devices

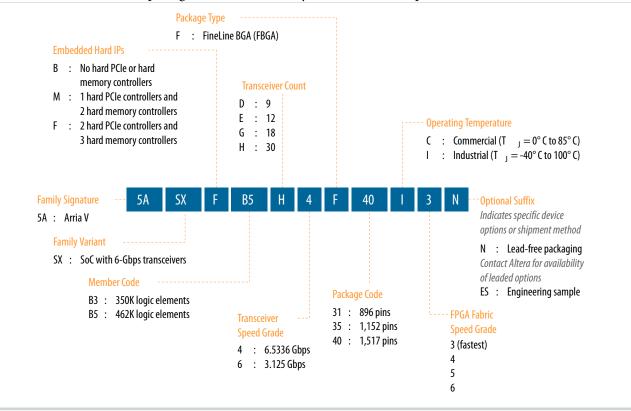
Member Code	H780 (33 mm)			152 mm)	F1517 (40 mm)		
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	
E1	342	12	414	24	_	_	
E3	342	12	414	24	_	_	
E5	_	_	534	24	674	36	
E7	_	_	534	24	674	36	

Arria V SX

This section provides the available options, maximum resource counts, and package plan for the Arria V SX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.

⁽⁷⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.


Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 4: Sample Ordering Code and Available Options for Arria V SX Devices

The -3 FPGA fabric speed grade is available only for industrial temperature devices.

Maximum Resources

Table 10: Maximum Resource Counts for Arria V SX Devices

Poso	urce	Member Code			
neso	ruice	В3	B5		
Logic Elements (LE)	Logic Elements (LE) (K)		462		
ALM		132,075	174,340		
Register	Register		697,360		
Memory (Kb)	M10K	17,290	22,820		
Memory (Ro)	MLAB	2,014	2,658		
Variable-precision D	Variable-precision DSP Block		1,090		
18 x 18 Multiplier		1,618	2,180		

Poss	ource	1	Member Code
neso	ruice	В3	B5
FPGA PLL		14	14
HPS PLL	HPS PLL		3
6 Gbps Transceiver	6 Gbps Transceiver		30
FPGA GPIO ⁽⁸⁾	FPGA GPIO ⁽⁸⁾		540
HPS I/O		208	208
LVDS	Transmitter	120	120
LVDS	Receiver	136	136
PCIe Hard IP Block		2	2
FPGA Hard Memory	FPGA Hard Memory Controller		3
HPS Hard Memory Controller		1	1
ARM Cortex-A9 MP	Core Processor	Dual-core	Dual-core

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 11: Package Plan for Arria V SX Devices

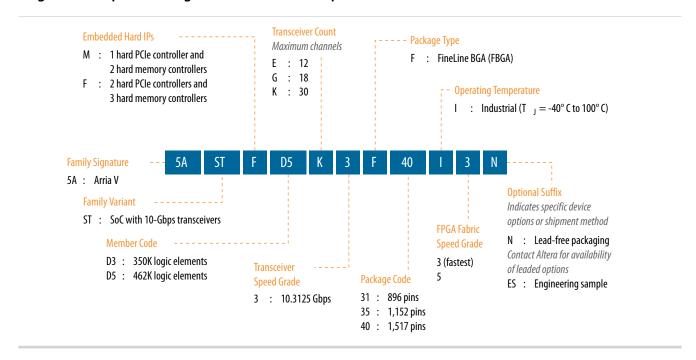
The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

	F896				F1152			F1517		
Member Code	(31 mm)		(35 mm)			(40 mm)				
Code	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR	
В3	250	208	12	385	208	18	540	208	30	
B5	250	208	12	385	208	18	540	208	30	

Arria V ST

This section provides the available options, maximum resource counts, and package plan for the Arria V ST devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


⁽⁸⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

Altera Product Selector

Provides the latest information about Altera products.

