

Welcome to **E-XFL.COM**

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM® Cortex®-A9 MPCore™ with CoreSight™
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	700MHz
Primary Attributes	FPGA - 350K Logic Elements
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA, FC (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5asxbb3d6f35c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Advantage	Supporting Feature
Lowest system cost	 Requires as few as four power supplies to operate Available in thermal composite flip chip ball-grid array (BGA) packaging Includes innovative features such as Configuration via Protocol (CvP), partial reconfiguration, and design security

Summary of Arria V Features

Table 2: Summary of Features for Arria V Devices

Feature	Description
Technology	 TSMC's 28-nm process technology: Arria V GX, GT, SX, and ST—28-nm low power (28LP) process Arria V GZ—28-nm high performance (28HP) process Lowest static power in its class (less than 1.2 W for 500K logic elements (LEs) at 85°C junction under typical conditions) 0.85 V, 1.1 V, or 1.15 V core nominal voltage
Packaging	 Thermal composite flip chip BGA packaging Multiple device densities with identical package footprints for seamless migration between different device densities Leaded⁽¹⁾, lead-free (Pb-free), and RoHS-compliant options
High-performance FPGA fabric	 Enhanced 8-input ALM with four registers Improved routing architecture to reduce congestion and improve compilation time
Internal memory blocks	 M10K—10-kilobits (Kb) memory blocks with soft error correction code (ECC) (Arria V GX, GT, SX, and ST devices only) M20K—20-Kb memory blocks with hard ECC (Arria V GZ devices only) Memory logic array block (MLAB)-640-bit distributed LUTRAM where you can use up to 50% of the ALMs as MLAB memory

Send Feedback

 $^{^{(1)}}$ Contact Altera for availability.

Feature		Description				
Embedded Hard IP blocks	Memory controller (Arria V GX, GT, SX, and ST only) Embedded transceiver I/O	 Native support for up to four signal processing precision levels: Three 9 x 9, two 18 x 18, or one 27 x 27 multiplier in the same variable-precision DSP block One 36 x 36 multiplier using two variable-precision DSP blocks (Arria V GZ devices only) 64-bit accumulator and cascade for systolic finite impulse responses (FIRs) Embedded internal coefficient memory Preadder/subtractor for improved efficiency DDR3 and DDR2 Custom implementation: Arria V GX and SX devices—up to 6.5536 Gbps Arria V GT and ST devices—up to 10.3125 Gbps Arria V GZ devices—up to 12.5 Gbps PCI Express® (PCIe®) Gen2 (x1, x2, or x4) and Gen1 (x1, x2, x4, or x8) hard IP with multifunction support, endpoint, and root port PCIe Gen3 (x1, x2, x4, or x8) support (Arria V GZ only) Gbps Ethernet (GbE) and XAUI physical coding sublayer (PCS) Common Public Radio Interface (CPRI) PCS Gigabit-capable passive optical network (GPON) PCS 10-Gbps Ethernet (10GbE) PCS (Arria V GZ only) Serial RapidIO® (SRIO) PCS Interlaken PCS (Arria V GZ only) 				
Clock networks	_	bal clock network nd peripheral clock networks at are not used can be powered down to reduce dynamic power				
Phase-locked loops (PLLs)	Precision clock syn (ZDB)Integer mode and f	gh-resolution fractional PLLs ecision clock synthesis, clock delay compensation, and zero delay buffering OB) eger mode and fractional mode oscillator ATX transmitter PLLs (Arria V GZ only)				

Feature	Description
Configuration	 Tamper protection-comprehensive design protection to protect your valuable IP investments Enhanced advanced encryption standard (AES) design security features CvP Partial and dynamic reconfiguration of the FPGA Active serial (AS) x1 and x4, passive serial (PS), JTAG, and fast passive parallel (FPP) x8, x16, and x32 (Arria V GZ) configuration options Remote system upgrade

