Intel - 5ASXBB3D6F31C6N Datasheet

Welcome to E-XFL.COM

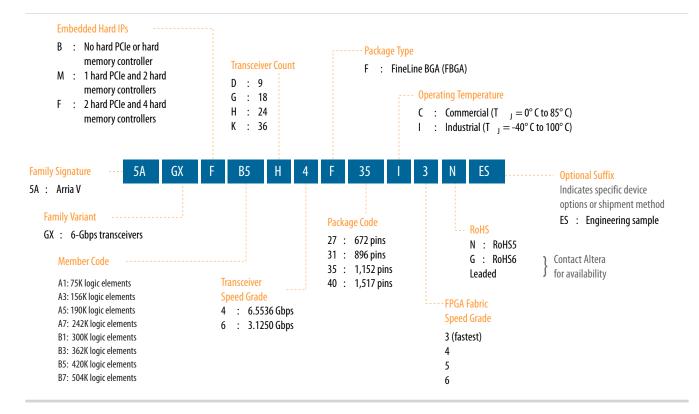
Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details


2014110	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM® Cortex®-A9 MPCore [™] with CoreSight [™]
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	700MHz
Primary Attributes	FPGA - 350K Logic Elements
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA, FC (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5asxbb3d6f31c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Available Options

Figure 1: Sample Ordering Code and Available Options for Arria V GX Devices

Maximum Resources

Table 4: Maximum Resource Counts for Arria V GX Devices

Poro	Resource		Member Code								
heso	urce	A1	A3	A5	A7	B1	B3	B5	B7		
U	Logic Elements (LE) (K)		156	190	242	300	362	420	504		
ALM	ALM		58,900	71,698	91,680	113,208	136,880	158,491	190,240		
Registe	er	113,208	235,600	286,792	366,720	452,832	547,520	633,964	760,960		
Mem	M10K	8,000	10,510	11,800	13,660	15,100	17,260	20,540	24,140		
ory (Kb)	MLAB	463	961	1,173	1,448	1,852	2,098	2,532	2,906		
Variab precisi Block	on DSP	240	396	600	800	920	1,045	1,092	1,156		
18 x 18 Multip		480	792	1,200	1,600	1,840	2,090	2,184	2,312		
PLL		10	10	12	12	12	12	16	16		

Arria V Device Overview

Resource		Member Code							
nesc	uice	A1	А3	A5	A7	B1	B3	B5	B7
6 Gbps Transc		9	9	24	24	24	24	36	36
GPIO ⁽	3)	416	416	544	544	704	704	704	704
LVD S	Transmi tter	67	67	120	120	160	160	160	160
3	Receiver	80	80	136	136	176	176	176	176
PCIe H Block	Hard IP	1	1	2	2	2	2	2	2
Hard I Contro	Memory oller	2	2	4	4	4	4	4	4

Related Information

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 5: Package Plan for Arria V GX Devices

Member Code		72 mm)		96 mm)	F1152 (35 mm)		F1517 (40 mm)	
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR
A1	336	9	416	9				_
A3	336	9	416	9	—	—	_	
A5	336	9	384	18	544	24		
A7	336	9	384	18	544	24	—	
B1	_	_	384	18	544	24	704	24
B3	—	—	384	18	544	24	704	24
B5	_	—	_	_	544	24	704	36
B7	—	—	_	—	544	24	704	36

Arria V GT

This section provides the available options, maximum resource counts, and package plan for the Arria V GT devices.

Arria V Device Overview

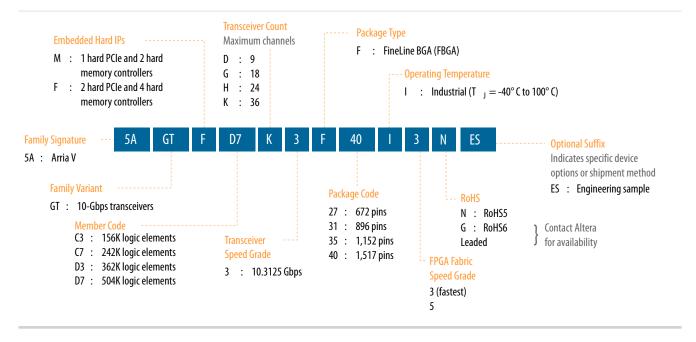
Altera Corporation

⁽³⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus[®] Prime software, the number of user I/Os includes transceiver I/Os.