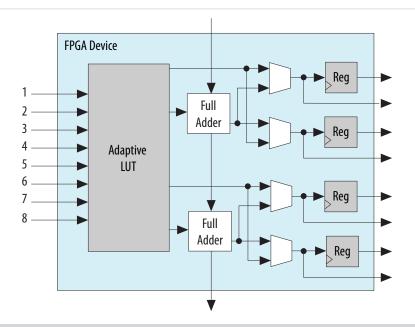
Available Options

Figure 5: Sample Ordering Code and Available Options for Arria V ST Devices

Maximum Resources

Table 12: Maximum Resource Counts for Arria V ST Devices

Reso	LINEO	Member Code		
Reso	ource	D3	D5	
Logic Elements (LE)	(K)	350	462	
ALM		132,075	174,340	
Register		528,300	697,360	
Memory (Kb)	M10K	17,290	22,820	
Memory (Rb)	MLAB	2,014	2,658	
Variable-precision D	SP Block	809	1,090	
18 x 18 Multiplier		1,618	2,180	
FPGA PLL		14	14	
HPS PLL		3	3	
Transceiver	6-Gbps	30	30	
Transcerver	10-Gbps ⁽⁹⁾	16	16	


- Managing Device I/O Pins chapter, Quartus Prime Handbook Provides more information about vertical I/O migrations.
- Power Management in Arria V Devices
 Describes the power-up sequence required for Arria V GX and GT devices.

Adaptive Logic Module

Arria V devices use a 28 nm ALM as the basic building block of the logic fabric.

The ALM, as shown in following figure, uses an 8-input fracturable look-up table (LUT) with four dedicated registers to help improve timing closure in register-rich designs and achieve an even higher design packing capability than previous generations.

Figure 7: ALM for Arria V Devices

You can configure up to 50% of the ALMs in the Arria V devices as distributed memory using MLABs.

Related Information

Embedded Memory Capacity in Arria V Devices on page 20

Lists the embedded memory capacity for each device.

Variable-Precision DSP Block

Arria V devices feature a variable-precision DSP block that supports these features:

- Configurable to support signal processing precisions ranging from 9 x 9, 18 x 18, 27 x 27, and 36 x 36 bits natively
- A 64-bit accumulator
- Double accumulator
- A hard preadder that is available in both 18- and 27-bit modes
- Cascaded output adders for efficient systolic finite impulse response (FIR) filters
- Dynamic coefficients
- 18-bit internal coefficient register banks
- Enhanced independent multiplier operation
- Efficient support for single-precision floating point arithmetic
- The inferability of all modes by the Quartus Prime design software

Table 14: Variable-Precision DSP Block Configurations for Arria V Devices

Usage Example	Multiplier Size (Bit)	DSP Block Resource
Low precision fixed point for video applications	Three 9 x 9	1
Medium precision fixed point in FIR filters	Two 18 x 18	1
FIR filters	Two 18 x 18 with accumulate	1
Single-precision floating- point implementations	One 27 x 27	1
Very high precision fixed point implementations	One 36 x 36	2

You can configure each DSP block during compilation as independent three 9 x 9, two 18 x 18, or one 27×27 multipliers. Using two DSP block resources, you can also configure a 36×36 multiplier for high-precision applications. With a dedicated 64 bit cascade bus, you can cascade multiple variable-precision DSP blocks to implement even higher precision DSP functions efficiently.

Table 15: Number of Multipliers in Arria V Devices

The table lists the variable-precision DSP resources by bit precision for each Arria V device.

Variant	Mem ber	Variable- precision	Independent Input and Output Multiplications Operator			18 x 18 Multiplier	18 x 18 Multiplier Adder Summed	
Variant	Code	DSP Block	9 x 9 Multiplier	18 x 18 Multiplier	27 x 27 Multiplier	36 x 36 Multiplier	Adder Mode	with 36 bit Input
	A1	240	720	480	240	_	240	240
	A3	396	1,188	792	396	_	396	396
	A5	600	1,800	1,200	600	_	600	600
Arria V	A7	800	2,400	1,600	800	_	800	800
GX	B1	920	2,760	1,840	920	_	920	920
	В3	1,045	3,135	2,090	1,045	_	1,045	1,045
	B5	1,092	3,276	2,184	1,092	_	1,092	1,092
	B7	1,156	3,468	2,312	1,156	_	1,156	1,156
	C3	396	1,188	792	396	_	396	396
All I a v	C7	800	2,400	1,600	800	_	800	800
	D3	1,045	3,135	2,090	1,045	_	1,045	1,045
	D7	1,156	3,468	2,312	1,156	_	1,156	1,156
	E1	800	2,400	1,600	800	400	800	800
Arria V	E3	1,044	3,132	2,088	1,044	522	1,044	1,044
GZ	E5	1,092	3,276	2,184	1,092	546	1,092	1,092
	E7	1,139	3,417	2,278	1,139	569	1,139	1,139
Arria V	В3	809	2,427	1,618	809	_	809	809
SX	B5	1,090	3,270	2,180	1,090	_	1,090	1,090
Arria V	D3	809	2,427	1,618	809	_	809	809
ST	D5	1,090	3,270	2,180	1,090	_	1,090	1,090

