

Welcome to **E-XFL.COM**

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM® Cortex®-A9 MPCore™ with CoreSight™
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	800MHz
Primary Attributes	FPGA - 350K Logic Elements
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA, FC (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5asxbb3d4f35i5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature	Description
FPGA General- purpose I/Os (GPIOs)	 1.6 Gbps LVDS receiver and transmitter 800 MHz/1.6 Gbps external memory interface On-chip termination (OCT) 3.3 V support (2)
External Memory Interface	 Memory interfaces with low latency: Hard memory controller-up to 1.066 Gbps Soft memory controller-up to 1.6 Gbps
Low-power high- speed serial interface	 600 Mbps to 12.5 Gbps integrated transceiver speed Less than 105 mW per channel at 6 Gbps, less than 165 mW per channel at 10 Gbps, and less than 170 mW per channel at 12.5 Gbps Transmit pre-emphasis and receiver equalization Dynamic partial reconfiguration of individual channels Physical medium attachment (PMA) with soft PCS that supports 9.8304 Gbps CPRI (Arria V GT and ST only) PMA with hard PCS that supports up to 9.8 Gbps CPRI (Arria V GZ only) Hard PCS that supports 10GBASE-R and 10GBASE-KR (Arria V GZ only)
HPS (Arria V SX and ST devices only)	 Dual-core ARM Cortex-A9 MPCore processor—up to 1.05 GHz maximum frequency with support for symmetric and asymmetric multiprocessing Interface peripherals—10/100/1000 Ethernet media access control (EMAC), USB 2.0 On-The-GO (OTG) controller, quad serial peripheral interface (QSPI) flash controller, NAND flash controller, Secure Digital/MultiMediaCard (SD/MMC) controller, UART, serial peripheral interface (SPI), I2C interface, and up to 85 HPS GPIO interfaces System peripherals—general-purpose timers, watchdog timers, direct memory access (DMA) controller, FPGA configuration manager, and clock and reset managers On-chip RAM and boot ROM HPS-FPGA bridges—include the FPGA-to-HPS, HPS-to-FPGA, and lightweight HPS-to-FPGA bridges that allow the FPGA fabric to issue transactions to slaves in the HPS, and vice versa FPGA-to-HPS SDRAM controller subsystem—provides a configurable interface to the multiport front end (MPFE) of the HPS SDRAM controller ARM CoreSight™ JTAG debug access port, trace port, and on-chip trace storage

 $^{^{(2)}~{\}rm Arria~V~GZ}$ devices support 3.3 V with a 3.0 V ${\rm V}_{\rm CCIO}.$

Feature	Description
Configuration	 Tamper protection-comprehensive design protection to protect your valuable IP investments Enhanced advanced encryption standard (AES) design security features CvP Partial and dynamic reconfiguration of the FPGA Active serial (AS) x1 and x4, passive serial (PS), JTAG, and fast passive parallel (FPP) x8, x16, and x32 (Arria V GZ) configuration options Remote system upgrade

Arria V Device Variants and Packages

Table 3: Device Variants for the Arria V Device Family

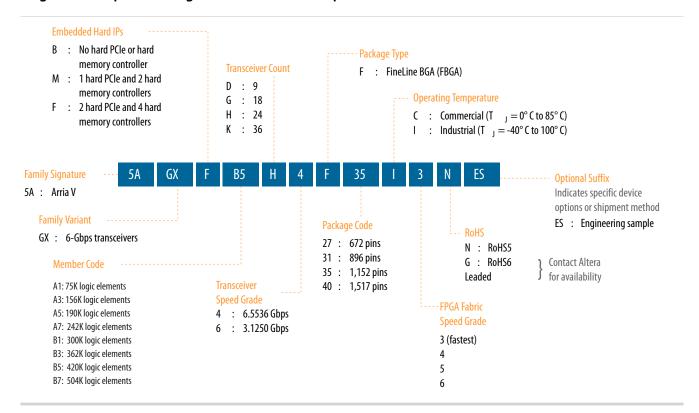
Variant	Description
Arria V GX	FPGA with integrated 6.5536 Gbps transceivers that provides bandwidth, cost, and power levels that are optimized for high-volume data and signal-processing applications
Arria V GT	FPGA with integrated 10.3125 Gbps transceivers that provides enhanced high-speed serial I/O bandwidth for cost-sensitive data and signal processing applications
Arria V GZ	FPGA with integrated 12.5 Gbps transceivers that provides enhanced high-speed serial I/O bandwidth for high-performance and cost-sensitive data and signal processing applications
Arria V SX	SoC with integrated ARM-based HPS and 6.5536 Gbps transceivers
Arria V ST	SoC with integrated ARM-based HPS and 10.3125 Gbps transceivers

Arria V GX

This section provides the available options, maximum resource counts, and package plan for the Arria V GX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.