Available Options

8

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


Related Information

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 2: Sample Ordering Code and Available Options for Arria V GT Devices

Maximum Resources

Table 6: Maximum Resource Counts for Arria V GT Devices

Por	ource	Member Code					
nesi	buice	C3	С7	D3	D7		
Logic Elemen	nts (LE) (K)	156	242	362	504		
ALM		58,900	91,680	136,880	190,240		
Register	Register		366,720	547,520	760,960		
Memory	M10K	10,510	13,660	17,260	24,140		
(Kb)	MLAB	961	1,448	2,098	2,906		
Variable-pre	Variable-precision DSP Block		800	1,045	1,156		
18 x 18 Mult	18 x 18 Multiplier		1,600	2,090	2,312		
PLL		10	12	12	16		

Arria V Device Overview

Beco	Resource		Member Code						
Neso		C3	С7	D3	D7				
Transceiver	6 Gbps ⁽⁴⁾	3 (9)	6 (24)	6 (24)	6 (36)				
Tanscerver	10 Gbps ⁽⁵⁾	4	12	12	20				
GPIO ⁽⁶⁾	GPIO ⁽⁶⁾		544	704	704				
LVDS	Transmitter	68	120	160	160				
LVD3	Receiver	80	136	176	176				
PCIe Hard IP	PCIe Hard IP Block		2	2	2				
Hard Memor	y Controller	2	4	4	4				

Related Information

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

• **Transceiver Architecture in Arria V Devices** Describes 10 Gbps channels usage conditions and SFF-8431 compliance requirements.

Package Plan

Memb		F672 (27 mm)		F896 (31 mm)		F1152 (35 mm)		F1517 (40 mm)				
er Code		ХС	VR		ХС	VR		ХС	VR)	KCVR
	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10-Gbps
C3	336	3 (9)	4	416	3 (9)	4	_	_	_	—	_	_
C7	_	_	_	384	6 (18)	8	544	6 (24)	12	—	_	—
D3	_	_	_	384	6 (18)	8	544	6 (24)	12	704	6 (24)	12
D7							544	6 (24)	12	704	6 (36)	20

Table 7: Package Plan for Arria V GT Devices

The 6-Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10-Gbps channels as three 6-Gbps channels—the total number of 6-Gbps channels are shown in brackets. For example, you can also configure the Arria V GT D7 device in the F1517 package with nine 6-Gbps

⁽⁴⁾ The 6 Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10 Gbps channels as three 6 Gbps channels-the total number of 6 Gbps channels are shown in brackets.

⁽⁵⁾ Chip-to-chip connections only. For 10 Gbps channel usage conditions, refer to the Transceiver Architecture in Arria V Devices chapter.

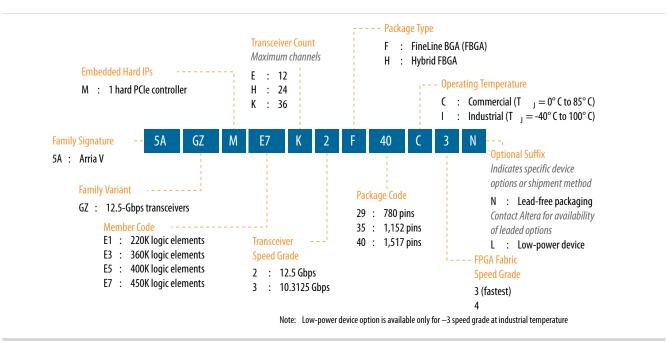
⁽⁶⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

10 Arria V GZ

and eighteen 10-Gbps, twelve 6-Gbps and sixteen 10-Gbps, fifteen 6-Gbps and fourteen 10-Gbps, or up to thirty-six 6-Gbps with no 10-Gbps channels.

Arria V GZ

This section provides the available options, maximum resource counts, and package plan for the Arria V GZ devices.


The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.

