

Welcome to **E-XFL.COM**

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM® Cortex®-A9 MPCore™ with CoreSight™
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	925MHz
Primary Attributes	FPGA - 462K Logic Elements
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FBGA, FC (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5asxbb5d4f40c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Resource		Member Code							
nesc	uice	A1	А3	A 5	A7	B1	В3	B5	В7
6 Gbps Transc		9	9	24	24	24	24	36	36
GPIO ⁽	(3)	416	416	544	544	704	704	704	704
LVD S	Transmi tter	67	67	120	120	160	160	160	160
3	Receiver	80	80	136	136	176	176	176	176
PCIe I Block	Hard IP	1	1	2	2	2	2	2	2
Hard I Contro	Memory oller	2	2	4	4	4	4	4	4

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 5: Package Plan for Arria V GX Devices

Member Code		72 mm)	F896 (31 mm)		F1152 (35 mm)		F1517 (40 mm)	
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR
A1	336	9	416	9	_	_	_	_
A3	336	9	416	9	_	_	_	_
A5	336	9	384	18	544	24	_	_
A7	336	9	384	18	544	24	_	_
B1	_	_	384	18	544	24	704	24
В3	_	_	384	18	544	24	704	24
B5	_	_	_	_	544	24	704	36
В7	_	_	_	_	544	24	704	36

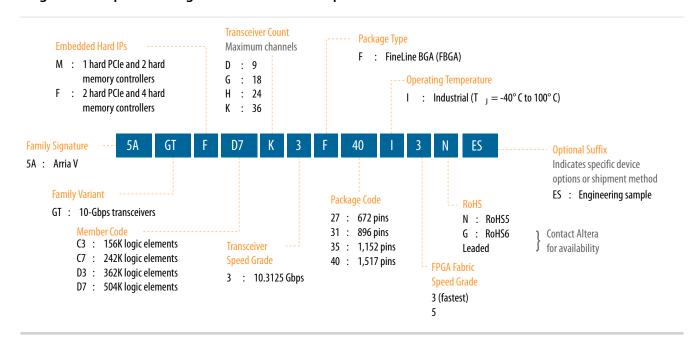
Arria V GT

This section provides the available options, maximum resource counts, and package plan for the Arria V GT devices.

⁽³⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus[®] Prime software, the number of user I/Os includes transceiver I/Os.

Available Options

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


Related Information

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 2: Sample Ordering Code and Available Options for Arria V GT Devices

Maximum Resources

Table 6: Maximum Resource Counts for Arria V GT Devices

Pos	Resource		Member Code					
nes	ouice	C 3	C 7	D3	D7			
Logic Eleme	nts (LE) (K)	156	242	362	504			
ALM		58,900	91,680	136,880	190,240			
Register	Register		366,720	547,520	760,960			
Memory	M10K	10,510	13,660	17,260	24,140			
(Kb)	MLAB	961	1,448	2,098	2,906			
Variable-pre	Variable-precision DSP Block		800	1,045	1,156			
18 x 18 Mult	18 x 18 Multiplier		1,600	2,090	2,312			
PLL		10	12	12	16			

Resource		Member Code						
Neso	ui ce	C 3	C 7	D3	D7			
Transceiver	6 Gbps ⁽⁴⁾	3 (9)	6 (24)	6 (24)	6 (36)			
Transcerver	10 Gbps ⁽⁵⁾	4	12	12	20			
GPIO ⁽⁶⁾	GPIO ⁽⁶⁾		544	704	704			
LVDS	Transmitter	68	120	160	160			
LVD3	Receiver	80	136	176	176			
PCIe Hard IP Block		1	2	2	2			
Hard Memor	Hard Memory Controller		4	4	4			

 High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

• Transceiver Architecture in Arria V Devices

Describes 10 Gbps channels usage conditions and SFF-8431 compliance requirements.