Related Information


Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 1: Sample Ordering Code and Available Options for Arria V GX Devices

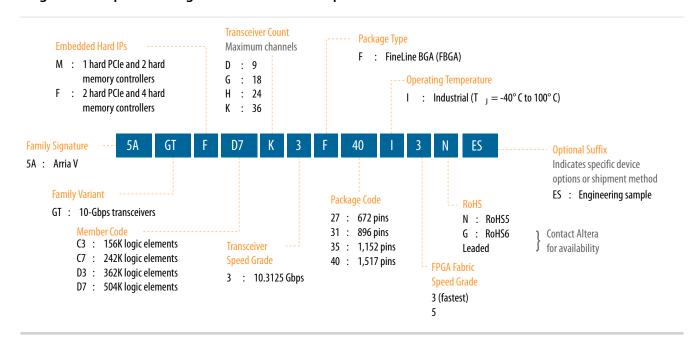
Maximum Resources

Table 4: Maximum Resource Counts for Arria V GX Devices

Resource		Member Code								
neso	urce	A1	А3	A 5	A7	B1	В3	B5	В7	
Logic I (LE) (F	Elements ()	75	156	190	242	300	362	420	504	
ALM		28,302	58,900	71,698	91,680	113,208	136,880	158,491	190,240	
Registe	er	113,208	235,600	286,792	366,720	452,832	547,520	633,964	760,960	
Mem	M10K	8,000	10,510	11,800	13,660	15,100	17,260	20,540	24,140	
ory (Kb)	MLAB	463	961	1,173	1,448	1,852	2,098	2,532	2,906	
Variab precisi Block	le- on DSP	240	396	600	800	920	1,045	1,092	1,156	
18 x 18 Multip		480	792	1,200	1,600	1,840	2,090	2,184	2,312	
PLL		10	10	12	12	12	12	16	16	

Available Options

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


Related Information

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 2: Sample Ordering Code and Available Options for Arria V GT Devices

Maximum Resources

Table 6: Maximum Resource Counts for Arria V GT Devices

Resource		Member Code					
nes	ouice	C 3	C 7	D3	D7		
Logic Eleme	nts (LE) (K)	156	242	362	504		
ALM	ALM		91,680	136,880	190,240		
Register	Register		366,720	547,520	760,960		
Memory	M10K	10,510	13,660	17,260	24,140		
(Kb)	MLAB	961	1,448	2,098	2,906		
Variable-pre	Variable-precision DSP Block		800	1,045	1,156		
18 x 18 Mult	18 x 18 Multiplier		1,600	2,090	2,312		
PLL		10	12	12	16		

Resource		Member Code					
Neso	Resource		C 7	D3	D7		
Transceiver	6 Gbps ⁽⁴⁾	3 (9)	6 (24)	6 (24)	6 (36)		
Transcerver	10 Gbps ⁽⁵⁾	4	12	12	20		
GPIO ⁽⁶⁾	GPIO ⁽⁶⁾		544	704	704		
LVDS	Transmitter	68	120	160	160		
LVD3	Receiver	80	136	176	176		
PCIe Hard IP Block		1	2	2	2		
Hard Memor	y Controller	2	4	4	4		

• High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

• Transceiver Architecture in Arria V Devices

Describes 10 Gbps channels usage conditions and SFF-8431 compliance requirements.