Arria V Device Variants and Packages

Table 3: Device Variants for the Arria V Device Family

Variant	Description
Arria V GX	FPGA with integrated 6.5536 Gbps transceivers that provides bandwidth, cost, and power levels that are optimized for high-volume data and signal-processing applications
Arria V GT	FPGA with integrated 10.3125 Gbps transceivers that provides enhanced high-speed serial I/O bandwidth for cost-sensitive data and signal processing applications
Arria V GZ	FPGA with integrated 12.5 Gbps transceivers that provides enhanced high-speed serial I/O bandwidth for high-performance and cost-sensitive data and signal processing applications
Arria V SX	SoC with integrated ARM-based HPS and 6.5536 Gbps transceivers
Arria V ST	SoC with integrated ARM-based HPS and 10.3125 Gbps transceivers

Arria V GX

This section provides the available options, maximum resource counts, and package plan for the Arria V GX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.

Related Information

Altera Product Selector

Provides the latest information about Altera products.

Resource		Member Code							
nesc	Juice	A1	А3	A 5	A7	B1	В3	B5	В7
6 Gbps Transceiver		9	9	24	24	24	24	36	36
GPIO ⁽³⁾		416	416	544	544	704	704	704	704
LVD S	Transmi tter	67	67	120	120	160	160	160	160
3	Receiver	80	80	136	136	176	176	176	176
PCIe I Block	Hard IP	1	1	2	2	2	2	2	2
Hard I Contro	Memory oller	2	2	4	4	4	4	4	4

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 5: Package Plan for Arria V GX Devices

Member Code		72 mm)	F896 (31 mm)				F1517 (40 mm)	
	GPIO	XCVR	GPIO	GPIO XCVR		XCVR	GPIO	XCVR
A1	336	9	416	9	_	_	_	_
A3	336	9	416	9	_	_	_	_
A5	336	9	384	18	544	24	_	_
A7	336	9	384	18	544	24	_	_
B1	_	_	384	18	544	24	704	24
В3	_	_	384	18	544	24	704	24
B5	_	_	_	_	544	24	704	36
В7	_	_	_	_	544	24	704	36

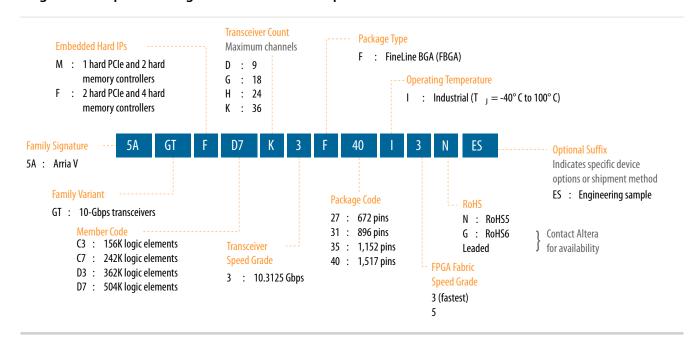
Arria V GT

This section provides the available options, maximum resource counts, and package plan for the Arria V GT devices.

⁽³⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus[®] Prime software, the number of user I/Os includes transceiver I/Os.

Available Options

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


Related Information

Altera Product Selector

Provides the latest information about Altera products.

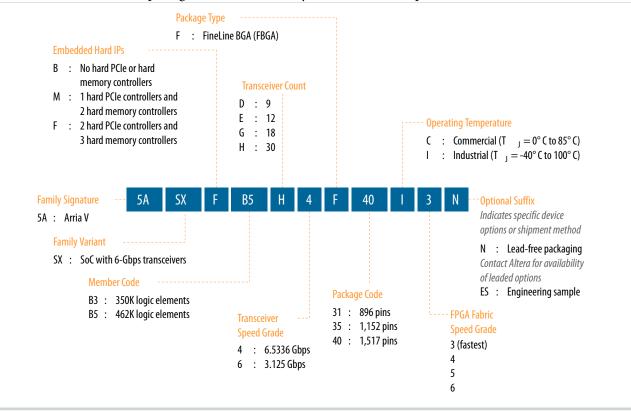
Available Options

Figure 2: Sample Ordering Code and Available Options for Arria V GT Devices

Maximum Resources

Table 6: Maximum Resource Counts for Arria V GT Devices

Resource		Member Code					
nes	nesource		C 7	D3	D7		
Logic Eleme	nts (LE) (K)	156	242	362	504		
ALM	ALM		91,680	136,880	190,240		
Register	Register		366,720	547,520	760,960		
Memory	M10K	10,510	13,660	17,260	24,140		
(Kb)	MLAB	961	1,448	2,098	2,906		
Variable-pre	Variable-precision DSP Block		800	1,045	1,156		
18 x 18 Mult	18 x 18 Multiplier		1,600	2,090	2,312		
PLL		10	12	12	16		


Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 4: Sample Ordering Code and Available Options for Arria V SX Devices

The -3 FPGA fabric speed grade is available only for industrial temperature devices.

Maximum Resources

Table 10: Maximum Resource Counts for Arria V SX Devices

Poso	urce	Member Code			
neso	ruice	В3	B5		
Logic Elements (LE)	Logic Elements (LE) (K)		462		
ALM		132,075	174,340		
Register	Register		697,360		
Memory (Kb)	M10K 17,290		22,820		
Memory (Ro)	MLAB	2,014	2,658		
Variable-precision DSP Block		809	1,090		
18 x 18 Multiplier		1,618	2,180		

Poss	ource	Member Code			
neso	ruice	В3	B5		
FPGA PLL		14	14		
HPS PLL		3	3		
6 Gbps Transceiver	6 Gbps Transceiver		30		
FPGA GPIO ⁽⁸⁾	FPGA GPIO ⁽⁸⁾		540		
HPS I/O	HPS I/O		208		
LVDS	Transmitter	120	120		
LVDS	Receiver	136	136		
PCIe Hard IP Block	PCIe Hard IP Block		2		
FPGA Hard Memory Controller		3	3		
HPS Hard Memory Controller		1	1		
ARM Cortex-A9 MP	Core Processor	Dual-core	Dual-core		

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 11: Package Plan for Arria V SX Devices

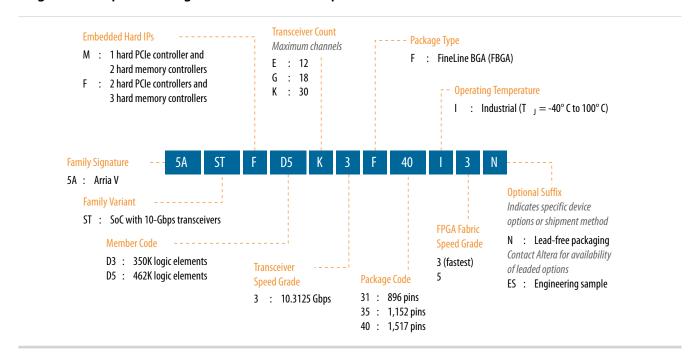
The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

	F896			F1152			F1517		
Member Code	(31 mm)		(35 mm)		(40 mm)				
Code	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR
В3	250	208	12	385	208	18	540	208	30
B5	250	208	12	385	208	18	540	208	30

Arria V ST

This section provides the available options, maximum resource counts, and package plan for the Arria V ST devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


⁽⁸⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 5: Sample Ordering Code and Available Options for Arria V ST Devices

Maximum Resources

Table 12: Maximum Resource Counts for Arria V ST Devices

Resource		Member Code			
Reso	ource	D3	D5		
Logic Elements (LE)	(K)	350	462		
ALM		132,075	174,340		
Register		528,300	697,360		
Memory (Kb)	M10K	17,290	22,820		
Memory (Rb)	MLAB	2,014	2,658		
Variable-precision D	SP Block	809	1,090		
18 x 18 Multiplier		1,618	2,180		
FPGA PLL		14	14		
HPS PLL		3	3		
Transceiver	6-Gbps	30	30		
114115001701	10-Gbps ⁽⁹⁾	16	16		

Poso	ource	Member Code			
nesu	raice	D3	D5		
FPGA GPIO ⁽¹⁰⁾		540	540		
HPS I/O		208	208		
LVDS	Transmitter	120	120		
LVD3	Receiver	136	136		
PCIe Hard IP Block		2	2		
FPGA Hard Memory Controller		3	3		
HPS Hard Memory C	Controller	1	1		
ARM Cortex-A9 MP	Core Processor	Dual-core	Dual-core		

• High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Transceiver Architecture in Arria V Devices
 Describes 10 Gbps channels usage conditions and SFF-8431 compliance requirements.