Package Plan

Table 7: Package Plan for Arria V GT Devices

Memb		F672 (27 mm)		F896 (31 mm)			F1152 (35 mm)			F151 (40 mr		
er Code		ХС	VR		ХС	VR		ХС	VR		2	KCVR
	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10-Gbps
C3	336	3 (9)	4	416	3 (9)	4	_	_	_	_	_	_
C7	_	_	_	384	6 (18)	8	544	6 (24)	12	_	_	_
D3	_	_	_	384	6 (18)	8	544	6 (24)	12	704	6 (24)	12
D7	_	_	_	_	_	_	544	6 (24)	12	704	6 (36)	20

The 6-Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10-Gbps channels as three 6-Gbps channels—the total number of 6-Gbps channels are shown in brackets. For example, you can also configure the Arria V GT D7 device in the F1517 package with nine 6-Gbps

⁽⁴⁾ The 6 Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10 Gbps channels as three 6 Gbps channels-the total number of 6 Gbps channels are shown in brackets.

⁽⁵⁾ Chip-to-chip connections only. For 10 Gbps channel usage conditions, refer to the Transceiver Architecture in Arria V Devices chapter.

⁽⁶⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

Pose	Resource		Member Code						
nesc	ruice	E1	E 3	E 5	E 7				
Memory	M20K	11,700	19,140	28,800	34,000				
(Kb)	MLAB	2,594	4,245	4,718	5,306				
Variable-pred	cision DSP Block	800	1,044	1,092	1,139				
18 x 18 Multi	18 x 18 Multiplier		2,088	2,184	2,278				
PLL		20	20	24	24				
12.5 Gbps Tr	ansceiver	24	24	36	36				
GPIO ⁽⁷⁾		414	414	674	674				
LVDS	Transmitter	99	99	166	166				
LVDS	Receiver	108	108	168	168				
PCIe Hard IF	Block	1	1	1	1				

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 9: Package Plan for Arria V GZ Devices

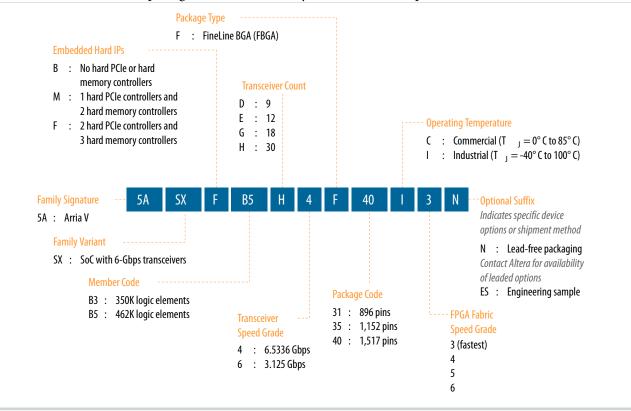
Member Code	H780 (33 mm)			152 mm)	F1517 (40 mm)		
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	
E1	342	12	414	24	_	_	
E3	342	12	414	24	_	_	
E5	_	_	534	24	674	36	
E7	_	_	534	24	674	36	

Arria V SX

This section provides the available options, maximum resource counts, and package plan for the Arria V SX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.

⁽⁷⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.


Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 4: Sample Ordering Code and Available Options for Arria V SX Devices

The -3 FPGA fabric speed grade is available only for industrial temperature devices.

Maximum Resources

Table 10: Maximum Resource Counts for Arria V SX Devices

Poso	urce	Member Code			
neso	ruice	В3	B5		
Logic Elements (LE)	(K)	350	462		
ALM		132,075	174,340		
Register	Register		697,360		
Memory (Kb)	M10K	17,290	22,820		
Memory (Ro)	MLAB	2,014	2,658		
Variable-precision D	Variable-precision DSP Block		1,090		
18 x 18 Multiplier		1,618	2,180		

Poss	ource	Member Code			
neso	ruice	В3	B5		
FPGA PLL		14	14		
HPS PLL		3	3		
6 Gbps Transceiver		30	30		
FPGA GPIO ⁽⁸⁾		540	540		
HPS I/O		208	208		
LVDS	Transmitter	120	120		
LVDS	Receiver	136	136		
PCIe Hard IP Block		2	2		
FPGA Hard Memory	Controller	3	3		
HPS Hard Memory C	Controller	1	1		
ARM Cortex-A9 MP	Core Processor	Dual-core	Dual-core		

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 11: Package Plan for Arria V SX Devices