Package Plan

Table 7: Package Plan for Arria V GT Devices

Memb		F672 (27 mm)		F896 (31 mm)		F1152 (35 mm)		F1517 (40 mm)				
er Code		ХС	VR		ХС	VR		ХС	VR		2	KCVR
	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10-Gbps
C3	336	3 (9)	4	416	3 (9)	4	_	_	_	_	_	_
C7	_	_	_	384	6 (18)	8	544	6 (24)	12	_	_	_
D3	_	_	_	384	6 (18)	8	544	6 (24)	12	704	6 (24)	12
D7	_	_	_	_	_	_	544	6 (24)	12	704	6 (36)	20

The 6-Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10-Gbps channels as three 6-Gbps channels—the total number of 6-Gbps channels are shown in brackets. For example, you can also configure the Arria V GT D7 device in the F1517 package with nine 6-Gbps

⁽⁴⁾ The 6 Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10 Gbps channels as three 6 Gbps channels-the total number of 6 Gbps channels are shown in brackets.

⁽⁵⁾ Chip-to-chip connections only. For 10 Gbps channel usage conditions, refer to the Transceiver Architecture in Arria V Devices chapter.

⁽⁶⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

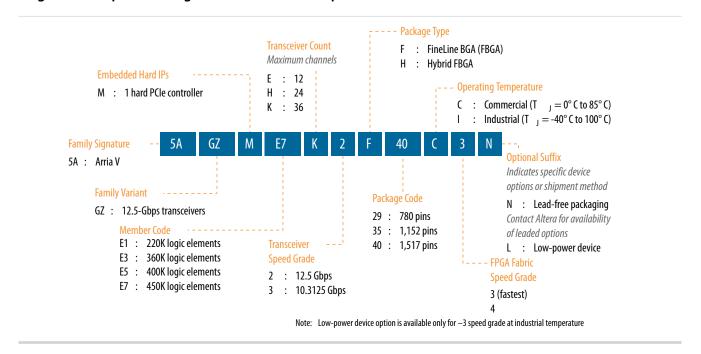
AV-51001 2015.12.21

and eighteen 10-Gbps, twelve 6-Gbps and sixteen 10-Gbps, fifteen 6-Gbps and fourteen 10-Gbps, or up to thirty-six 6-Gbps with no 10-Gbps channels.

Arria V GZ

This section provides the available options, maximum resource counts, and package plan for the Arria V GZ devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


Related Information

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 3: Sample Ordering Code and Available Options for Arria V GZ Devices

Maximum Resources

Table 8: Maximum Resource Counts for Arria V GZ Devices

Resource	Member Code					
nesource	E1	E 3	E 5	E 7		
Logic Elements (LE) (K)	220	360	400	450		
ALM	83,020	135,840	150,960	169,800		
Register	332,080	543,360	603,840	679,200		

Resource -		Member Code					
nesc	Resource		E 3	E 5	E 7		
Memory	M20K	11,700	19,140	28,800	34,000		
(Kb)	MLAB	2,594	4,245	4,718	5,306		
Variable-pred	Variable-precision DSP Block		1,044	1,092	1,139		
18 x 18 Multi	18 x 18 Multiplier		2,088	2,184	2,278		
PLL	PLL		20	24	24		
12.5 Gbps Tr	ansceiver	24	24	36	36		
GPIO ⁽⁷⁾		414	414	674	674		
LVDS	Transmitter	99	99	166	166		
LVDS	Receiver	108	108	168	168		
PCIe Hard IF	Block	1	1	1	1		

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 9: Package Plan for Arria V GZ Devices

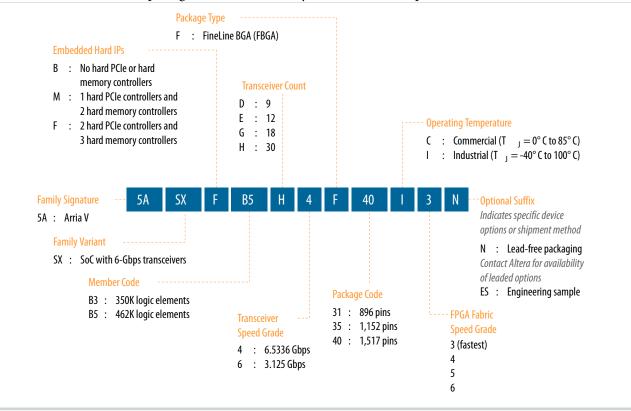
Member Code	H780 (33 mm)			152 mm)	F1517 (40 mm)		
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	
E1	342	12	414	24	_	_	
E3	342	12	414	24	_	_	
E5	_	_	534	24	674	36	
E7	_	_	534	24	674	36	

Arria V SX

This section provides the available options, maximum resource counts, and package plan for the Arria V SX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.

