

Welcome to **E-XFL.COM**

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)?**

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM® Cortex®-A9 MPCore™ with CoreSight™
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	925MHz
Primary Attributes	FPGA - 462K Logic Elements
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA, FC (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5asxbb5d4f31c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature		Description		
Embedded Hard IP blocks	Memory controller (Arria V GX, GT, SX, and ST only) Embedded transceiver I/O	 Native support for up to four signal processing precision levels: Three 9 x 9, two 18 x 18, or one 27 x 27 multiplier in the same variable-precision DSP block One 36 x 36 multiplier using two variable-precision DSP blocks (Arria V GZ devices only) 64-bit accumulator and cascade for systolic finite impulse responses (FIRs) Embedded internal coefficient memory Preadder/subtractor for improved efficiency DDR3 and DDR2 Custom implementation: Arria V GX and SX devices—up to 6.5536 Gbps Arria V GT and ST devices—up to 10.3125 Gbps Arria V GZ devices—up to 12.5 Gbps PCI Express® (PCIe®) Gen2 (x1, x2, or x4) and Gen1 (x1, x2, x4, or x8) hard IP with multifunction support, endpoint, and root port PCIe Gen3 (x1, x2, x4, or x8) support (Arria V GZ only) Gbps Ethernet (GbE) and XAUI physical coding sublayer (PCS) Common Public Radio Interface (CPRI) PCS Gigabit-capable passive optical network (GPON) PCS 10-Gbps Ethernet (10GbE) PCS (Arria V GZ only) Serial RapidIO® (SRIO) PCS Interlaken PCS (Arria V GZ only) 		
Clock networks	-	bal clock network nd peripheral clock networks at are not used can be powered down to reduce dynamic power		
Phase-locked loops (PLLs) • High-resolution fractional PLLs • Precision clock synthesis, clock delay compensation, and zero delay buffer (ZDB) • Integer mode and fractional mode • LC oscillator ATX transmitter PLLs (Arria V GZ only)				

Feature	Description
Configuration	 Tamper protection-comprehensive design protection to protect your valuable IP investments Enhanced advanced encryption standard (AES) design security features CvP Partial and dynamic reconfiguration of the FPGA Active serial (AS) x1 and x4, passive serial (PS), JTAG, and fast passive parallel (FPP) x8, x16, and x32 (Arria V GZ) configuration options Remote system upgrade

Arria V Device Variants and Packages

Table 3: Device Variants for the Arria V Device Family

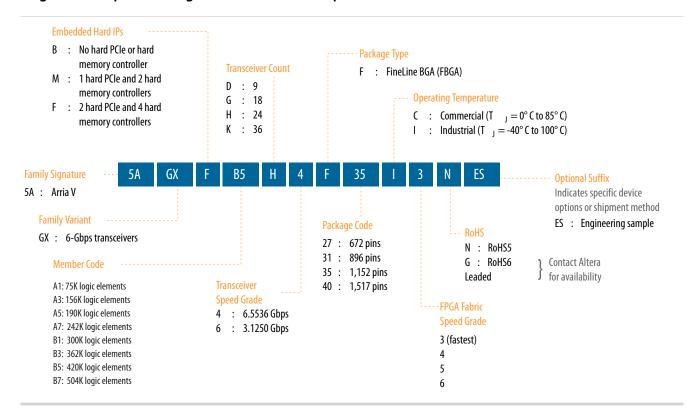
Variant	Description
Arria V GX	FPGA with integrated 6.5536 Gbps transceivers that provides bandwidth, cost, and power levels that are optimized for high-volume data and signal-processing applications
Arria V GT	FPGA with integrated 10.3125 Gbps transceivers that provides enhanced high-speed serial I/O bandwidth for cost-sensitive data and signal processing applications
Arria V GZ	FPGA with integrated 12.5 Gbps transceivers that provides enhanced high-speed serial I/O bandwidth for high-performance and cost-sensitive data and signal processing applications
Arria V SX	SoC with integrated ARM-based HPS and 6.5536 Gbps transceivers
Arria V ST	SoC with integrated ARM-based HPS and 10.3125 Gbps transceivers

Arria V GX

This section provides the available options, maximum resource counts, and package plan for the Arria V GX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.