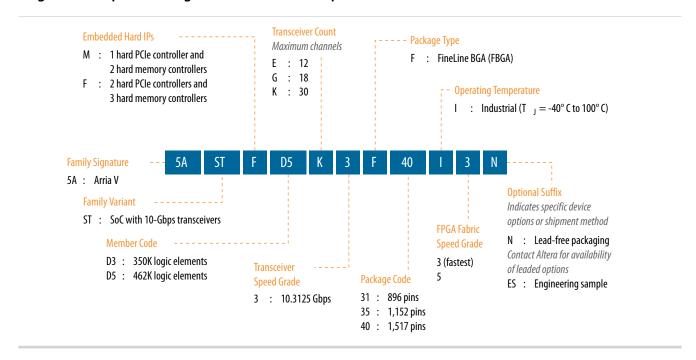
The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

	F896			F1152			F1517		
Member Code	(31 mm)			(35 mm)				(40 mn	1)
Code	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR
В3	250	208	12	385	208	18	540	208	30
B5	250	208	12	385	208	18	540	208	30

Arria V ST

This section provides the available options, maximum resource counts, and package plan for the Arria V ST devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


⁽⁸⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 5: Sample Ordering Code and Available Options for Arria V ST Devices

Maximum Resources

Table 12: Maximum Resource Counts for Arria V ST Devices

Reso	LINEO	Member Code			
Reso	ource	D3	D5		
Logic Elements (LE)	(K)	350	462		
ALM		132,075	174,340		
Register		528,300	697,360		
Memory (Kb)	M10K	17,290	22,820		
Memory (Rb)	MLAB	2,014	2,658		
Variable-precision D	SP Block	809	1,090		
18 x 18 Multiplier		1,618	2,180		
FPGA PLL		14	14		
HPS PLL		3	3		
Transceiver	6-Gbps	30	30		
Transcerver	10-Gbps ⁽⁹⁾	16	16		

Poso	ource	Member Code			
neso	raice	D3	D5		
FPGA GPIO ⁽¹⁰⁾		540	540		
HPS I/O		208	208		
LVDS	Transmitter	120	120		
LVD3	Receiver	136	136		
PCIe Hard IP Block		2	2		
FPGA Hard Memory	Controller	3	3		
HPS Hard Memory C	Controller	1	1		
ARM Cortex-A9 MP	Core Processor	Dual-core	Dual-core		

• High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

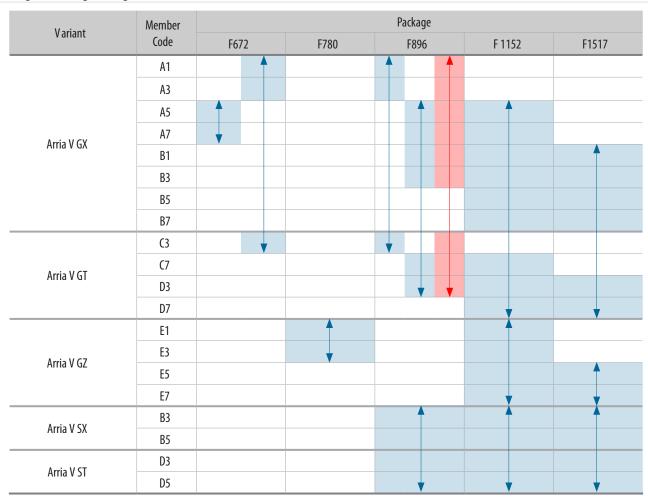
Transceiver Architecture in Arria V Devices
 Describes 10 Gbps channels usage conditions and SFF-8431 compliance requirements.

Package Plan

Table 13: Package Plan for Arria V ST Devices

The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

Memb	F896 (31 mm)		F1152 (35 mm)			F1517 (40 mm)						
er Code	FPGA	HPS	ХС	VR	FPGA	HPS	ХС	VR	FPGA	HPS		KCVR
	I I I UA I II J	6 Gbps	10 Gbps		I/O	6 Gbps	10 Gbps	GPIO	1/0	6 Gbps	10 Gbps	
D3	250	208	12	6	385	208	18	8	540	208	30	16
D5	250	208	12	6	385	208	18	8	540	208	30	16


⁽⁹⁾ Chip-to-chip connections only. For 10 Gbps channel usage conditions, refer to the Transceiver Architecture in Arria V Devices chapter.