⁽⁷⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.


Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 4: Sample Ordering Code and Available Options for Arria V SX Devices

The -3 FPGA fabric speed grade is available only for industrial temperature devices.

Maximum Resources

Table 10: Maximum Resource Counts for Arria V SX Devices

Poso	urce	Member Code			
neso	ruice	В3	B5		
Logic Elements (LE)	(K)	350	462		
ALM		132,075	174,340		
Register	Register		697,360		
Memory (Kb)	M10K	17,290	22,820		
Memory (Ro)	MLAB	2,014	2,658		
Variable-precision DSP Block		809	1,090		
18 x 18 Multiplier		1,618	2,180		

Pose	ource	Member Code			
neso	ruice	В3	B5		
FPGA PLL		14	14		
HPS PLL		3	3		
6 Gbps Transceiver		30	30		
FPGA GPIO ⁽⁸⁾		540	540		
HPS I/O	HPS I/O		208		
LVDS	Transmitter	120	120		
LVDS	Receiver	136	136		
PCIe Hard IP Block		2	2		
FPGA Hard Memory	Controller	3	3		
HPS Hard Memory C	Controller	1	1		
ARM Cortex-A9 MP	Core Processor	Dual-core	Dual-core		

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 11: Package Plan for Arria V SX Devices

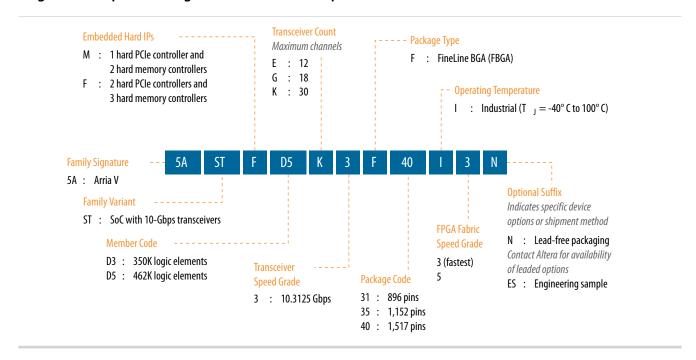
The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

	F896			F1152			F1517		
Member Code	(31 mm)		(35 mm)			(40 mm)			
Code	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR
В3	250	208	12	385	208	18	540	208	30
B5	250	208	12	385	208	18	540	208	30

Arria V ST

This section provides the available options, maximum resource counts, and package plan for the Arria V ST devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


⁽⁸⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 5: Sample Ordering Code and Available Options for Arria V ST Devices

Maximum Resources

Table 12: Maximum Resource Counts for Arria V ST Devices

Reso	LINEO	Member Code			
Reso	ource	D3	D5		
Logic Elements (LE)	(K)	350	462		
ALM		132,075	174,340		
Register		528,300	697,360		
Memory (Kb)	M10K	17,290	22,820		
Memory (Rb)	MLAB	2,014	2,658		
Variable-precision D	Variable-precision DSP Block		1,090		
18 x 18 Multiplier		1,618	2,180		
FPGA PLL		14	14		
HPS PLL		3	3		
Transceiver	6-Gbps	30	30		
Transcerver	10-Gbps ⁽⁹⁾	16	16		

Variable-Precision DSP Block

Arria V devices feature a variable-precision DSP block that supports these features:

- Configurable to support signal processing precisions ranging from 9 x 9, 18 x 18, 27 x 27, and 36 x 36 bits natively
- A 64-bit accumulator
- Double accumulator
- A hard preadder that is available in both 18- and 27-bit modes
- Cascaded output adders for efficient systolic finite impulse response (FIR) filters
- Dynamic coefficients
- 18-bit internal coefficient register banks
- Enhanced independent multiplier operation
- Efficient support for single-precision floating point arithmetic
- The inferability of all modes by the Quartus Prime design software

Table 14: Variable-Precision DSP Block Configurations for Arria V Devices

Usage Example	Multiplier Size (Bit)	DSP Block Resource
Low precision fixed point for video applications	Three 9 x 9	1
Medium precision fixed point in FIR filters	Two 18 x 18	1
FIR filters	Two 18 x 18 with accumulate	1
Single-precision floating- point implementations	One 27 x 27	1
Very high precision fixed point implementations	One 36 x 36	2

You can configure each DSP block during compilation as independent three 9 x 9, two 18 x 18, or one 27×27 multipliers. Using two DSP block resources, you can also configure a 36×36 multiplier for high-precision applications. With a dedicated 64 bit cascade bus, you can cascade multiple variable-precision DSP blocks to implement even higher precision DSP functions efficiently.