Related Information

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 3: Sample Ordering Code and Available Options for Arria V GZ Devices

Maximum Resources

Table 8: Maximum Resource Counts for Arria V GZ Devices

Resource	Member Code						
nesource	E1	E3	E5	E7			
Logic Elements (LE) (K)	220	360	400	450			
ALM	83,020	135,840	150,960	169,800			
Register	332,080	543,360	603,840	679,200			

Arria V Device Overview

Porc	Resource		Member Code						
nesc		E1	E3	E5	E7				
Memory	M20K	11,700	19,140	28,800	34,000				
(Kb)	MLAB	2,594	4,245	4,718	5,306				
Variable-prec	cision DSP Block	800	1,044	1,092	1,139				
18 x 18 Multi	18 x 18 Multiplier		2,088	2,184	2,278				
PLL		20	20	24	24				
12.5 Gbps Tr	ansceiver	24	24	36	36				
GPIO ⁽⁷⁾		414	414	674	674				
LVDS	Transmitter		99	166	166				
	Receiver	108	108	168	168				
PCIe Hard IF	9 Block	1	1	1	1				

Related Information

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 9: Package Plan for Arria V GZ Devices

Member Code	H780 (33 mm)			152 mm)	F1517 (40 mm)		
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	
E1	342	12	414	24	—	_	
E3	342	12	414	24	—	—	
E5			534	24	674	36	
E7			534	24	674	36	

Arria V SX

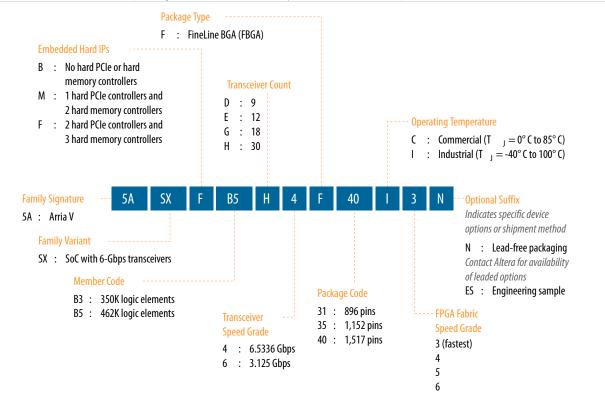
This section provides the available options, maximum resource counts, and package plan for the Arria V SX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.

⁽⁷⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

12 Available Options

Related Information


Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 4: Sample Ordering Code and Available Options for Arria V SX Devices

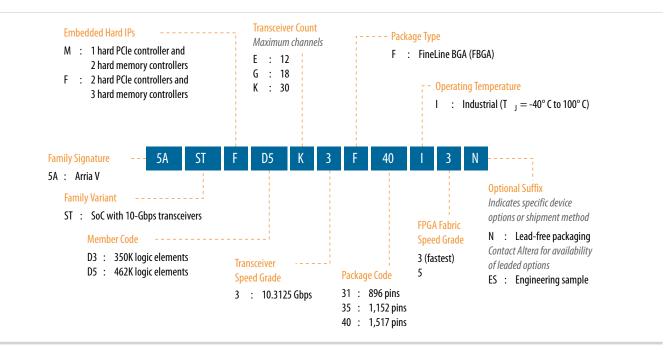
The –3 FPGA fabric speed grade is available only for industrial temperature devices.

Maximum Resources

Table 10: Maximum Resource Counts for Arria V SX Devices

Poss	ource	Member Code			
nesc		B3	B5		
Logic Elements (LE)	(K)	350	462		
ALM		132,075	174,340		
Register	Register		697,360		
Momory (Kb)	M10K	17,290	22,820		
Memory (Kb)	MLAB	2,014	2,658		
Variable-precision D	Variable-precision DSP Block		1,090		
18 x 18 Multiplier		1,618	2,180		

Arria V Device Overview


Related Information

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 5: Sample Ordering Code and Available Options for Arria V ST Devices

Maximum Resources

Table 12: Maximum Resource Counts for Arria V ST Devices

Doce		Member Code			
Resc	ource	D3	D5		
Logic Elements (LE)	(K)	350	462		
ALM		132,075	174,340		
Register		528,300	697,360		
Memory (Kb)	M10K	17,290	22,820		
Wellioly (KD)	MLAB	2,014	2,658		
Variable-precision D	SP Block	809	1,090		
18 x 18 Multiplier		1,618	2,180		
FPGA PLL		14	14		
HPS PLL		3	3		
Transceiver	6-Gbps	30	30		
1 ransceiver	10-Gbps ⁽⁹⁾	16	16		