⁽¹⁰⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

I/O Vertical Migration for Arria V Devices

Figure 6: Vertical Migration Capability Across Arria V Device Packages and Densities

The arrows indicate the vertical migration paths. Some packages have several migration paths. The devices included in each vertical migration path are shaded. You can also migrate your design across device densities in the same package option if the devices have the same dedicated pins, configuration pins, and power pins.

You can achieve the vertical migration shaded in red if you use only up to 320 GPIOs, up to nine 6 Gbps transceiver channels, and up to four 10 Gbps transceiver (for Arria V GT devices). This migration path is not shown in the Quartus Prime software Pin Migration View.

Note: To verify the pin migration compatibility, use the Pin Migration View window in the Quartus Prime software Pin Planner.

Note: Except for Arria V GX A5 and A7, and Arria V GT C7 devices, all other Arria V GX and GT devices require a specific power-up sequence. If you plan to migrate your design from Arria V GX A5 and A7, and Arria V GT C7 devices to other Arria V devices, your design must adhere to the same required power-up sequence.

Types of Embedded Memory

The Arria V devices contain two types of memory blocks:

- 20 Kb M20K or 10 Kb M10K blocks—blocks of dedicated memory resources. The M20K and M10K blocks are ideal for larger memory arrays while still providing a large number of independent ports.
- 640 bit memory logic array blocks (MLABs)—enhanced memory blocks that are configured from dual-purpose logic array blocks (LABs). The MLABs are ideal for wide and shallow memory arrays. The MLABs are optimized for implementation of shift registers for digital signal processing (DSP) applications, wide shallow FIFO buffers, and filter delay lines. Each MLAB is made up of ten adaptive logic modules (ALMs). In the Arria V devices, you can configure these ALMs as ten 32 x 2 blocks, giving you one 32 x 20 simple dual-port SRAM block per MLAB. You can also configure these ALMs, in Arria V GZ devices, as ten 64 x 1 blocks, giving you one 64 x 10 simple dual-port SRAM block per MLAB.

Embedded Memory Capacity in Arria V Devices

Table 16: Embedded Memory Capacity and Distribution in Arria V Devices

		M20K		M10K		ML	.AB	
Variant	Membe r Code	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Total RAM Bit (Kb)
	A1	_	_	800	8,000	741	463	8,463
	A3	_	_	1,051	10,510	1538	961	11,471
	A5	_	_	1,180	11,800	1877	1,173	12,973
Arria V GX	A7	_	_	1,366	13,660	2317	1,448	15,108
Allia V GA	B1	_	_	1,510	15,100	2964	1,852	16,952
	В3	_	_	1,726	17,260	3357	2,098	19,358
	B5	_	_	2,054	20,540	4052	2,532	23,072
	В7	_	_	2,414	24,140	4650	2,906	27,046
	C3	_	_	1,051	10,510	1538	961	11,471
Arria V GT	C7	_	_	1,366	13,660	2317	1,448	15,108
Allia V GI	D3	_	_	1,726	17,260	3357	2,098	19,358
	D7	_	_	2,414	24,140	4650	2,906	27,046
	E1	585	11,700	_	_	4,151	2,594	14,294
Arria V GZ	E3	957	19,140	_	_	6,792	4,245	23,385
Allia V GZ	E5	1,440	28,800	_	_	7,548	4,718	33,518
	E7	1,700	34,000	_	_	8,490	5,306	39,306
Arria V SX	В3	_	_	1,729	17,290	3223	2,014	19,304
Allia v SA	B5	_	_	2,282	22,820	4253	2,658	25,478

		M20K		M10K		MLAB		
Variant	Membe r Code	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Total RAM Bit (Kb)
Arria V ST	D3	_	_	1,729	17,290	3223	2,014	19,304
71111a V 31	D5	_	_	2,282	22,820	4253	2,658	25,478

Embedded Memory Configurations

Table 17: Supported Embedded Memory Block Configurations for Arria V Devices

This table lists the maximum configurations supported for the embedded memory blocks. The information is applicable only to the single-port RAM and ROM modes.