Table 15: Number of Multipliers in Arria V Devices

The table lists the variable-precision DSP resources by bit precision for each Arria V device.

Mem Variant ber		Variable- precision	Independent Input and Output Multiplications Operator				18 x 18 Multiplier	18 x 18 Multiplier Adder Summed
Variant	Code	DSP Block	9 x 9 Multiplier	18 x 18 Multiplier	27 x 27 Multiplier	36 x 36 Multiplier	Adder Mode	with 36 bit Input
	A1	240	720	480	240	_	240	240
	A3	396	1,188	792	396	_	396	396
	A5	600	1,800	1,200	600	_	600	600
Arria V	A7	800	2,400	1,600	800	_	800	800
GX	B1	920	2,760	1,840	920	_	920	920
	В3	1,045	3,135	2,090	1,045	_	1,045	1,045
	B5	1,092	3,276	2,184	1,092	_	1,092	1,092
	B7	1,156	3,468	2,312	1,156	_	1,156	1,156
	C3	396	1,188	792	396	_	396	396
Arria V	C7	800	2,400	1,600	800	_	800	800
GT	D3	1,045	3,135	2,090	1,045	_	1,045	1,045
	D7	1,156	3,468	2,312	1,156	_	1,156	1,156
	E1	800	2,400	1,600	800	400	800	800
Arria V	Е3	1,044	3,132	2,088	1,044	522	1,044	1,044
GZ	E5	1,092	3,276	2,184	1,092	546	1,092	1,092
	E7	1,139	3,417	2,278	1,139	569	1,139	1,139
Arria V	В3	809	2,427	1,618	809	_	809	809
SX	B5	1,090	3,270	2,180	1,090	_	1,090	1,090
Arria V	D3	809	2,427	1,618	809	_	809	809
ST	D5	1,090	3,270	2,180	1,090	_	1,090	1,090

Embedded Memory Blocks

The embedded memory blocks in the devices are flexible and designed to provide an optimal amount of small- and large-sized memory arrays to fit your design requirements.

Types of Embedded Memory

The Arria V devices contain two types of memory blocks:

- 20 Kb M20K or 10 Kb M10K blocks—blocks of dedicated memory resources. The M20K and M10K blocks are ideal for larger memory arrays while still providing a large number of independent ports.
- 640 bit memory logic array blocks (MLABs)—enhanced memory blocks that are configured from dual-purpose logic array blocks (LABs). The MLABs are ideal for wide and shallow memory arrays. The MLABs are optimized for implementation of shift registers for digital signal processing (DSP) applications, wide shallow FIFO buffers, and filter delay lines. Each MLAB is made up of ten adaptive logic modules (ALMs). In the Arria V devices, you can configure these ALMs as ten 32 x 2 blocks, giving you one 32 x 20 simple dual-port SRAM block per MLAB. You can also configure these ALMs, in Arria V GZ devices, as ten 64 x 1 blocks, giving you one 64 x 10 simple dual-port SRAM block per MLAB.

Embedded Memory Capacity in Arria V Devices

Table 16: Embedded Memory Capacity and Distribution in Arria V Devices

		M20K		M1	M10K		.AB	
Variant	Membe r Code	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Total RAM Bit (Kb)
	A1	_	_	800	8,000	741	463	8,463
	A3	_	_	1,051	10,510	1538	961	11,471
	A5	_	_	1,180	11,800	1877	1,173	12,973
Arria V GX	A7	_	_	1,366	13,660	2317	1,448	15,108
Allia V GA	B1	_	_	1,510	15,100	2964	1,852	16,952
	В3	_	_	1,726	17,260	3357	2,098	19,358
	B5	_	_	2,054	20,540	4052	2,532	23,072
	В7	_	_	2,414	24,140	4650	2,906	27,046
	C3	_	_	1,051	10,510	1538	961	11,471
Arria V GT	C7	_	_	1,366	13,660	2317	1,448	15,108
Allia V GI	D3	_	_	1,726	17,260	3357	2,098	19,358
	D7	_	_	2,414	24,140	4650	2,906	27,046
	E1	585	11,700	_	_	4,151	2,594	14,294
Arria V GZ	E3	957	19,140	_	_	6,792	4,245	23,385
Allia V GZ	E5	1,440	28,800	_	_	7,548	4,718	33,518
	E7	1,700	34,000	_	_	8,490	5,306	39,306
Arria V SX	В3	_	_	1,729	17,290	3223	2,014	19,304
Allia v SA	B5	_	_	2,282	22,820	4253	2,658	25,478