Package Plan

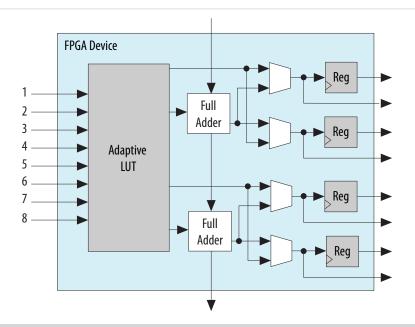
Table 13: Package Plan for Arria V ST Devices

The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

Memb	F896 (31 mm)		F1152 (35 mm)			F1517 (40 mm)						
er Code	FPGA HPS XCVR		FPGA HPS XCVR		FPGA HPS XCVR		KCVR					
	GPIO	I/O	6 Gbps	10 Gbps	GPIO	I/O	6 Gbps	10 Gbps	GPIO	I/O	6 Gbps	10 Gbps
D3	250	208	12	6	385	208	18	8	540	208	30	16
D5	250	208	12	6	385	208	18	8	540	208	30	16

⁽⁹⁾ Chip-to-chip connections only. For 10 Gbps channel usage conditions, refer to the Transceiver Architecture in Arria V Devices chapter.

⁽¹⁰⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.


- Managing Device I/O Pins chapter, Quartus Prime Handbook Provides more information about vertical I/O migrations.
- Power Management in Arria V Devices
 Describes the power-up sequence required for Arria V GX and GT devices.

Adaptive Logic Module

Arria V devices use a 28 nm ALM as the basic building block of the logic fabric.

The ALM, as shown in following figure, uses an 8-input fracturable look-up table (LUT) with four dedicated registers to help improve timing closure in register-rich designs and achieve an even higher design packing capability than previous generations.

Figure 7: ALM for Arria V Devices

You can configure up to 50% of the ALMs in the Arria V devices as distributed memory using MLABs.

Related Information

Embedded Memory Capacity in Arria V Devices on page 20

Lists the embedded memory capacity for each device.

PLL Features

The PLLs in the Arria V devices support the following features:

- Frequency synthesis
- On-chip clock deskew
- Jitter attenuation
- Counter reconfiguration
- Programmable output clock duty cycles
- PLL cascading
- Reference clock switchover
- Programmable bandwidth
- Dynamic phase shift
- · Zero delay buffers

Fractional PLL

In addition to integer PLLs, the Arria V devices use a fractional PLL architecture. The devices have up to 16 PLLs, each with 18 output counters. One fractional PLL can use up to 18 output counters and two adjacent fractional PLLs share the 18 output counters. You can use the output counters to reduce PLL usage in two ways:

- Reduce the number of oscillators that are required on your board by using fractional PLLs
- Reduce the number of clock pins that are used in the device by synthesizing multiple clock frequencies from a single reference clock source

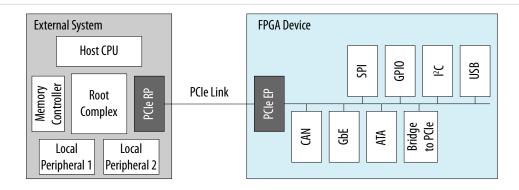
If you use the fractional PLL mode, you can use the PLLs for precision fractional-N frequency synthesis—removing the need for off-chip reference clock sources in your design.

The transceiver fractional PLLs that are not used by the transceiver I/Os can be used as general purpose fractional PLLs by the FPGA fabric.