Related Information


Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 1: Sample Ordering Code and Available Options for Arria V GX Devices

Maximum Resources

Table 4: Maximum Resource Counts for Arria V GX Devices

Poso	Resource				Me	mber Code			
neso	urce	A1	А3	A 5	A7	B1	В3	B5	В7
	Logic Elements (LE) (K)		156	190	242	300	362	420	504
ALM		28,302	58,900	71,698	91,680	113,208	136,880	158,491	190,240
Registe	er	113,208	235,600	286,792	366,720	452,832	547,520	633,964	760,960
Mem	M10K	8,000	10,510	11,800	13,660	15,100	17,260	20,540	24,140
ory (Kb)	MLAB	463	961	1,173	1,448	1,852	2,098	2,532	2,906
Variab precisi Block	le- on DSP	240	396	600	800	920	1,045	1,092	1,156
18 x 18 Multip		480	792	1,200	1,600	1,840	2,090	2,184	2,312
PLL		10	10	12	12	12	12	16	16

Resource					Me	mber Code			
nesc	Juice	A1	А3	A 5	A7	B1	В3	B5	В7
6 Gbps Transceiver		9	9	24	24	24	24	36	36
GPIO ⁽	(3)	416	416	544	544	704	704	704	704
LVD S	Transmi tter	67	67	120	120	160	160	160	160
3	Receiver	80	80	136	136	176	176	176	176
PCIe I Block	Hard IP	1	1	2	2	2	2	2	2
Hard I Contro	Memory oller	2	2	4	4	4	4	4	4

Related Information

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 5: Package Plan for Arria V GX Devices

Member Code		72 mm)	F8 (31)	96 mm)	F1152 (35 mm)		F1517 (40 mm)	
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR
A1	336	9	416	9	_	_	_	_
A3	336	9	416	9	_	_	_	_
A5	336	9	384	18	544	24	_	_
A7	336	9	384	18	544	24	_	_
B1	_	_	384	18	544	24	704	24
В3	_	_	384	18	544	24	704	24
B5	_	_	_	_	544	24	704	36
В7	_	_	_	_	544	24	704	36

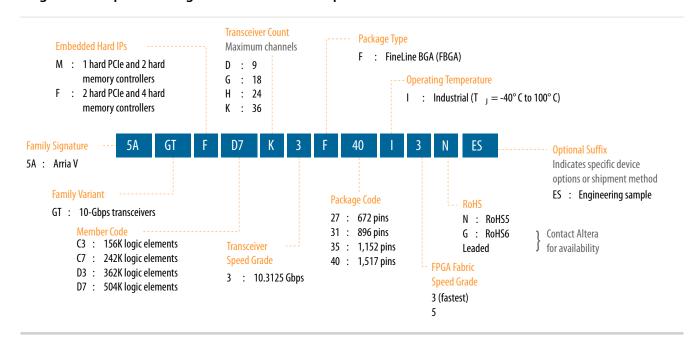
Arria V GT

This section provides the available options, maximum resource counts, and package plan for the Arria V GT devices.

⁽³⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus[®] Prime software, the number of user I/Os includes transceiver I/Os.

Available Options

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


Related Information

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 2: Sample Ordering Code and Available Options for Arria V GT Devices

Maximum Resources

Table 6: Maximum Resource Counts for Arria V GT Devices

Pos	Resource		Me	ember Code	
nes	ouice	C 3	C 7	D3	D7
Logic Eleme	nts (LE) (K)	156	242	362	504
ALM	ALM		91,680	136,880	190,240
Register	Register		366,720	547,520	760,960
Memory	M10K	10,510	13,660	17,260	24,140
(Kb)	MLAB	961	1,448	2,098	2,906
Variable-pre	Variable-precision DSP Block		800	1,045	1,156
18 x 18 Mult	18 x 18 Multiplier		1,600	2,090	2,312
PLL		10	12	12	16

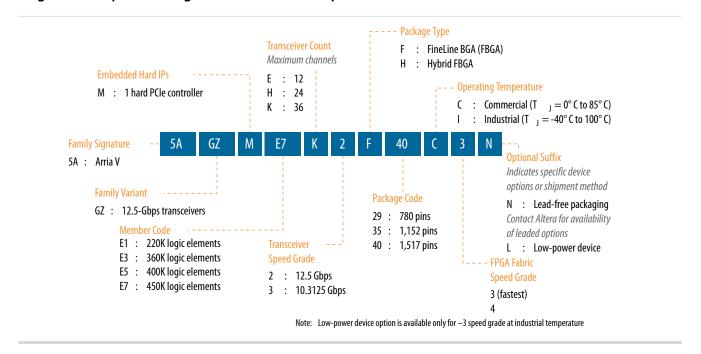
AV-51001 2015.12.21

and eighteen 10-Gbps, twelve 6-Gbps and sixteen 10-Gbps, fifteen 6-Gbps and fourteen 10-Gbps, or up to thirty-six 6-Gbps with no 10-Gbps channels.