Altera Corporation

Arria V Device Overview

Variable-Precision DSP Block

Arria V devices feature a variable-precision DSP block that supports these features:

- Configurable to support signal processing precisions ranging from 9 x 9, 18 x 18, 27 x 27, and 36 x 36 bits natively
- A 64-bit accumulator
- Double accumulator
- A hard preadder that is available in both 18- and 27-bit modes
- Cascaded output adders for efficient systolic finite impulse response (FIR) filters
- Dynamic coefficients
- 18-bit internal coefficient register banks
- Enhanced independent multiplier operation
- Efficient support for single-precision floating point arithmetic
- The inferability of all modes by the Quartus Prime design software

Table 14: Variable-Precision DSP Block Configurations for Arria V Devices

Usage Example	Multiplier Size (Bit)	DSP Block Resource
Low precision fixed point for video applications	Three 9 x 9	1
Medium precision fixed point in FIR filters	Two 18 x 18	1
FIR filters	Two 18 x 18 with accumulate	1
Single-precision floating- point implementations	One 27 x 27	1
Very high precision fixed point implementations	One 36 x 36	2

You can configure each DSP block during compilation as independent three $9 \ge 9$, two $18 \ge 18$, or one 27 ≥ 27 multipliers. Using two DSP block resources, you can also configure a $36 \ge 36$ multiplier for high-precision applications. With a dedicated 64 bit cascade bus, you can cascade multiple variable-precision DSP blocks to implement even higher precision DSP functions efficiently.

Arria V Device Overview

Table 15: Number of Multipliers in Arria V Devices

Mem Variant ber		Variable- precision	Independent Input and Output Multiplications Operator				18 x 18 Multiplier	18 x 18 Multiplier Adder Summed
	Code	DSP Block	9 x 9 Multiplier	18 x 18 Multiplier	27 x 27 Multiplier	36 x 36 Multiplier	Adder Mode	with 36 bit Input
	A1	240	720	480	240		240	240
	A3	396	1,188	792	396	—	396	396
	A5	600	1,800	1,200	600		600	600
Arria V	A7	800	2,400	1,600	800	_	800	800
GX	B1	920	2,760	1,840	920		920	920
	B3	1,045	3,135	2,090	1,045	_	1,045	1,045
	B5	1,092	3,276	2,184	1,092		1,092	1,092
	B7	1,156	3,468	2,312	1,156		1,156	1,156
	C3	396	1,188	792	396		396	396
GT	C7	800	2,400	1,600	800		800	800
	D3	1,045	3,135	2,090	1,045		1,045	1,045
	D7	1,156	3,468	2,312	1,156		1,156	1,156
	E1	800	2,400	1,600	800	400	800	800
Arria V GZ	E3	1,044	3,132	2,088	1,044	522	1,044	1,044
	E5	1,092	3,276	2,184	1,092	546	1,092	1,092
	E7	1,139	3,417	2,278	1,139	569	1,139	1,139
Arria V SX	B3	809	2,427	1,618	809		809	809
	B5	1,090	3,270	2,180	1,090		1,090	1,090
Arria V ST	D3	809	2,427	1,618	809		809	809
	D5	1,090	3,270	2,180	1,090	_	1,090	1,090

The table lists the variable-precision DSP resources by bit precision for each Arria V device.

Embedded Memory Blocks

The embedded memory blocks in the devices are flexible and designed to provide an optimal amount of small- and large-sized memory arrays to fit your design requirements.

Types of Embedded Memory

The Arria V devices contain two types of memory blocks:

- 20 Kb M20K or 10 Kb M10K blocks—blocks of dedicated memory resources. The M20K and M10K blocks are ideal for larger memory arrays while still providing a large number of independent ports.
- 640 bit memory logic array blocks (MLABs)—enhanced memory blocks that are configured from dualpurpose logic array blocks (LABs). The MLABs are ideal for wide and shallow memory arrays. The MLABs are optimized for implementation of shift registers for digital signal processing (DSP) applications, wide shallow FIFO buffers, and filter delay lines. Each MLAB is made up of ten adaptive logic modules (ALMs). In the Arria V devices, you can configure these ALMs as ten 32 x 2 blocks, giving you one 32 x 20 simple dual-port SRAM block per MLAB. You can also configure these ALMs, in Arria V GZ devices, as ten 64 x 1 blocks, giving you one 64 x 10 simple dual-port SRAM block per MLAB.