Embedded Memory Blocks

The embedded memory blocks in the devices are flexible and designed to provide an optimal amount of small- and large-sized memory arrays to fit your design requirements.

		M20K		M10K		MLAB		
Variant	Membe r Code	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Total RAM Bit (Kb)
Arria V ST	D3	_	_	1,729	17,290	3223	2,014	19,304
Allia V 31	D5	_	_	2,282	22,820	4253	2,658	25,478

Embedded Memory Configurations

Table 17: Supported Embedded Memory Block Configurations for Arria V Devices

This table lists the maximum configurations supported for the embedded memory blocks. The information is applicable only to the single-port RAM and ROM modes.

Memory Block	Depth (bits)	Programmable Width
MLAB	32	x16, x18, or x20
MLAD	64 ⁽¹¹⁾	x10
	512	x40
	1K	x20
M20K	2K	x10
WIZOK	4K	x5
	8K	x2
	16K	x1
	256	x40 or x32
	512	x20 or x16
M10K	1K	x10 or x8
WHOK	2K	x5 or x4
	4K	x2
	8K	x1

Clock Networks and PLL Clock Sources

650 MHz Arria V devices have 16 global clock networks capable of up to operation. The clock network architecture is based on Altera's global, quadrant, and peripheral clock structure. This clock structure is supported by dedicated clock input pins and fractional PLLs.

Note: To reduce power consumption, the Quartus Prime software identifies all unused sections of the clock network and powers them down.

⁽¹¹⁾ Available for Arria V GZ devices only.

24

External Memory Performance

Table 18: External Memory Interface Performance in Arria V Devices

Interface	Voltage	Hard Controller (MHz)	Soft Controller (MHz)		
interrace	(V)	Arria V GX, GT, SX, and ST	Arria V GX, GT, SX, and ST	Arria V GZ	
DDR3 SDRAM	1.5	533	667	800	
DDR3 3DRAM	1.35	533	600	800	
DDR2 SDRAM	1.8	400	400	400	
LPDDR2 SDRAM	1.2	_	400	_	
RLDRAM 3	1.2	_	_	667	
RLDRAM II	1.8	_	400	533	
KLDKAWI II	1.5	_	400	533	
QDR II+ SRAM	1.8	_	400	500	
QDR II+ SIMM	1.5	_	400	500	
QDR II SRAM	1.8	_	400	333	
QDK II SKAM	1.5	_	400	333	
DDR II+	1.8	_	400	_	
SRAM ⁽¹²⁾	1.5	_	400	_	

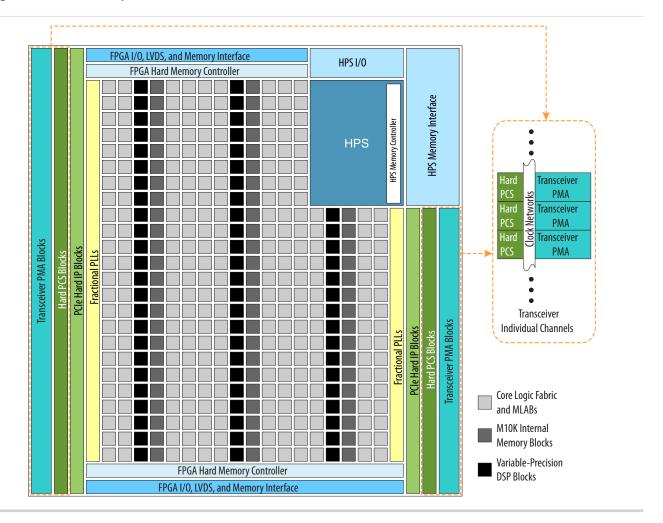
Related Information

External Memory Interface Spec Estimator

For the latest information and to estimate the external memory system performance specification, use Altera's External Memory Interface Spec Estimator tool.