Arria V GZ

This section provides the available options, maximum resource counts, and package plan for the Arria V GZ devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


Related Information

Altera Product Selector

Provides the latest information about Altera products.

Available Options

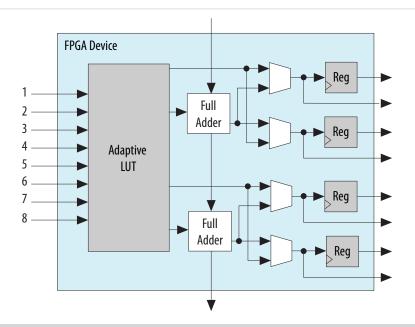
Figure 3: Sample Ordering Code and Available Options for Arria V GZ Devices

Maximum Resources

Table 8: Maximum Resource Counts for Arria V GZ Devices

Resource	Member Code							
nesource	E1	E 3	E 5	E 7				
Logic Elements (LE) (K)	220	360	400	450				
ALM	83,020	135,840	150,960	169,800				
Register	332,080	543,360	603,840	679,200				

Related Information


- Managing Device I/O Pins chapter, Quartus Prime Handbook Provides more information about vertical I/O migrations.
- Power Management in Arria V Devices
 Describes the power-up sequence required for Arria V GX and GT devices.

Adaptive Logic Module

Arria V devices use a 28 nm ALM as the basic building block of the logic fabric.

The ALM, as shown in following figure, uses an 8-input fracturable look-up table (LUT) with four dedicated registers to help improve timing closure in register-rich designs and achieve an even higher design packing capability than previous generations.

Figure 7: ALM for Arria V Devices

You can configure up to 50% of the ALMs in the Arria V devices as distributed memory using MLABs.

Related Information

Embedded Memory Capacity in Arria V Devices on page 20

Lists the embedded memory capacity for each device.

Table 15: Number of Multipliers in Arria V Devices

The table lists the variable-precision DSP resources by bit precision for each Arria V device.

Variant	Mem ber	Variable- precision	Independ	ent Input and Ope	Output Multi rator	iplications	18 x 18 Multiplier	18 x 18 Multiplier Adder Summed	
Variant	Code	DSP Block	9 x 9 Multiplier	18 x 18 Multiplier	27 x 27 Multiplier	36 x 36 Multiplier	Adder Mode	with 36 bit Input	
	A1	240	720	480	240	_	240	240	
	A3	396	1,188	792	396	_	396	396	
	A5	600	1,800	1,200	600	_	600	600	
Arria V	A7	800	2,400	1,600	800	_	800	800	
GX	B1	920	2,760	1,840	920	_	920	920	
	В3	1,045	3,135	2,090	1,045	_	1,045	1,045	
	B5	1,092	3,276	2,184	1,092	_	1,092	1,092	
	B7	1,156	3,468	2,312	1,156	_	1,156	1,156	
	C3	396	1,188	792	396	_	396	396	
Arria V	C7	800	2,400	1,600	800	_	800	800	
GT	D3	1,045	3,135	2,090	1,045	_	1,045	1,045	
	D7	1,156	3,468	2,312	1,156	_	1,156	1,156	
	E1	800	2,400	1,600	800	400	800	800	
Arria V	Е3	1,044	3,132	2,088	1,044	522	1,044	1,044	
GZ	E5	1,092	3,276	2,184	1,092	546	1,092	1,092	
	E7	1,139	3,417	2,278	1,139	569	1,139	1,139	
Arria V	В3	809	2,427	1,618	809	_	809	809	
SX	B5	1,090	3,270	2,180	1,090	_	1,090	1,090	
Arria V	D3	809	2,427	1,618	809	_	809	809	
ST	D5	1,090	3,270	2,180	1,090	_	1,090	1,090	

Embedded Memory Blocks

The embedded memory blocks in the devices are flexible and designed to provide an optimal amount of small- and large-sized memory arrays to fit your design requirements.

Types of Embedded Memory

The Arria V devices contain two types of memory blocks:

- 20 Kb M20K or 10 Kb M10K blocks—blocks of dedicated memory resources. The M20K and M10K blocks are ideal for larger memory arrays while still providing a large number of independent ports.
- 640 bit memory logic array blocks (MLABs)—enhanced memory blocks that are configured from dual-purpose logic array blocks (LABs). The MLABs are ideal for wide and shallow memory arrays. The MLABs are optimized for implementation of shift registers for digital signal processing (DSP) applications, wide shallow FIFO buffers, and filter delay lines. Each MLAB is made up of ten adaptive logic modules (ALMs). In the Arria V devices, you can configure these ALMs as ten 32 x 2 blocks, giving you one 32 x 20 simple dual-port SRAM block per MLAB. You can also configure these ALMs, in Arria V GZ devices, as ten 64 x 1 blocks, giving you one 64 x 10 simple dual-port SRAM block per MLAB.