Embedded Memory Capacity in Arria V Devices

		M20K		M10K		MLAB		
Variant	Membe r Code	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Total RAM Bit (Kb)
	A1	_		800	8,000	741	463	8,463
	A3	_	—	1,051	10,510	1538	961	11,471
	A5			1,180	11,800	1877	1,173	12,973
Arria V GX	A7	_	_	1,366	13,660	2317	1,448	15,108
Allia V GA	B1			1,510	15,100	2964	1,852	16,952
	B3	_	_	1,726	17,260	3357	2,098	19,358
	B5			2,054	20,540	4052	2,532	23,072
	B7	—		2,414	24,140	4650	2,906	27,046
Arria V GT	C3			1,051	10,510	1538	961	11,471
	C7	_	_	1,366	13,660	2317	1,448	15,108
	D3			1,726	17,260	3357	2,098	19,358
	D7	_	_	2,414	24,140	4650	2,906	27,046
Arria V GZ	E1	585	11,700	_	_	4,151	2,594	14,294
	E3	957	19,140	—	_	6,792	4,245	23,385
	E5	1,440	28,800	_	_	7,548	4,718	33,518
	E7	1,700	34,000	—	—	8,490	5,306	39,306
Arria V SX	B3	_	_	1,729	17,290	3223	2,014	19,304
	B5	—	—	2,282	22,820	4253	2,658	25,478

Table 16: Embedded Memory Capacity and Distribution in Arria V Devices

Arria V Device Overview

PLL Features

The PLLs in the Arria V devices support the following features:

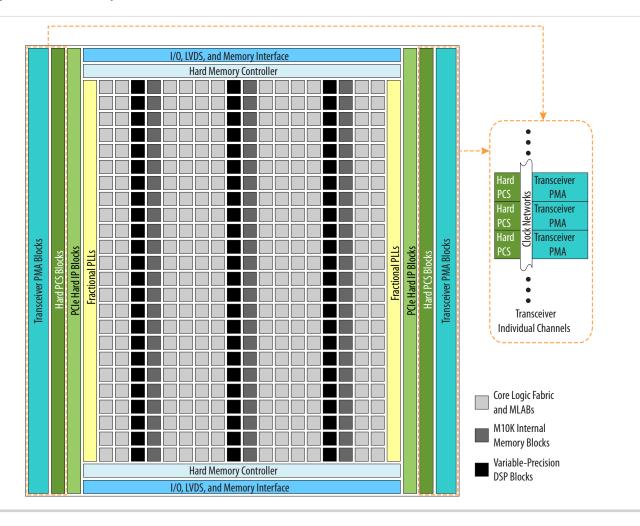
- Frequency synthesis
- On-chip clock deskew
- Jitter attenuation
- Counter reconfiguration
- Programmable output clock duty cycles
- PLL cascading
- Reference clock switchover
- Programmable bandwidth
- Dynamic phase shift
- Zero delay buffers

Fractional PLL

In addition to integer PLLs, the Arria V devices use a fractional PLL architecture. The devices have up to 16 PLLs, each with 18 output counters. One fractional PLL can use up to 18 output counters and two adjacent fractional PLLs share the 18 output counters. You can use the output counters to reduce PLL usage in two ways:

- Reduce the number of oscillators that are required on your board by using fractional PLLs
- Reduce the number of clock pins that are used in the device by synthesizing multiple clock frequencies from a single reference clock source

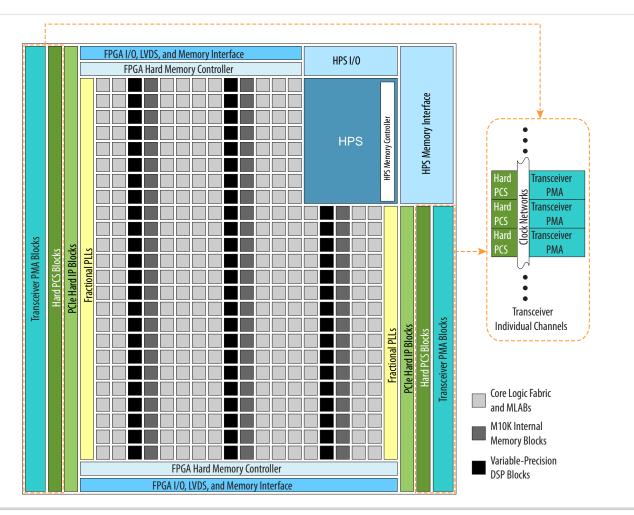
If you use the fractional PLL mode, you can use the PLLs for precision fractional-N frequency synthesis—removing the need for off-chip reference clock sources in your design.