FPGA General Purpose I/O

Arria V devices offer highly configurable GPIOs. The following list describes the features of the GPIOs:

- Programmable bus hold and weak pull-up
- $\bullet~$ LVDS output buffer with programmable differential output voltage (V $_{\rm OD}$) and programmable preemphasis
- On-chip parallel termination (R_T OCT) for all I/O banks with OCT calibration to limit the termination impedance variation
- On-chip dynamic termination that has the ability to swap between series and parallel termination, depending on whether there is read or write on a common bus for signal integrity
- Unused voltage reference (VREF) pins that can be configured as user I/Os (Arria V GX, GT, SX, and ST only)
- Easy timing closure support using the hard read FIFO in the input register path, and delay-locked loop (DLL) delay chain with fine and coarse architecture


PCIe Gen1, Gen2, and Gen 3 Hard IP

Arria V devices contain PCIe hard IP that is designed for performance and ease-of-use. The PCIe hard IP consists of the MAC, data link, and transaction layers.

The PCIe hard IP supports PCIe Gen3, Gen 2, and Gen 1 end point and root port for up to x8 lane configuration.

The PCIe endpoint support includes multifunction support for up to eight functions, as shown in the following figure. The integrated multifunction support reduces the FPGA logic requirements by up to 20,000 LEs for PCIe designs that require multiple peripherals.

Figure 8: PCIe Multifunction for Arria V Devices

The Arria V PCIe hard IP operates independently from the core logic. This independent operation allows the PCIe link to wake up and complete link training in less than 100 ms while the Arria V device completes loading the programming file for the rest of the device.

In addition, the PCIe hard IP in the Arria V device provides improved end-to-end datapath protection using ECC.

External Memory Interface

This section provides an overview of the external memory interface in Arria V devices.

Hard and Soft Memory Controllers

Arria V GX,GT, SX, and ST devices support up to four hard memory controllers for DDR3 and DDR2 SDRAM devices. Each controller supports 8 to 32 bit components of up to 4 gigabits (Gb) in density with two chip selects and optional ECC. For the Arria V SoC devices, an additional hard memory controller in the HPS supports DDR3, DDR2, and LPDDR2 SDRAM devices.

All Arria V devices support soft memory controllers for DDR3, DDR2, and LPDDR2 SDRAM devices, QDR II+, QDR II, and DDR II+ SRAM devices, and RLDRAM II devices for maximum flexibility.

Note: DDR3 SDRAM leveling is supported only in Arria V GZ devices.

External Memory Interface Spec Estimator

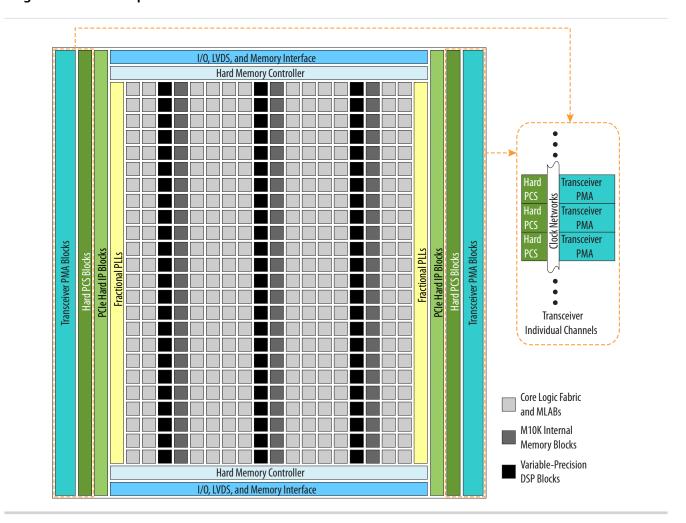
For the latest information and to estimate the external memory system performance specification, use Altera's External Memory Interface Spec Estimator tool.

Low-Power Serial Transceivers

Arria V devices deliver the industry's lowest power consumption per transceiver channel:

- 12.5 Gbps transceivers at less than 170 mW
- 10 Gbps transceivers at less than 165 mW
- 6 Gbps transceivers at less than 105 mW

Arria V transceivers are designed to be compliant with a wide range of protocols and data rates.


Transceiver Channels

The transceivers are positioned on the left and right outer edges of the device. The transceiver channels consist of the physical medium attachment (PMA), physical coding sublayer (PCS), and clock networks.