Embedded Memory Capacity in Arria V Devices

Table 16: Embedded Memory Capacity and Distribution in Arria V Devices

		М20К		M1	0K	ML	AB	
Variant	Membe r Code	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Total RAM Bit (Kb)
	A1	_	_	800	8,000	741	463	8,463
	A3	_	_	1,051	10,510	1538	961	11,471
	A5	_	_	1,180	11,800	1877	1,173	12,973
Arria V GX	A7	_	_	1,366	13,660	2317	1,448	15,108
Allia V GA	B1	_	_	1,510	15,100	2964	1,852	16,952
	В3	_	_	1,726	17,260	3357	2,098	19,358
	B5	_	_	2,054	20,540	4052	2,532	23,072
	В7	_	_	2,414	24,140	4650	2,906	27,046
	C3	_	_	1,051	10,510	1538	961	11,471
Arria V GT	C7	_	_	1,366	13,660	2317	1,448	15,108
Allia V GI	D3	_	_	1,726	17,260	3357	2,098	19,358
	D7	_	_	2,414	24,140	4650	2,906	27,046
	E1	585	11,700	_	_	4,151	2,594	14,294
Arria V GZ	E3	957	19,140	_	_	6,792	4,245	23,385
Arria v GZ	E5	1,440	28,800	_	_	7,548	4,718	33,518
	E7	1,700	34,000	_	_	8,490	5,306	39,306
Arria V SX	В3	_	_	1,729	17,290	3223	2,014	19,304
Allia v SA	B5	_	_	2,282	22,820	4253	2,658	25,478

		M20K		M10K		MLAB		
Variant	Membe r Code	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Total RAM Bit (Kb)
Arria V ST	D3	_	_	1,729	17,290	3223	2,014	19,304
Allia V 31	D5	_	_	2,282	22,820	4253	2,658	25,478

Embedded Memory Configurations

Table 17: Supported Embedded Memory Block Configurations for Arria V Devices

This table lists the maximum configurations supported for the embedded memory blocks. The information is applicable only to the single-port RAM and ROM modes.

Memory Block	Depth (bits)	Programmable Width		
MLAB	32	x16, x18, or x20		
MLAD	64 ⁽¹¹⁾	x10		
	512	x40		
	1K	x20		
M20K	2K	x10		
WIZOK	4K	x5		
	8K	x2		
	16K	x1		
	256	x40 or x32		
	512	x20 or x16		
M10K	1K	x10 or x8		
	2K	x5 or x4		
	4K	x2		
	8K	x1		

Clock Networks and PLL Clock Sources

650 MHz Arria V devices have 16 global clock networks capable of up to operation. The clock network architecture is based on Altera's global, quadrant, and peripheral clock structure. This clock structure is supported by dedicated clock input pins and fractional PLLs.

Note: To reduce power consumption, the Quartus Prime software identifies all unused sections of the clock network and powers them down.

⁽¹¹⁾ Available for Arria V GZ devices only.

PLL Features

The PLLs in the Arria V devices support the following features:

- Frequency synthesis
- On-chip clock deskew
- Jitter attenuation
- Counter reconfiguration
- Programmable output clock duty cycles
- PLL cascading
- Reference clock switchover
- Programmable bandwidth
- Dynamic phase shift
- · Zero delay buffers

Fractional PLL

In addition to integer PLLs, the Arria V devices use a fractional PLL architecture. The devices have up to 16 PLLs, each with 18 output counters. One fractional PLL can use up to 18 output counters and two adjacent fractional PLLs share the 18 output counters. You can use the output counters to reduce PLL usage in two ways:

- Reduce the number of oscillators that are required on your board by using fractional PLLs
- Reduce the number of clock pins that are used in the device by synthesizing multiple clock frequencies from a single reference clock source

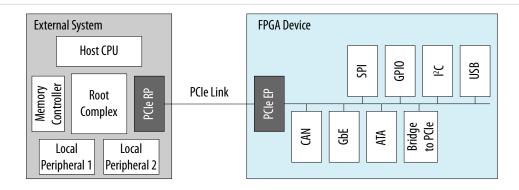
If you use the fractional PLL mode, you can use the PLLs for precision fractional-N frequency synthesis—removing the need for off-chip reference clock sources in your design.

The transceiver fractional PLLs that are not used by the transceiver I/Os can be used as general purpose fractional PLLs by the FPGA fabric.