HPS External Memory Performance

Table 19: HPS External Memory Interface Performance


The hard processor system (HPS) is available in Arria V SoC devices only.

Interface	Voltage (V)	HPS Hard Controller (MHz)
DDR3 SDRAM	1.5	533
DDR3 3DRAM	1.35	533
LPDDR2 SDRAM	1.2	333

⁽¹²⁾ Not available as Altera® IP.

Figure 11: Device Chip Overview for Arria V SX and ST Devices

PMA Features

To prevent core and I/O noise from coupling into the transceivers, the PMA block is isolated from the rest of the chip—ensuring optimal signal integrity. For the transceivers, you can use the channel PLL of an unused receiver PMA as an additional transmit PLL.

Table 20: PMA Features of the Transceivers in Arria V Devices

Features	Capability
Backplane support	 Arria V GX, GT, SX, and ST devices—Driving capability at 6.5536 Gbps with up to 25 dB channel loss Arria V GZ devices—Driving capability at 12.5 Gbps with up to 16 dB channel loss
Chip-to-chip support	 Arria V GX, GT, SX, and ST devices—Up to 10.3125 Gbps Arria V GZ devices—Up to 12.5 Gbps

Protocol	Data Rates (Gbps)	Transmitter Data Path Features	Receiver Data Path Features
40GBASE-R Ethernet 100GBASE-R Ethernet	4 x 10.3125 10 x 10.3125	 TX FIFO 64B/66B encoder Scrambler Alignment marker insertion Gearbox Block stripper 	 RX FIFO 64B/66B decoder Descrambler Lane reorder Deskew Alignment marker lock Block synchronization Gear box Destripper
40G and 100G OTN	(4+1) x 11.3 (10+1) x 11.3	 TX FIFO Channel bonding Byte serializer	RX FIFOLane deskewByte deserializer
GbE	1.25	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding GbE state machine 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer Byte ordering GbE state machine
XAUI	3.125 to 4.25	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding XAUI state machine for bonding four channels 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer Byte ordering XAUI state machine for realigning four channels
SRIO	1.25 to 6.25	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding SRIO V2.1-compliant x2 and x4 channel bonding 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer Byte ordering SRIO V2.1-compliant x2 and x4 deskew state machine

System Peripherals and Debug Access Port

Each Ethernet MAC, USB OTG, NAND flash controller, and SD/MMC controller module has an integrated DMA controller. For modules without an integrated DMA controller, an additional DMA controller module provides up to eight channels of high-bandwidth data transfers. Peripherals that communicate off-chip are multiplexed with other peripherals at the HPS pin level. This allows you to choose which peripherals to interface with other devices on your PCB.

The debug access port provides interfaces to industry standard JTAG debug probes and supports ARM CoreSight debug and core traces to facilitate software development.

HPS-FPGA AXI Bridges

The HPS-FPGA bridges, which support the Advanced Microcontroller Bus Architecture (AMBA[®]) Advanced eXtensible Interface (AXITM) specifications, consist of the following bridges:

- FPGA-to-HPS AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the FPGA fabric to issue transactions to slaves in the HPS.
- HPS-to-FPGA AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the HPS to issue transactions to slaves in the FPGA fabric.
- Lightweight HPS-to-FPGA AXI bridge—a lower latency 32 bit width bus that allows the HPS to issue transactions to slaves in the FPGA fabric. This bridge is primarily used for control and status register (CSR) accesses to peripherals in the FPGA fabric.

The HPS-FPGA AXI bridges allow masters in the FPGA fabric to communicate with slaves in the HPS logic, and vice versa. For example, the HPS-to-FPGA AXI bridge allows you to share memories instantiated in the FPGA fabric with one or both microprocessors in the HPS, while the FPGA-to-HPS AXI bridge allows logic in the FPGA fabric to access the memory and peripherals in the HPS.