The transceiver fractional PLLs that are not used by the transceiver I/Os can be used as general purpose fractional PLLs by the FPGA fabric.

FPGA General Purpose I/O

Arria V devices offer highly configurable GPIOs. The following list describes the features of the GPIOs:

- Programmable bus hold and weak pull-up
- + LVDS output buffer with programmable differential output voltage (V $_{\rm OD}$) and programmable preemphasis
- On-chip parallel termination (R_T OCT) for all I/O banks with OCT calibration to limit the termination impedance variation
- On-chip dynamic termination that has the ability to swap between series and parallel termination, depending on whether there is read or write on a common bus for signal integrity
- Unused voltage reference (VREF) pins that can be configured as user I/Os (Arria V GX, GT, SX, and ST only)
- Easy timing closure support using the hard read FIFO in the input register path, and delay-locked loop (DLL) delay chain with fine and coarse architecture


Figure 9: Device Chip Overview for Arria V GX and GT Devices

AV-51001

2015.12.21

Arria V Device Overview

Figure 11: Device Chip Overview for Arria V SX and ST Devices

PMA Features

To prevent core and I/O noise from coupling into the transceivers, the PMA block is isolated from the rest of the chip—ensuring optimal signal integrity. For the transceivers, you can use the channel PLL of an unused receiver PMA as an additional transmit PLL.

Table 20: PMA Features of the Transceivers in Arria V Devices

Features	Capability
Backplane support	 Arria V GX, GT, SX, and ST devices—Driving capability at 6.5536 Gbps with up to 25 dB channel loss Arria V GZ devices—Driving capability at 12.5 Gbps with up to 16 dB channel loss
Chip-to-chip support	 Arria V GX, GT, SX, and ST devices—Up to 10.3125 Gbps Arria V GZ devices—Up to 12.5 Gbps

Arria V Device Overview

PCS Features

PCS Support ⁽¹³⁾	Data Rates (Gbps)	Transmitter Data Path Feature	Receiver Data Path Feature
PCIe Gen1 (x1, x2, x4, x8) PCIe Gen2 ⁽¹⁴⁾ (x1, x2, x4)	2.5 and 5.0	 Phase compensation FIFO Byte serializer 8B/10B encoder PIPE 2.0 interface to the core logic 	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO Rate match FIFO PIPE 2.0 interface to the core logic
GbE	1.25	 Phase compensation FIFO Byte serializer 8B/10B encoder 	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO Rate match FIFO
XAUI ⁽¹⁵⁾	3.125	 Phase compensation FIFO Byte serializer 8B/10B encoder XAUI state machine for bonding four channels 	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO XAUI state machine for realigning four channels Deskew FIFO circuitry
SDI	0.27 ⁽¹⁶⁾ , 1.485, 2.97	 Phase compensation FIFO Byte serializer	Byte deserializerPhase compensation FIFO
GPON ⁽¹⁷⁾	1.25 and 2.5		
CPRI ⁽¹⁸⁾	0.6144 to 6.144	 Phase compensation FIFO Byte serializer 8B/10B encoder TX deterministic latency 	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO RX deterministic latency

⁽¹³⁾ Data rates above 6.5536 Gbps up to 10.3125 Gbps, such as 10GBASE-R, are supported through the soft PCS.

⁽¹⁴⁾ PCIe Gen2 is supported only through the PCIe hard IP.

⁽¹⁵⁾ XAUI is supported through the soft PCS.

⁽¹⁶⁾ The 0.27 Gbps data rate is supported using oversampling user logic that you must implement in the FPGA fabric.

⁽¹⁷⁾ The GPON standard does not support burst mode.

⁽¹⁸⁾ CPRI data rates above 6.5536 Gbps, such as 9.8304 Gbps, are supported through the soft PCS.