FPGA General Purpose I/O

Arria V devices offer highly configurable GPIOs. The following list describes the features of the GPIOs:

- Programmable bus hold and weak pull-up
- $\bullet~$ LVDS output buffer with programmable differential output voltage (V $_{\rm OD}$) and programmable preemphasis
- On-chip parallel termination (R_T OCT) for all I/O banks with OCT calibration to limit the termination impedance variation
- On-chip dynamic termination that has the ability to swap between series and parallel termination, depending on whether there is read or write on a common bus for signal integrity
- Unused voltage reference (VREF) pins that can be configured as user I/Os (Arria V GX, GT, SX, and ST only)
- Easy timing closure support using the hard read FIFO in the input register path, and delay-locked loop (DLL) delay chain with fine and coarse architecture


PCIe Gen1, Gen2, and Gen 3 Hard IP

Arria V devices contain PCIe hard IP that is designed for performance and ease-of-use. The PCIe hard IP consists of the MAC, data link, and transaction layers.

The PCIe hard IP supports PCIe Gen3, Gen 2, and Gen 1 end point and root port for up to x8 lane configuration.

The PCIe endpoint support includes multifunction support for up to eight functions, as shown in the following figure. The integrated multifunction support reduces the FPGA logic requirements by up to 20,000 LEs for PCIe designs that require multiple peripherals.

Figure 8: PCIe Multifunction for Arria V Devices

The Arria V PCIe hard IP operates independently from the core logic. This independent operation allows the PCIe link to wake up and complete link training in less than 100 ms while the Arria V device completes loading the programming file for the rest of the device.

In addition, the PCIe hard IP in the Arria V device provides improved end-to-end datapath protection using ECC.

External Memory Interface

This section provides an overview of the external memory interface in Arria V devices.

Hard and Soft Memory Controllers

Arria V GX,GT, SX, and ST devices support up to four hard memory controllers for DDR3 and DDR2 SDRAM devices. Each controller supports 8 to 32 bit components of up to 4 gigabits (Gb) in density with two chip selects and optional ECC. For the Arria V SoC devices, an additional hard memory controller in the HPS supports DDR3, DDR2, and LPDDR2 SDRAM devices.

All Arria V devices support soft memory controllers for DDR3, DDR2, and LPDDR2 SDRAM devices, QDR II+, QDR II, and DDR II+ SRAM devices, and RLDRAM II devices for maximum flexibility.

Note: DDR3 SDRAM leveling is supported only in Arria V GZ devices.

24

External Memory Performance

Table 18: External Memory Interface Performance in Arria V Devices

Interface	Voltage	Hard Controller (MHz)	Soft Controller (MHz)			
interrace	(V)	Arria V GX, GT, SX, and ST	Arria V GX, GT, SX, and ST	Arria V GZ		
DDR3 SDRAM	1.5	533	667	800		
DDR3 3DRAM	1.35	533	600	800		
DDR2 SDRAM	1.8	400	400	400		
LPDDR2 SDRAM	1.2	_	400	_		
RLDRAM 3	1.2	_	_	667		
RLDRAM II	1.8	_	400	533		
KLDIWIII	1.5	_	400	533		
QDR II+ SRAM	1.8	_	400	500		
QDR II+ SIMM	1.5		400	500		
QDR II SRAM	1.8	_	400	333		
QDKII 3KAM	1.5	_	400	333		
DDR II+	1.8	_	400	_		
SRAM ⁽¹²⁾	1.5	_	400	_		

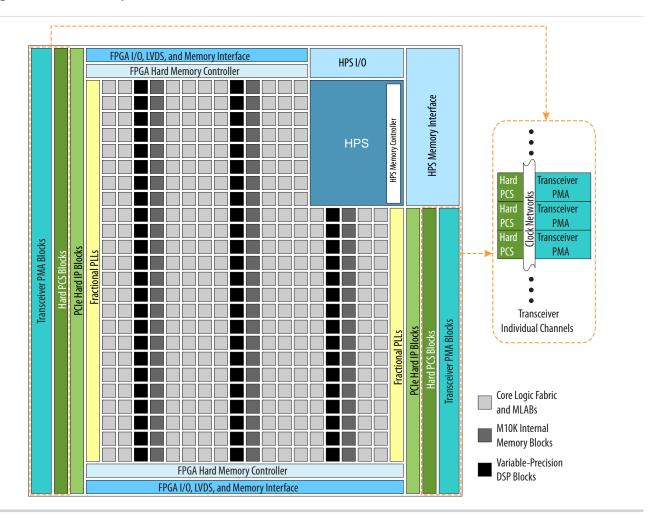
Related Information

External Memory Interface Spec Estimator

For the latest information and to estimate the external memory system performance specification, use Altera's External Memory Interface Spec Estimator tool.