The following figures are graphical representations of a top view of the silicon die, which corresponds to a reverse view for flip chip packages. Different Arria V devices may have different floorplans than the ones shown in the figures.

Figure 9: Device Chip Overview for Arria V GX and GT Devices

Features	Capability
PLL-based clock recovery	Superior jitter tolerance
Programmable serializer and deserializer (SERDES)	Flexible SERDES width
Equalization and pre-emphasis	 Arria V GX, GT, SX, and ST devices—Up to 14.37 dB of pre-emphasis and up to 4.7 dB of equalization Arria V GZ devices—4-tap pre-emphasis and de-emphasis
Ring oscillator transmit PLLs	611 Mbps to 10.3125 Gbps
LC oscillator ATX transmit PLLs (Arria V GZ devices only)	600 Mbps to 12.5 Gbps
Input reference clock range	27 MHz to 710 MHz
Transceiver dynamic reconfiguration	Allows the reconfiguration of a single channel without affecting the operation of other channels

PCS Features

The Arria V core logic connects to the PCS through an 8, 10, 16, 20, 32, 40, 64, 66, or 67 bit interface, depending on the transceiver data rate and protocol. Arria V devices contain PCS hard IP to support PCIe Gen1, Gen2, and Gen3, GbE, Serial RapidIO (SRIO), GPON, and CPRI.

All other standard and proprietary protocols within the following speed ranges are also supported:

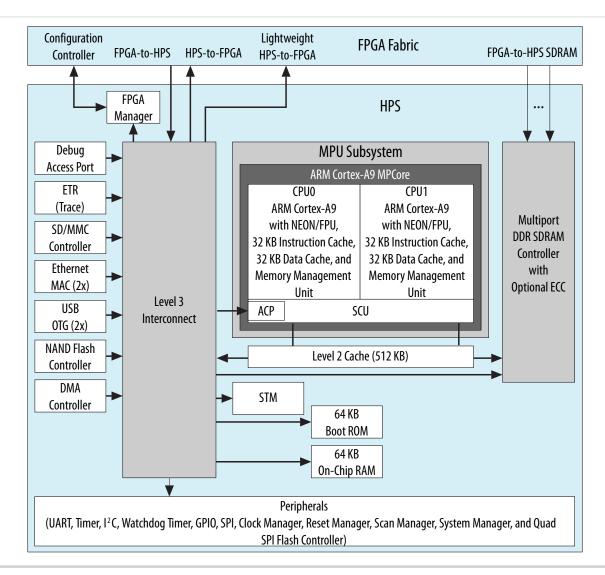
- 611 Mbps to 6.5536 Gbps—supported through the custom double-width mode (up to 6.5536 Gbps) and custom single-width mode (up to 3.75 Gbps) of the transceiver PCS hard IP.
- 6.5536 Gbps to 10.3125 Gbps—supported through dedicated 80 or 64 bit interface that bypass the PCS hard IP and connects the PMA directly to the core logic. In Arria V GZ, this is supported in the transceiver PCS hard IP.

Table 21: Transceiver PCS Features for Arria V GX, GT, ST, and SX Devices

PCS Support ⁽¹³⁾	Data Rates (Gbps)	Transmitter Data Path Feature	Receiver Data Path Feature
Custom single- and double-width modes	0.611 to ~6.5536	Phase compensation FIFO	Word aligner8B/10B decoder
SRIO	1.25 to 6.25	Byte serializer 8B/10B encoder	Byte deserializer
Serial ATA	1.5, 3.0, 6.0	- OD, TOD CHEORET	Phase compensation FIFO

 $^{^{(13)}}$ Data rates above 6.5536 Gbps up to 10.3125 Gbps, such as 10GBASE-R, are supported through the soft PCS.