PLL Features

The PLLs in the Arria V devices support the following features:

- Frequency synthesis
- On-chip clock deskew
- Jitter attenuation
- Counter reconfiguration
- Programmable output clock duty cycles
- PLL cascading
- Reference clock switchover
- Programmable bandwidth
- Dynamic phase shift
- · Zero delay buffers

Fractional PLL

In addition to integer PLLs, the Arria V devices use a fractional PLL architecture. The devices have up to 16 PLLs, each with 18 output counters. One fractional PLL can use up to 18 output counters and two adjacent fractional PLLs share the 18 output counters. You can use the output counters to reduce PLL usage in two ways:

- Reduce the number of oscillators that are required on your board by using fractional PLLs
- Reduce the number of clock pins that are used in the device by synthesizing multiple clock frequencies from a single reference clock source

If you use the fractional PLL mode, you can use the PLLs for precision fractional-N frequency synthesis—removing the need for off-chip reference clock sources in your design.

The transceiver fractional PLLs that are not used by the transceiver I/Os can be used as general purpose fractional PLLs by the FPGA fabric.

FPGA General Purpose I/O

Arria V devices offer highly configurable GPIOs. The following list describes the features of the GPIOs:

- Programmable bus hold and weak pull-up
- $\bullet~$ LVDS output buffer with programmable differential output voltage (V $_{\rm OD}$) and programmable preemphasis
- On-chip parallel termination (R_T OCT) for all I/O banks with OCT calibration to limit the termination impedance variation
- On-chip dynamic termination that has the ability to swap between series and parallel termination, depending on whether there is read or write on a common bus for signal integrity
- Unused voltage reference (VREF) pins that can be configured as user I/Os (Arria V GX, GT, SX, and ST only)
- Easy timing closure support using the hard read FIFO in the input register path, and delay-locked loop (DLL) delay chain with fine and coarse architecture

24

External Memory Performance

Table 18: External Memory Interface Performance in Arria V Devices

Interface	Voltage	Hard Controller (MHz)	Soft Controller (MHz)			
interrace	(V)	Arria V GX, GT, SX, and ST	Arria V GX, GT, SX, and ST	Arria V GZ		
DDR3 SDRAM	1.5	533	667	800		
DDR3 3DRAM	1.35	533	600	800		
DDR2 SDRAM	1.8	400	400	400		
LPDDR2 SDRAM	1.2	_	400	_		
RLDRAM 3	1.2	_	_	667		
RLDRAM II	1.8	_	400	533		
KLDIMINI II	1.5	_	400	533		
QDR II+ SRAM	1.8	_	400	500		
QDR II+ SIMM	1.5	_	400	500		
QDR II SRAM	1.8	_	400	333		
QDK II SKAM	1.5	_	400	333		
DDR II+	1.8	_	400	_		
SRAM ⁽¹²⁾	1.5	_	400	_		

Related Information

External Memory Interface Spec Estimator

For the latest information and to estimate the external memory system performance specification, use Altera's External Memory Interface Spec Estimator tool.

HPS External Memory Performance

Table 19: HPS External Memory Interface Performance

The hard processor system (HPS) is available in Arria V SoC devices only.

Interface	Voltage (V)	HPS Hard Controller (MHz)
DDR3 SDRAM	1.5	533
DDR3 3DRAM	1.35	533
LPDDR2 SDRAM	1.2	333

⁽¹²⁾ Not available as Altera® IP.