Each HPS-FPGA bridge also provides asynchronous clock crossing for data transferred between the FPGA fabric and the HPS.

HPS SDRAM Controller Subsystem

The HPS SDRAM controller subsystem contains a multiport SDRAM controller and DDR PHY that are shared between the FPGA fabric (through the FPGA-to-HPS SDRAM interface), the level 2 (L2) cache, and the level 3 (L3) system interconnect. The FPGA-to-HPS SDRAM interface supports AMBA AXI and Avalon[®] Memory-Mapped (Avalon-MM) interface standards, and provides up to six individual ports for access by masters implemented in the FPGA fabric.

To maximize memory performance, the SDRAM controller subsystem supports command and data reordering, deficit round-robin arbitration with aging, and high-priority bypass features. The SDRAM controller subsystem supports DDR2, DDR3, or LPDDR2 devices up to 4 Gb in density operating at up to 533 MHz (1066 Mbps data rate).

FPGA Configuration and Processor Booting

The FPGA fabric and HPS in the SoC are powered independently. You can reduce the clock frequencies or gate the clocks to reduce dynamic power, or shut down the entire FPGA fabric to reduce total system power.

You can configure the FPGA fabric and boot the HPS independently, in any order, providing you with more design flexibility:

- You can boot the HPS independently. After the HPS is running, the HPS can fully or partially reconfigure the FPGA fabric at any time under software control. The HPS can also configure other FPGAs on the board through the FPGA configuration controller.
- You can power up both the HPS and the FPGA fabric together, configure the FPGA fabric first, and then boot the HPS from memory accessible to the FPGA fabric.

Note: Although the FPGA fabric and HPS are on separate power domains, the HPS must remain powered up during operation while the FPGA fabric can be powered up or down as required.

Related Information

- Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines
 Provides detailed information about power supply pin connection guidelines and power regulator sharing.
- Arria V GZ Device Family Pin Connection Guidelines
 Provides detailed information about power supply pin connection guidelines and power regulator sharing.

Hardware and Software Development

For hardware development, you can configure the HPS and connect your soft logic in the FPGA fabric to the HPS interfaces using the Qsys system integration tool in the Quartus Prime software.

For software development, the ARM-based SoC devices inherit the rich software development ecosystem available for the ARM Cortex-A9 MPCore processor. The software development process for Altera SoCs follows the same steps as those for other SoC devices from other manufacturers. Support for Linux, VxWorks®, and other operating systems is available for the SoCs. For more information on the operating systems support availability, contact the Altera sales team.

You can begin device-specific firmware and software development on the Altera SoC Virtual Target. The Virtual Target is a fast PC-based functional simulation of a target development system—a model of a complete development board that runs on a PC. The Virtual Target enables the development of device-specific production software that can run unmodified on actual hardware.

Related Information

Altera Worldwide Sales Support

Dynamic and Partial Reconfiguration

The Arria V devices support dynamic reconfiguration and partial reconfiguration.

Dynamic Reconfiguration

The dynamic reconfiguration feature allows you to dynamically change the transceiver data rates, PMA settings, or protocols of a channel, without affecting data transfer on adjacent channels. This feature is ideal for applications that require on-the-fly multiprotocol or multirate support. You can reconfigure the PMA, PCS, and PCIe hard IP blocks with dynamic reconfiguration.