SoC with HPS


Each SoC combines an FPGA fabric and an HPS in a single device. This combination delivers the flexibility of programmable logic with the power and cost savings of hard IP in these ways:

- Reduces board space, system power, and bill of materials cost by eliminating a discrete embedded processor
- Allows you to differentiate the end product in both hardware and software, and to support virtually any interface standard
- Extends the product life and revenue through in-field hardware and software updates

HPS Features

The HPS consists of a dual-core ARM Cortex-A9 MPCore processor, a rich set of peripherals, and a shared multiport SDRAM memory controller, as shown in the following figure.

Figure 12: HPS with Dual-Core ARM Cortex-A9 MPCore Processor

You can configure the FPGA fabric and boot the HPS independently, in any order, providing you with more design flexibility:

- You can boot the HPS independently. After the HPS is running, the HPS can fully or partially reconfigure the FPGA fabric at any time under software control. The HPS can also configure other FPGAs on the board through the FPGA configuration controller.
- You can power up both the HPS and the FPGA fabric together, configure the FPGA fabric first, and then boot the HPS from memory accessible to the FPGA fabric.

Note: Although the FPGA fabric and HPS are on separate power domains, the HPS must remain powered up during operation while the FPGA fabric can be powered up or down as required.

Related Information

- Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines
 Provides detailed information about power supply pin connection guidelines and power regulator sharing.
- Arria V GZ Device Family Pin Connection Guidelines
 Provides detailed information about power supply pin connection guidelines and power regulator sharing.

Hardware and Software Development

For hardware development, you can configure the HPS and connect your soft logic in the FPGA fabric to the HPS interfaces using the Qsys system integration tool in the Quartus Prime software.

For software development, the ARM-based SoC devices inherit the rich software development ecosystem available for the ARM Cortex-A9 MPCore processor. The software development process for Altera SoCs follows the same steps as those for other SoC devices from other manufacturers. Support for Linux, VxWorks®, and other operating systems is available for the SoCs. For more information on the operating systems support availability, contact the Altera sales team.

You can begin device-specific firmware and software development on the Altera SoC Virtual Target. The Virtual Target is a fast PC-based functional simulation of a target development system—a model of a complete development board that runs on a PC. The Virtual Target enables the development of device-specific production software that can run unmodified on actual hardware.

Related Information

Altera Worldwide Sales Support

Dynamic and Partial Reconfiguration

The Arria V devices support dynamic reconfiguration and partial reconfiguration.

Dynamic Reconfiguration

The dynamic reconfiguration feature allows you to dynamically change the transceiver data rates, PMA settings, or protocols of a channel, without affecting data transfer on adjacent channels. This feature is ideal for applications that require on-the-fly multiprotocol or multirate support. You can reconfigure the PMA, PCS, and PCIe hard IP blocks with dynamic reconfiguration.

Mode	Data Width	Max Clock Rate (MHz)	Max Data I Rate (Mbps)	Decompression	Design Security F	Partial econfiguratio (20)	Remote System Update
	8 bits	125	_	Yes	Yes	_	
FPP	16 bits	125	_	Yes	Yes	Yes ⁽²¹⁾	Parallel flash loader
	32 bits ⁽²²⁾	100	_	Yes	Yes	_	
CvP (PCIe)	x1, x2, x4, and x8 lanes	_	_	Yes	Yes	Yes	_
JTAG	1 bit	33	33	_	_	_	_
Configuration via HPS	16 bits	125	_	Yes	Yes	Yes (21)	Parallel flash loader
	32 bits	100	_	Yes	Yes	_	rafanei nasn loadei

Instead of using an external flash or ROM, you can configure the Arria V devices through PCIe using CvP. The CvP mode offers the fastest configuration rate and flexibility with the easy-to-use PCIe hard IP block interface. The Arria V CvP implementation conforms to the PCIe 100 ms power-up-to-active time requirement.

Note: Although Arria V GZ devices support PCIe Gen3, you can use only PCIe Gen1 and PCIe Gen2 for CvP configuration scheme.

Related Information

Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide Provides more information about CvP.

Power Management

Leveraging the FPGA architectural features, process technology advancements, and transceivers that are designed for power efficiency, the Arria V devices consume less power than previous generation Arria V FPGAs:

- Total device core power consumption—less by up to 50%.
- Transceiver channel power consumption—less by up to 50%.