Figure 10: Device Chip Overview for Arria V GZ Devices

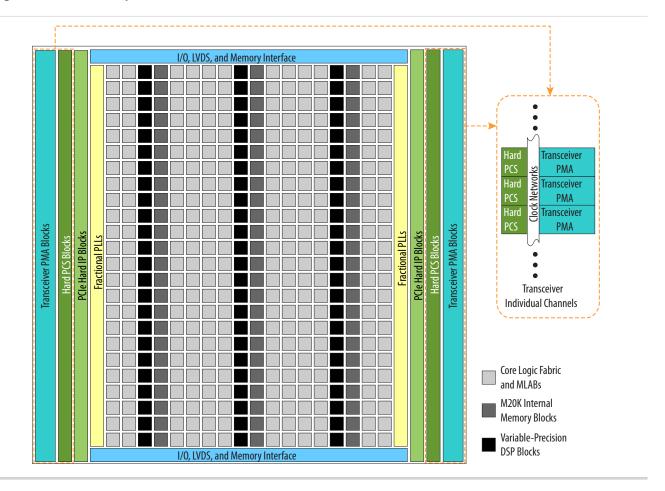
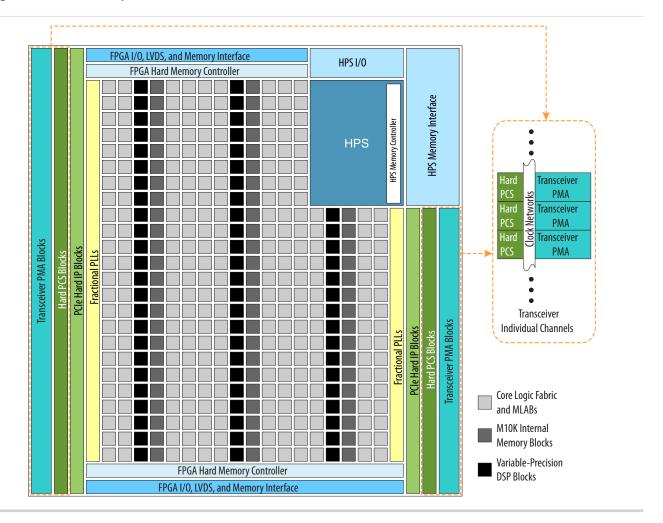



Figure 11: Device Chip Overview for Arria V SX and ST Devices

PMA Features

To prevent core and I/O noise from coupling into the transceivers, the PMA block is isolated from the rest of the chip—ensuring optimal signal integrity. For the transceivers, you can use the channel PLL of an unused receiver PMA as an additional transmit PLL.

Table 20: PMA Features of the Transceivers in Arria V Devices

Features	Capability
Backplane support	 Arria V GX, GT, SX, and ST devices—Driving capability at 6.5536 Gbps with up to 25 dB channel loss Arria V GZ devices—Driving capability at 12.5 Gbps with up to 16 dB channel loss
Chip-to-chip support	 Arria V GX, GT, SX, and ST devices—Up to 10.3125 Gbps Arria V GZ devices—Up to 12.5 Gbps

You can configure the FPGA fabric and boot the HPS independently, in any order, providing you with more design flexibility:

- You can boot the HPS independently. After the HPS is running, the HPS can fully or partially reconfigure the FPGA fabric at any time under software control. The HPS can also configure other FPGAs on the board through the FPGA configuration controller.
- You can power up both the HPS and the FPGA fabric together, configure the FPGA fabric first, and then boot the HPS from memory accessible to the FPGA fabric.

Note: Although the FPGA fabric and HPS are on separate power domains, the HPS must remain powered up during operation while the FPGA fabric can be powered up or down as required.

Related Information

- Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines
 Provides detailed information about power supply pin connection guidelines and power regulator sharing.
- Arria V GZ Device Family Pin Connection Guidelines
 Provides detailed information about power supply pin connection guidelines and power regulator sharing.

Hardware and Software Development

For hardware development, you can configure the HPS and connect your soft logic in the FPGA fabric to the HPS interfaces using the Qsys system integration tool in the Quartus Prime software.

For software development, the ARM-based SoC devices inherit the rich software development ecosystem available for the ARM Cortex-A9 MPCore processor. The software development process for Altera SoCs follows the same steps as those for other SoC devices from other manufacturers. Support for Linux, VxWorks®, and other operating systems is available for the SoCs. For more information on the operating systems support availability, contact the Altera sales team.

You can begin device-specific firmware and software development on the Altera SoC Virtual Target. The Virtual Target is a fast PC-based functional simulation of a target development system—a model of a complete development board that runs on a PC. The Virtual Target enables the development of device-specific production software that can run unmodified on actual hardware.