HPS External Memory Performance

Table 19: HPS External Memory Interface Performance


The hard processor system (HPS) is available in Arria V SoC devices only.

Interface	Voltage (V)	HPS Hard Controller (MHz)
DDR3 SDRAM	1.5	533
	1.35	533
LPDDR2 SDRAM	1.2	333

⁽¹²⁾ Not available as Altera® IP.

Figure 11: Device Chip Overview for Arria V SX and ST Devices

PMA Features

To prevent core and I/O noise from coupling into the transceivers, the PMA block is isolated from the rest of the chip—ensuring optimal signal integrity. For the transceivers, you can use the channel PLL of an unused receiver PMA as an additional transmit PLL.

Table 20: PMA Features of the Transceivers in Arria V Devices

Features	Capability
Backplane support	 Arria V GX, GT, SX, and ST devices—Driving capability at 6.5536 Gbps with up to 25 dB channel loss Arria V GZ devices—Driving capability at 12.5 Gbps with up to 16 dB channel loss
Chip-to-chip support	 Arria V GX, GT, SX, and ST devices—Up to 10.3125 Gbps Arria V GZ devices—Up to 12.5 Gbps

Features	Capability			
PLL-based clock recovery	Superior jitter tolerance			
Programmable serializer and deserializer (SERDES)	Flexible SERDES width			
Equalization and pre-emphasis	 Arria V GX, GT, SX, and ST devices—Up to 14.37 dB of pre-emphasis and up to 4.7 dB of equalization Arria V GZ devices—4-tap pre-emphasis and de-emphasis 			
Ring oscillator transmit PLLs	611 Mbps to 10.3125 Gbps			
LC oscillator ATX transmit PLLs (Arria V GZ devices only)	600 Mbps to 12.5 Gbps			
Input reference clock range	27 MHz to 710 MHz			
Transceiver dynamic reconfiguration	Allows the reconfiguration of a single channel without affecting the operation of other channels			

PCS Features

The Arria V core logic connects to the PCS through an 8, 10, 16, 20, 32, 40, 64, 66, or 67 bit interface, depending on the transceiver data rate and protocol. Arria V devices contain PCS hard IP to support PCIe Gen1, Gen2, and Gen3, GbE, Serial RapidIO (SRIO), GPON, and CPRI.

All other standard and proprietary protocols within the following speed ranges are also supported:

- 611 Mbps to 6.5536 Gbps—supported through the custom double-width mode (up to 6.5536 Gbps) and custom single-width mode (up to 3.75 Gbps) of the transceiver PCS hard IP.
- 6.5536 Gbps to 10.3125 Gbps—supported through dedicated 80 or 64 bit interface that bypass the PCS hard IP and connects the PMA directly to the core logic. In Arria V GZ, this is supported in the transceiver PCS hard IP.

Table 21: Transceiver PCS Features for Arria V GX, GT, ST, and SX Devices

PCS Support ⁽¹³⁾	Data Rates (Gbps)	Transmitter Data Path Feature	Receiver Data Path Feature
Custom single- and double-width modes	0.611 to ~6.5536	Phase compensation FIFO	Word aligner8B/10B decoder
SRIO	1.25 to 6.25	Byte serializer 8B/10B encoder	Byte deserializer
Serial ATA	1.5, 3.0, 6.0	OB/10B chedder	Phase compensation FIFO

 $^{^{(13)}}$ Data rates above 6.5536 Gbps up to 10.3125 Gbps, such as 10GBASE-R, are supported through the soft PCS.

PCS Support ⁽¹³⁾	Data Rates (Gbps)	Transmitter Data Path Feature	Receiver Data Path Feature
PCIe Gen1 (x1, x2, x4, x8) PCIe Gen2 ⁽¹⁴⁾ (x1, x2, x4)	2.5 and 5.0	 Phase compensation FIFO Byte serializer 8B/10B encoder PIPE 2.0 interface to the core logic 	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO Rate match FIFO PIPE 2.0 interface to the core logic
GbE	1.25	Phase compensation FIFOByte serializer8B/10B encoder	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO Rate match FIFO
XAUI ⁽¹⁵⁾	3.125	 Phase compensation FIFO Byte serializer 8B/10B encoder XAUI state machine for bonding four channels 	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO XAUI state machine for realigning four channels Deskew FIFO circuitry
SDI	0.27 ⁽¹⁶⁾ , 1.485, 2.97	Phase compensation FIFO Byte serializer	Byte deserializerPhase compensation FIFO
GPON ⁽¹⁷⁾	1.25 and 2.5	byte serializer	1 mase compensation in O
CPRI ⁽¹⁸⁾	0.6144 to 6.144	 Phase compensation FIFO Byte serializer 8B/10B encoder TX deterministic latency 	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO RX deterministic latency

⁽¹³⁾ Data rates above 6.5536 Gbps up to 10.3125 Gbps, such as 10GBASE-R, are supported through the soft PCS.