Table 22: Transceiver PCS Features for Arria V GZ Devices

Protocol	Data Rates (Gbps)	Transmitter Data Path Features	Receiver Data Path Features
Custom PHY GPON Custom 10G PHY	0.6 to 9.80 1.25 and 2.5 9.98 to 12.5	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding TX FIFO 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer Byte ordering RX FIFO
		Gear boxBit-slip	Gear box
PCIe Gen1 (x1, x2 x4, x8) PCIe Gen2 (x1, x2, x4, x8)	2.5 and 5.0	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding PIPE 2.0 interface to core logic 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer, Byte ordering PIPE 2.0 interface to core logic
PCIe Gen3 (x1, x2, x4, x8)	8.0	 Phase compensation FIFO 128B/130B encoder Scrambler Gear box Bit-slip 	 Block synchronization Rate match FIFO 128B/130B decoder Descrambler Phase compensation FIFO
10GbE	10.3125	 TX FIFO 64B/66B encoder Scrambler Gear box 	 RX FIFO 64B/66B decoder Descrambler Block synchronization Gear box
Interlaken	3.125 to 12.5	 TX FIFO Frame generator CRC-32 generator Scrambler Disparity generator Gear box 	 RX FIFO Frame generator CRC-32 checker Frame decoder Descrambler Disparity checker Block synchronization Gear box

L

PCS Features

Protocol	Data Rates (Gbps)	Transmitter Data Path Features	Receiver Data Path Features
40GBASE-R Ethernet 100GBASE-R Ethernet	4 x 10.3125 10 x 10.3125	 TX FIFO 64B/66B encoder Scrambler Alignment marker insertion Gearbox Block stripper 	 RX FIFO 64B/66B decoder Descrambler Lane reorder Deskew Alignment marker lock Block synchronization Gear box Destripper
40G and 100G OTN	(4 +1) x 11.3 (10 +1) x 11.3	TX FIFOChannel bondingByte serializer	 RX FIFO Lane deskew Byte deserializer
GbE	1.25	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding GbE state machine 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer Byte ordering GbE state machine
XAUI	3.125 to 4.25	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding XAUI state machine for bonding four channels 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer Byte ordering XAUI state machine for realigning four channels
SRIO	1.25 to 6.25	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding SRIO V2.1-compliant x2 and x4 channel bonding 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer Byte ordering SRIO V2.1-compliant x2 and x4 deskew state machine

Arria V Device Overview

System Peripherals and Debug Access Port

Each Ethernet MAC, USB OTG, NAND flash controller, and SD/MMC controller module has an integrated DMA controller. For modules without an integrated DMA controller, an additional DMA controller module provides up to eight channels of high-bandwidth data transfers. Peripherals that communicate off-chip are multiplexed with other peripherals at the HPS pin level. This allows you to choose which peripherals to interface with other devices on your PCB.

The debug access port provides interfaces to industry standard JTAG debug probes and supports ARM CoreSight debug and core traces to facilitate software development.

HPS-FPGA AXI Bridges

The HPS–FPGA bridges, which support the Advanced Microcontroller Bus Architecture (AMBA[®]) Advanced eXtensible Interface (AXI[™]) specifications, consist of the following bridges:

- FPGA-to-HPS AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the FPGA fabric to issue transactions to slaves in the HPS.
- HPS-to-FPGA AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the HPS to issue transactions to slaves in the FPGA fabric.
- Lightweight HPS-to-FPGA AXI bridge—a lower latency 32 bit width bus that allows the HPS to issue transactions to slaves in the FPGA fabric. This bridge is primarily used for control and status register (CSR) accesses to peripherals in the FPGA fabric.

The HPS–FPGA AXI bridges allow masters in the FPGA fabric to communicate with slaves in the HPS logic, and vice versa. For example, the HPS-to-FPGA AXI bridge allows you to share memories instantiated in the FPGA fabric with one or both microprocessors in the HPS, while the FPGA-to-HPS AXI bridge allows logic in the FPGA fabric to access the memory and peripherals in the HPS.

Each HPS–FPGA bridge also provides asynchronous clock crossing for data transferred between the FPGA fabric and the HPS.