Related Information

Altera Worldwide Sales Support

Dynamic and Partial Reconfiguration

The Arria V devices support dynamic reconfiguration and partial reconfiguration.

Dynamic Reconfiguration

The dynamic reconfiguration feature allows you to dynamically change the transceiver data rates, PMA settings, or protocols of a channel, without affecting data transfer on adjacent channels. This feature is ideal for applications that require on-the-fly multiprotocol or multirate support. You can reconfigure the PMA, PCS, and PCIe hard IP blocks with dynamic reconfiguration.

Partial Reconfiguration

Note: Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

Partial reconfiguration allows you to reconfigure part of the device while other sections of the device remain operational. This capability is important in systems with critical uptime requirements because it allows you to make updates or adjust functionality without disrupting services.

Apart from lowering cost and power consumption, partial reconfiguration increases the effective logic density of the device because placing device functions that do not operate simultaneously is not necessary. Instead, you can store these functions in external memory and load them whenever the functions are required. This capability reduces the size of the device because it allows multiple applications on a single device—saving the board space and reducing the power consumption.

Altera simplifies the time-intensive task of partial reconfiguration by building this capability on top of the proven incremental compile and design flow in the Quartus Prime design software. With the Altera solution, you do not need to know all the intricate device architecture details to perform a partial reconfiguration.

Partial reconfiguration is supported through the FPP x16 configuration interface. You can seamlessly use partial reconfiguration in tandem with dynamic reconfiguration to enable simultaneous partial reconfiguration of both the device core and transceivers.

Enhanced Configuration and Configuration via Protocol

Table 23: Configuration Modes and Features of Arria V Devices

Arria V devices support 1.8 V, 2.5 V, 3.0 V, and 3.3 V⁽¹⁹⁾ programming voltages and several configuration modes.

Mode	Data Width	Max Clock Rate (MHz)	Max Datal Rate (Mbps)	Decompression		Partial econfiguratio (20)	Remote System Update
AS through the EPCS and EPCQ serial configuration device	1 bit, 4 bits	100	_	Yes	Yes	_	Yes
PS through CPLD or external microcontroller	1 bit	125	125	Yes	Yes	_	_

⁽¹⁹⁾ Arria V GZ does not support 3.3 V.

⁽²⁰⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

Mode	Data Width	Max Clock Rate (MHz)	Max Data I Rate (Mbps)	Decompression	Design Security F	Partial econfiguratio (20)	Remote System Update
	8 bits	125	_	Yes	Yes	_	
FPP	16 bits	125	_	Yes	Yes	Yes ⁽²¹⁾	Parallel flash loader
	32 bits ⁽²²⁾	100	_	Yes	Yes	_	
CvP (PCIe)	x1, x2, x4, and x8 lanes	_	_	Yes	Yes	Yes	_
JTAG	1 bit	33	33	_	_	_	_
Configuration	16 bits	125	_	Yes	Yes	Yes (21)	Parallel flash loader
via HPS	32 bits	100	_	Yes	Yes	_	

Instead of using an external flash or ROM, you can configure the Arria V devices through PCIe using CvP. The CvP mode offers the fastest configuration rate and flexibility with the easy-to-use PCIe hard IP block interface. The Arria V CvP implementation conforms to the PCIe 100 ms power-up-to-active time requirement.

Note: Although Arria V GZ devices support PCIe Gen3, you can use only PCIe Gen1 and PCIe Gen2 for CvP configuration scheme.

Related Information

Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide Provides more information about CvP.

Power Management

Leveraging the FPGA architectural features, process technology advancements, and transceivers that are designed for power efficiency, the Arria V devices consume less power than previous generation Arria V FPGAs:

- Total device core power consumption—less by up to 50%.
- Transceiver channel power consumption—less by up to 50%.

Additionally, Arria V devices contain several hard IP blocks, including PCIe Gen1, Gen2, and Gen3, GbE, SRIO, GPON, and CPRI protocols, that reduce logic resources and deliver substantial power savings of up to 25% less power than equivalent soft implementations.

⁽²⁰⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

⁽²¹⁾ Supported at a maximum clock rate of 62.5 MHz.

⁽²²⁾ Arria V GZ only