PCIe Gen2 is supported only through the PCIe hard IP.

⁽¹⁵⁾ XAUI is supported through the soft PCS.

⁽¹⁶⁾ The 0.27 Gbps data rate is supported using oversampling user logic that you must implement in the FPGA fabric.

 $^{^{\}left(17\right) }$ The GPON standard does not support burst mode.

⁽¹⁸⁾ CPRI data rates above 6.5536 Gbps, such as 9.8304 Gbps, are supported through the soft PCS.

System Peripherals and Debug Access Port

Each Ethernet MAC, USB OTG, NAND flash controller, and SD/MMC controller module has an integrated DMA controller. For modules without an integrated DMA controller, an additional DMA controller module provides up to eight channels of high-bandwidth data transfers. Peripherals that communicate off-chip are multiplexed with other peripherals at the HPS pin level. This allows you to choose which peripherals to interface with other devices on your PCB.

The debug access port provides interfaces to industry standard JTAG debug probes and supports ARM CoreSight debug and core traces to facilitate software development.

HPS-FPGA AXI Bridges

The HPS-FPGA bridges, which support the Advanced Microcontroller Bus Architecture (AMBA[®]) Advanced eXtensible Interface (AXITM) specifications, consist of the following bridges:

- FPGA-to-HPS AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the FPGA fabric to issue transactions to slaves in the HPS.
- HPS-to-FPGA AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the HPS to issue transactions to slaves in the FPGA fabric.
- Lightweight HPS-to-FPGA AXI bridge—a lower latency 32 bit width bus that allows the HPS to issue transactions to slaves in the FPGA fabric. This bridge is primarily used for control and status register (CSR) accesses to peripherals in the FPGA fabric.

The HPS-FPGA AXI bridges allow masters in the FPGA fabric to communicate with slaves in the HPS logic, and vice versa. For example, the HPS-to-FPGA AXI bridge allows you to share memories instantiated in the FPGA fabric with one or both microprocessors in the HPS, while the FPGA-to-HPS AXI bridge allows logic in the FPGA fabric to access the memory and peripherals in the HPS.

Each HPS-FPGA bridge also provides asynchronous clock crossing for data transferred between the FPGA fabric and the HPS.

HPS SDRAM Controller Subsystem

The HPS SDRAM controller subsystem contains a multiport SDRAM controller and DDR PHY that are shared between the FPGA fabric (through the FPGA-to-HPS SDRAM interface), the level 2 (L2) cache, and the level 3 (L3) system interconnect. The FPGA-to-HPS SDRAM interface supports AMBA AXI and Avalon[®] Memory-Mapped (Avalon-MM) interface standards, and provides up to six individual ports for access by masters implemented in the FPGA fabric.

To maximize memory performance, the SDRAM controller subsystem supports command and data reordering, deficit round-robin arbitration with aging, and high-priority bypass features. The SDRAM controller subsystem supports DDR2, DDR3, or LPDDR2 devices up to 4 Gb in density operating at up to 533 MHz (1066 Mbps data rate).

FPGA Configuration and Processor Booting

The FPGA fabric and HPS in the SoC are powered independently. You can reduce the clock frequencies or gate the clocks to reduce dynamic power, or shut down the entire FPGA fabric to reduce total system power.

Partial Reconfiguration

Note: Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

Partial reconfiguration allows you to reconfigure part of the device while other sections of the device remain operational. This capability is important in systems with critical uptime requirements because it allows you to make updates or adjust functionality without disrupting services.

Apart from lowering cost and power consumption, partial reconfiguration increases the effective logic density of the device because placing device functions that do not operate simultaneously is not necessary. Instead, you can store these functions in external memory and load them whenever the functions are required. This capability reduces the size of the device because it allows multiple applications on a single device—saving the board space and reducing the power consumption.

Altera simplifies the time-intensive task of partial reconfiguration by building this capability on top of the proven incremental compile and design flow in the Quartus Prime design software. With the Altera solution, you do not need to know all the intricate device architecture details to perform a partial reconfiguration.