Memory Block	Depth (bits)	Programmable Width		
MLAB	32	x16, x18, or x20		
MLAD	64 ⁽¹¹⁾	x10		
	512	x40		
	1K	x20		
M20K	2K	x10		
WIZOK	4K	x5		
	8K	x2		
	16K	x1		
	256	x40 or x32		
	512	x20 or x16		
M10K	1K	x10 or x8		
WITOK	2K	x5 or x4		
	4K	x2		
	8K	x1		

Clock Networks and PLL Clock Sources

650 MHz Arria V devices have 16 global clock networks capable of up to operation. The clock network architecture is based on Altera's global, quadrant, and peripheral clock structure. This clock structure is supported by dedicated clock input pins and fractional PLLs.

Note: To reduce power consumption, the Quartus Prime software identifies all unused sections of the clock network and powers them down.

⁽¹¹⁾ Available for Arria V GZ devices only.

External Memory Interface Spec Estimator

For the latest information and to estimate the external memory system performance specification, use Altera's External Memory Interface Spec Estimator tool.

Low-Power Serial Transceivers

Arria V devices deliver the industry's lowest power consumption per transceiver channel:

- 12.5 Gbps transceivers at less than 170 mW
- 10 Gbps transceivers at less than 165 mW
- 6 Gbps transceivers at less than 105 mW

Arria V transceivers are designed to be compliant with a wide range of protocols and data rates.

Transceiver Channels

The transceivers are positioned on the left and right outer edges of the device. The transceiver channels consist of the physical medium attachment (PMA), physical coding sublayer (PCS), and clock networks.

The following figures are graphical representations of a top view of the silicon die, which corresponds to a reverse view for flip chip packages. Different Arria V devices may have different floorplans than the ones shown in the figures.

Figure 9: Device Chip Overview for Arria V GX and GT Devices

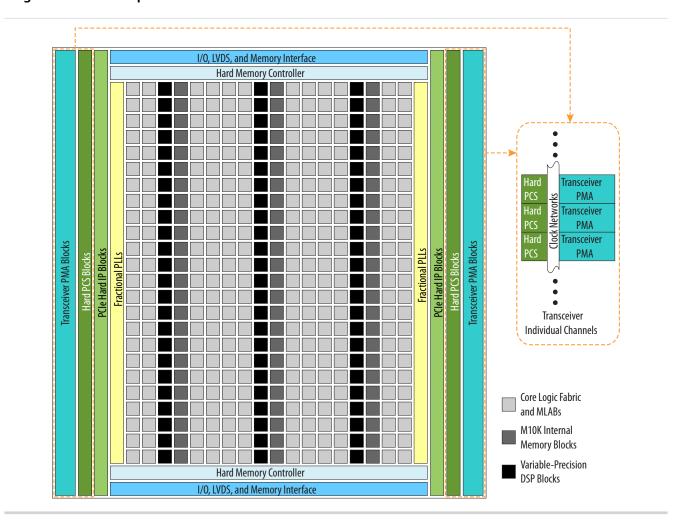
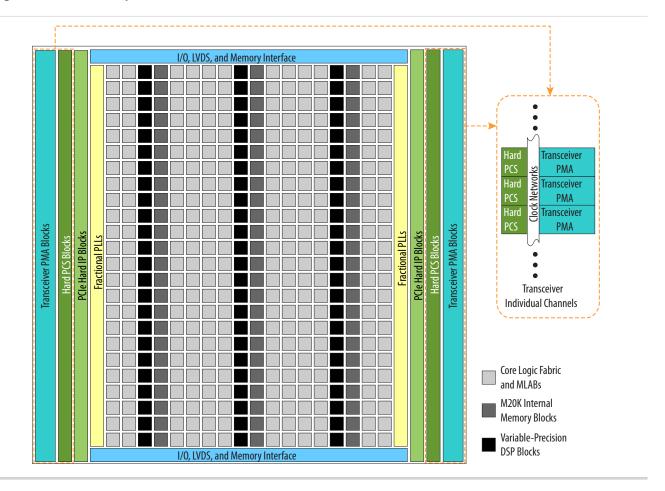