Document Revision History

Date	Version	Changes
December 2015	2015.12.21	 Updated RoHS and optional suffix information in sample ordering code and available options diagrams for Arria V GX and GT devices. Changed instances of <i>Quartus II</i> to <i>Quartus Prime</i>.
January 2015	2015.01.23	 Updated package dimension for Arria V GZ H780 package from 29 mm to 33 mm. Updated dual-core ARM Cortex-A9 MPCore processor maximum frequency from 800 MHz to 1.05 GHz.
December 2013	2013.12.26	 10-Gbps Ethernet (10GbE) PCS and Interlaken PCS are for Arria V GZ only. Removed "Preliminary" texts from Ordering Code figures, Maximum Resources, Package Plan and I/O Vertical Migration tables. Added link to Altera Product Selector for each device variant. Added leaded package options. Removed the note "The number of PLLs includes general-purpose fractional PLLs and transceiver fractional PLLs." for all PLLs in the Maximum Resource Counts table. Corrected FPGA GPIO for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 F896 package from 170 to 250. Corrected FPGA GPIO for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 F1152 package from 350 to 385. Corrected FPGA GPIO for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 F1517 package from 528 to 540. Corrected LVDS Transmitter for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 devices from 121 to 120. Added links to Altera's External Memory Spec Estimator tool to the topics listing the external memory interface performance. Added x2 for PCIe Gen3, Gen 2, and Gen 1.
August 2013	2013.08.19	 Removed the note about the PCIe hard IP on the right side of the device in the F896 package of the Arria V GX variant. These devices do not have PCIe hard IP on the right side. Added transceiver speed grade 6 to the available options of the Arria V SX variant. Corrected the maximum LVDS transmitter channel counts for the Arria V GX A1 and A3 devices from 68 to 67. Corrected the maximum FPGA GPIO count for Arria V ST D5 devices from 540 to 528.

Date	Version	Changes
June 2013	2013.06.03	Removed statements about contacting Altera for SFF-8431 compliance requirements. Refer to the Transceiver Architecture in Arria V Devices chapter for the requirements.
May 2013	2013.05.06	 Moved all links to the Related Information section of respective topics for easy reference. Added link to the known document issues in the Knowledge Base. Updated the available options, maximum resource counts, and per package information for the Arria V SX and ST device variants. Updated the variable DSP multipliers counts for the Arria V SX and ST device variants. Clarified that partial reconfiguration is an advanced feature. Contact Altera for support of the feature. Added footnote to clarify that MLAB 64 bits depth is available only for Arria V GZ devices. Updated description about power-up sequence requirement for device migration to improve clarity.
January 2013	2013.01.11	 Added the L optional suffix to the Arria V GZ ordering code for the – I3 speed grade. Added a note about the power-up sequence requirement if you plan to migrate your design from the Arria V GX A5 and A7, and Arria V GT C7 devices to other Arria V devices.
November 2012	2012.11.19	 Updated the summary of features. Updated Arria V GZ information regarding 3.3 V I/O support. Removed Arria V GZ engineering sample ordering code. Updated the maximum resource counts for Arria V GX and GZ. Updated Arria V ST ordering codes for transceiver count. Updated transceiver counts for Arria V ST packages. Added simplified floorplan diagrams for Arria V GZ, SX, and ST. Added FPP x32 configuration mode for Arria V GZ only. Updated CvP (PCIe) remote system update support information. Added HPS external memory performance information. Updated template.
October 2012	3.0	 Added Arria V GZ information. Updated Table 1, Table 2, Table 3, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, and Table 21. Added the "Arria V GZ" section. Added Table 8, Table 9 and Table 22.

Date	Version	Changes
July 2012	2.1	 Added –I3 speed grade to Figure 1 for Arria V GX devices. Updated the 6-Gbps transceiver speed from 6.553 Gbps to 6.5536 Gbps in Figure 3 and Figure 1.
June 2012	2.0	 Restructured the document. Added the "Embedded Memory Capacity" and "Embedded Memory Configurations" sections. Added Table 1, Table 3, Table 12, Table 15, and Table 16. Updated Table 2, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 13, Table 14, and Table 19. Updated Figure 1, Figure 2, Figure 3, Figure 4, and Figure 8. Updated the "FPGA Configuration and Processor Booting" and "Hardware and Software Development" sections. Text edits throughout the document.
February 2012	1.3	 Updated Table 1–7 and Table 1–8. Updated Figure 1–9 and Figure 1–10. Minor text edits.
December 2011	1.2	Minor text edits.
November 2011	1.1	 Updated Table 1–1, Table 1–2, Table 1–3, Table 1–4, Table 1–6, Table 1–7, Table 1–9, and Table 1–10. Added "SoC FPGA with HPS" section. Updated "Clock Networks and PLL Clock Sources" and "Ordering Information" sections. Updated Figure 1–5. Added Figure 1–6. Minor text edits.
August 2011	1.0	Initial release.