Partial reconfiguration is supported through the FPP x16 configuration interface. You can seamlessly use partial reconfiguration in tandem with dynamic reconfiguration to enable simultaneous partial reconfiguration of both the device core and transceivers.

Enhanced Configuration and Configuration via Protocol

Table 23: Configuration Modes and Features of Arria V Devices

Arria V devices support 1.8 V, 2.5 V, 3.0 V, and 3.3 V⁽¹⁹⁾ programming voltages and several configuration modes.

Mode	Data Width	Max Clock Rate (MHz)	Max Datal Rate (Mbps)	Decompression		Partial econfiguratio (20)	Remote System Update
AS through the EPCS and EPCQ serial configuration device	1 bit, 4 bits	100	_	Yes	Yes	_	Yes
PS through CPLD or external microcontroller	1 bit	125	125	Yes	Yes	_	_

⁽¹⁹⁾ Arria V GZ does not support 3.3 V.

⁽²⁰⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

Mode	Data Width	Max Clock Rate (MHz)	Max Data I Rate (Mbps)	Decompression	Design Security F	Partial econfiguratio (20)	Remote System Update
	8 bits	125	_	Yes	Yes	_	
FPP	16 bits	125	_	Yes	Yes	Yes ⁽²¹⁾	Parallel flash loader
	32 bits ⁽²²⁾	100	_	Yes	Yes	_	
CvP (PCIe)	x1, x2, x4, and x8 lanes	_	_	Yes	Yes	Yes	_
JTAG	1 bit	33	33	_	_	_	_
Configuration	16 bits	125	_	Yes	Yes	Yes (21)	Parallel flash loader
via HPS	32 bits	100	_	Yes	Yes	_	rafanei nasn loadei

Instead of using an external flash or ROM, you can configure the Arria V devices through PCIe using CvP. The CvP mode offers the fastest configuration rate and flexibility with the easy-to-use PCIe hard IP block interface. The Arria V CvP implementation conforms to the PCIe 100 ms power-up-to-active time requirement.

Note: Although Arria V GZ devices support PCIe Gen3, you can use only PCIe Gen1 and PCIe Gen2 for CvP configuration scheme.

Related Information

Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide Provides more information about CvP.

Power Management

Leveraging the FPGA architectural features, process technology advancements, and transceivers that are designed for power efficiency, the Arria V devices consume less power than previous generation Arria V FPGAs:

- Total device core power consumption—less by up to 50%.
- Transceiver channel power consumption—less by up to 50%.

Additionally, Arria V devices contain several hard IP blocks, including PCIe Gen1, Gen2, and Gen3, GbE, SRIO, GPON, and CPRI protocols, that reduce logic resources and deliver substantial power savings of up to 25% less power than equivalent soft implementations.

⁽²⁰⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

⁽²¹⁾ Supported at a maximum clock rate of 62.5 MHz.

⁽²²⁾ Arria V GZ only

Date	Version	Changes
June 2013	2013.06.03	Removed statements about contacting Altera for SFF-8431 compliance requirements. Refer to the Transceiver Architecture in Arria V Devices chapter for the requirements.
May 2013	2013.05.06	 Moved all links to the Related Information section of respective topics for easy reference. Added link to the known document issues in the Knowledge Base. Updated the available options, maximum resource counts, and per package information for the Arria V SX and ST device variants. Updated the variable DSP multipliers counts for the Arria V SX and ST device variants. Clarified that partial reconfiguration is an advanced feature. Contact Altera for support of the feature. Added footnote to clarify that MLAB 64 bits depth is available only for Arria V GZ devices. Updated description about power-up sequence requirement for device migration to improve clarity.
January 2013	2013.01.11	 Added the L optional suffix to the Arria V GZ ordering code for the – I3 speed grade. Added a note about the power-up sequence requirement if you plan to migrate your design from the Arria V GX A5 and A7, and Arria V GT C7 devices to other Arria V devices.
November 2012	2012.11.19	 Updated the summary of features. Updated Arria V GZ information regarding 3.3 V I/O support. Removed Arria V GZ engineering sample ordering code. Updated the maximum resource counts for Arria V GX and GZ. Updated Arria V ST ordering codes for transceiver count. Updated transceiver counts for Arria V ST packages. Added simplified floorplan diagrams for Arria V GZ, SX, and ST. Added FPP x32 configuration mode for Arria V GZ only. Updated CvP (PCIe) remote system update support information. Added HPS external memory performance information. Updated template.
October 2012	3.0	 Added Arria V GZ information. Updated Table 1, Table 2, Table 3, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, and Table 21. Added the "Arria V GZ" section. Added Table 8, Table 9 and Table 22.