Figure 10: Device Chip Overview for Arria V GZ Devices

PCS Support ⁽¹³⁾	Data Rates (Gbps)	Transmitter Data Path Feature	Receiver Data Path Feature
PCIe Gen1 (x1, x2, x4, x8) PCIe Gen2 ⁽¹⁴⁾ (x1, x2, x4)	2.5 and 5.0	 Phase compensation FIFO Byte serializer 8B/10B encoder PIPE 2.0 interface to the core logic 	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO Rate match FIFO PIPE 2.0 interface to the core logic
GbE	1.25	Phase compensation FIFOByte serializer8B/10B encoder	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO Rate match FIFO
XAUI ⁽¹⁵⁾	3.125	 Phase compensation FIFO Byte serializer 8B/10B encoder XAUI state machine for bonding four channels 	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO XAUI state machine for realigning four channels Deskew FIFO circuitry
SDI	0.27 ⁽¹⁶⁾ , 1.485, 2.97	Phase compensation FIFO Byte serializer	Byte deserializerPhase compensation FIFO
GPON ⁽¹⁷⁾	1.25 and 2.5	byte serializer	1 mase compensation in O
CPRI ⁽¹⁸⁾	0.6144 to 6.144	 Phase compensation FIFO Byte serializer 8B/10B encoder TX deterministic latency 	 Word aligner 8B/10B decoder Byte deserializer Phase compensation FIFO RX deterministic latency

⁽¹³⁾ Data rates above 6.5536 Gbps up to 10.3125 Gbps, such as 10GBASE-R, are supported through the soft PCS.

PCIe Gen2 is supported only through the PCIe hard IP.

⁽¹⁵⁾ XAUI is supported through the soft PCS.

⁽¹⁶⁾ The 0.27 Gbps data rate is supported using oversampling user logic that you must implement in the FPGA fabric.

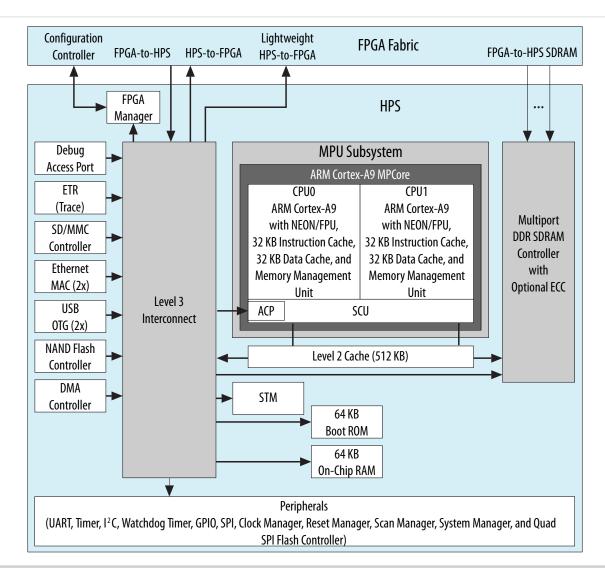
 $^{^{\}left(17\right) }$ The GPON standard does not support burst mode.

⁽¹⁸⁾ CPRI data rates above 6.5536 Gbps, such as 9.8304 Gbps, are supported through the soft PCS.

Table 22: Transceiver PCS Features for Arria V GZ Devices

Protocol	Data Rates (Gbps)	Transmitter Data Path Features	Receiver Data Path Features
Custom PHY GPON	0.6 to 9.80 1.25 and 2.5	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer Byte ordering
Custom 10G PHY	9.98 to 12.5	TX FIFOGear boxBit-slip	RX FIFOGear box
PCIe Gen1 (x1, x2 x4, x8) PCIe Gen2 (x1, x2, x4, x8)	2.5 and 5.0	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding PIPE 2.0 interface to core logic 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer, Byte ordering PIPE 2.0 interface to core logic
PCIe Gen3 (x1, x2, x4, x8)	8.0	 Phase compensation FIFO 128B/130B encoder Scrambler Gear box Bit-slip 	 Block synchronization Rate match FIFO 128B/130B decoder Descrambler Phase compensation FIFO
10GbE	10.3125	TX FIFO64B/66B encoderScramblerGear box	 RX FIFO 64B/66B decoder Descrambler Block synchronization Gear box
Interlaken	3.125 to 12.5	 TX FIFO Frame generator CRC-32 generator Scrambler Disparity generator Gear box 	 RX FIFO Frame generator CRC-32 checker Frame decoder Descrambler Disparity checker Block synchronization Gear box