Additionally, Arria V devices contain several hard IP blocks, including PCIe Gen1, Gen2, and Gen3, GbE, SRIO, GPON, and CPRI protocols, that reduce logic resources and deliver substantial power savings of up to 25% less power than equivalent soft implementations.

⁽²⁰⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

⁽²¹⁾ Supported at a maximum clock rate of 62.5 MHz.

⁽²²⁾ Arria V GZ only

Document Revision History

Date	Version	Changes
December 2015	2015.12.21	 Updated RoHS and optional suffix information in sample ordering code and available options diagrams for Arria V GX and GT devices. Changed instances of <i>Quartus II</i> to <i>Quartus Prime</i>.
January 2015	2015.01.23	 Updated package dimension for Arria V GZ H780 package from 29 mm to 33 mm. Updated dual-core ARM Cortex-A9 MPCore processor maximum frequency from 800 MHz to 1.05 GHz.
December 2013	2013.12.26	 10-Gbps Ethernet (10GbE) PCS and Interlaken PCS are for Arria V GZ only. Removed "Preliminary" texts from Ordering Code figures, Maximum Resources, Package Plan and I/O Vertical Migration tables. Added link to Altera Product Selector for each device variant. Added leaded package options. Removed the note "The number of PLLs includes general-purpose fractional PLLs and transceiver fractional PLLs." for all PLLs in the Maximum Resource Counts table. Corrected FPGA GPIO for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 F896 package from 170 to 250. Corrected FPGA GPIO for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 F1152 package from 350 to 385. Corrected FPGA GPIO for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 F1517 package from 528 to 540. Corrected LVDS Transmitter for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 devices from 121 to 120. Added links to Altera's External Memory Spec Estimator tool to the topics listing the external memory interface performance. Added x2 for PCIe Gen3, Gen 2, and Gen 1.
August 2013	2013.08.19	 Removed the note about the PCIe hard IP on the right side of the device in the F896 package of the Arria V GX variant. These devices do not have PCIe hard IP on the right side. Added transceiver speed grade 6 to the available options of the Arria V SX variant. Corrected the maximum LVDS transmitter channel counts for the Arria V GX A1 and A3 devices from 68 to 67. Corrected the maximum FPGA GPIO count for Arria V ST D5 devices from 540 to 528.

Date	Version	Changes
June 2013	2013.06.03	Removed statements about contacting Altera for SFF-8431 compliance requirements. Refer to the Transceiver Architecture in Arria V Devices chapter for the requirements.
May 2013	2013.05.06	 Moved all links to the Related Information section of respective topics for easy reference. Added link to the known document issues in the Knowledge Base. Updated the available options, maximum resource counts, and per package information for the Arria V SX and ST device variants. Updated the variable DSP multipliers counts for the Arria V SX and ST device variants. Clarified that partial reconfiguration is an advanced feature. Contact Altera for support of the feature. Added footnote to clarify that MLAB 64 bits depth is available only for Arria V GZ devices. Updated description about power-up sequence requirement for device migration to improve clarity.
January 2013	2013.01.11	 Added the L optional suffix to the Arria V GZ ordering code for the – I3 speed grade. Added a note about the power-up sequence requirement if you plan to migrate your design from the Arria V GX A5 and A7, and Arria V GT C7 devices to other Arria V devices.
November 2012	2012.11.19	 Updated the summary of features. Updated Arria V GZ information regarding 3.3 V I/O support. Removed Arria V GZ engineering sample ordering code. Updated the maximum resource counts for Arria V GX and GZ. Updated Arria V ST ordering codes for transceiver count. Updated transceiver counts for Arria V ST packages. Added simplified floorplan diagrams for Arria V GZ, SX, and ST. Added FPP x32 configuration mode for Arria V GZ only. Updated CvP (PCIe) remote system update support information. Added HPS external memory performance information. Updated template.
October 2012	3.0	 Added Arria V GZ information. Updated Table 1, Table 2, Table 3, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, and Table 21. Added the "Arria V GZ" section. Added Table 8, Table 9 and Table 22.