HPS SDRAM Controller Subsystem

The HPS SDRAM controller subsystem contains a multiport SDRAM controller and DDR PHY that are shared between the FPGA fabric (through the FPGA-to-HPS SDRAM interface), the level 2 (L2) cache, and the level 3 (L3) system interconnect. The FPGA-to-HPS SDRAM interface supports AMBA AXI and Avalon[®] Memory-Mapped (Avalon-MM) interface standards, and provides up to six individual ports for access by masters implemented in the FPGA fabric.

To maximize memory performance, the SDRAM controller subsystem supports command and data reordering, deficit round-robin arbitration with aging, and high-priority bypass features. The SDRAM controller subsystem supports DDR2, DDR3, or LPDDR2 devices up to 4 Gb in density operating at up to 533 MHz (1066 Mbps data rate).

FPGA Configuration and Processor Booting

The FPGA fabric and HPS in the SoC are powered independently. You can reduce the clock frequencies or gate the clocks to reduce dynamic power, or shut down the entire FPGA fabric to reduce total system power.

You can configure the FPGA fabric and boot the HPS independently, in any order, providing you with more design flexibility:

- You can boot the HPS independently. After the HPS is running, the HPS can fully or partially reconfigure the FPGA fabric at any time under software control. The HPS can also configure other FPGAs on the board through the FPGA configuration controller.
- You can power up both the HPS and the FPGA fabric together, configure the FPGA fabric first, and then boot the HPS from memory accessible to the FPGA fabric.

Note: Although the FPGA fabric and HPS are on separate power domains, the HPS must remain powered up during operation while the FPGA fabric can be powered up or down as required.

Related Information

• Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides detailed information about power supply pin connection guidelines and power regulator sharing.

• Arria V GZ Device Family Pin Connection Guidelines Provides detailed information about power supply pin connection guidelines and power regulator sharing.

Hardware and Software Development

For hardware development, you can configure the HPS and connect your soft logic in the FPGA fabric to the HPS interfaces using the Qsys system integration tool in the Quartus Prime software.

For software development, the ARM-based SoC devices inherit the rich software development ecosystem available for the ARM Cortex-A9 MPCore processor. The software development process for Altera SoCs follows the same steps as those for other SoC devices from other manufacturers. Support for Linux, VxWorks[®], and other operating systems is available for the SoCs. For more information on the operating systems support availability, contact the Altera sales team.

You can begin device-specific firmware and software development on the Altera SoC Virtual Target. The Virtual Target is a fast PC-based functional simulation of a target development system—a model of a complete development board that runs on a PC. The Virtual Target enables the development of device-specific production software that can run unmodified on actual hardware.

Related Information

Altera Worldwide Sales Support

Dynamic and Partial Reconfiguration

The Arria V devices support dynamic reconfiguration and partial reconfiguration.

Dynamic Reconfiguration

The dynamic reconfiguration feature allows you to dynamically change the transceiver data rates, PMA settings, or protocols of a channel, without affecting data transfer on adjacent channels. This feature is ideal for applications that require on-the-fly multiprotocol or multirate support. You can reconfigure the PMA, PCS, and PCIe hard IP blocks with dynamic reconfiguration.

Arria V Device Overview

Altera Corporation

Date	Version	Changes
July 2012	2.1	 Added –13 speed grade to Figure 1 for Arria V GX devices. Updated the 6-Gbps transceiver speed from 6.553 Gbps to 6.5536 Gbps in Figure 3 and Figure 1.
June 2012	2.0	 Restructured the document. Added the "Embedded Memory Capacity" and "Embedded Memory Configurations" sections. Added Table 1, Table 3, Table 12, Table 15, and Table 16. Updated Table 2, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 13, Table 14, and Table 19. Updated Figure 1, Figure 2, Figure 3, Figure 4, and Figure 8. Updated the "FPGA Configuration and Processor Booting" and "Hardware and Software Development" sections. Text edits throughout the document.
February 2012	1.3	 Updated Table 1–7 and Table 1–8. Updated Figure 1–9 and Figure 1–10. Minor text edits.
December 2011	1.2	Minor text edits.
November 2011	1.1	 Updated Table 1–1, Table 1–2, Table 1–3, Table 1–4, Table 1–6, Table 1–7, Table 1–9, and Table 1–10. Added "SoC FPGA with HPS" section. Updated "Clock Networks and PLL Clock Sources" and "Ordering Information" sections. Updated Figure 1–5. Added Figure 1–6. Minor text edits.
August 2011	1.0	Initial release.