SoC with HPS


Each SoC combines an FPGA fabric and an HPS in a single device. This combination delivers the flexibility of programmable logic with the power and cost savings of hard IP in these ways:

- Reduces board space, system power, and bill of materials cost by eliminating a discrete embedded processor
- Allows you to differentiate the end product in both hardware and software, and to support virtually any interface standard
- Extends the product life and revenue through in-field hardware and software updates

HPS Features

The HPS consists of a dual-core ARM Cortex-A9 MPCore processor, a rich set of peripherals, and a shared multiport SDRAM memory controller, as shown in the following figure.

Figure 12: HPS with Dual-Core ARM Cortex-A9 MPCore Processor

System Peripherals and Debug Access Port

Each Ethernet MAC, USB OTG, NAND flash controller, and SD/MMC controller module has an integrated DMA controller. For modules without an integrated DMA controller, an additional DMA controller module provides up to eight channels of high-bandwidth data transfers. Peripherals that communicate off-chip are multiplexed with other peripherals at the HPS pin level. This allows you to choose which peripherals to interface with other devices on your PCB.

The debug access port provides interfaces to industry standard JTAG debug probes and supports ARM CoreSight debug and core traces to facilitate software development.

HPS-FPGA AXI Bridges

The HPS-FPGA bridges, which support the Advanced Microcontroller Bus Architecture (AMBA[®]) Advanced eXtensible Interface (AXITM) specifications, consist of the following bridges:

- FPGA-to-HPS AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the FPGA fabric to issue transactions to slaves in the HPS.
- HPS-to-FPGA AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the HPS to issue transactions to slaves in the FPGA fabric.
- Lightweight HPS-to-FPGA AXI bridge—a lower latency 32 bit width bus that allows the HPS to issue transactions to slaves in the FPGA fabric. This bridge is primarily used for control and status register (CSR) accesses to peripherals in the FPGA fabric.

The HPS-FPGA AXI bridges allow masters in the FPGA fabric to communicate with slaves in the HPS logic, and vice versa. For example, the HPS-to-FPGA AXI bridge allows you to share memories instantiated in the FPGA fabric with one or both microprocessors in the HPS, while the FPGA-to-HPS AXI bridge allows logic in the FPGA fabric to access the memory and peripherals in the HPS.

Each HPS-FPGA bridge also provides asynchronous clock crossing for data transferred between the FPGA fabric and the HPS.

HPS SDRAM Controller Subsystem

The HPS SDRAM controller subsystem contains a multiport SDRAM controller and DDR PHY that are shared between the FPGA fabric (through the FPGA-to-HPS SDRAM interface), the level 2 (L2) cache, and the level 3 (L3) system interconnect. The FPGA-to-HPS SDRAM interface supports AMBA AXI and Avalon[®] Memory-Mapped (Avalon-MM) interface standards, and provides up to six individual ports for access by masters implemented in the FPGA fabric.

To maximize memory performance, the SDRAM controller subsystem supports command and data reordering, deficit round-robin arbitration with aging, and high-priority bypass features. The SDRAM controller subsystem supports DDR2, DDR3, or LPDDR2 devices up to 4 Gb in density operating at up to 533 MHz (1066 Mbps data rate).

FPGA Configuration and Processor Booting

The FPGA fabric and HPS in the SoC are powered independently. You can reduce the clock frequencies or gate the clocks to reduce dynamic power, or shut down the entire FPGA fabric to reduce total system power.

Partial Reconfiguration

Note: Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

Partial reconfiguration allows you to reconfigure part of the device while other sections of the device remain operational. This capability is important in systems with critical uptime requirements because it allows you to make updates or adjust functionality without disrupting services.

Apart from lowering cost and power consumption, partial reconfiguration increases the effective logic density of the device because placing device functions that do not operate simultaneously is not necessary. Instead, you can store these functions in external memory and load them whenever the functions are required. This capability reduces the size of the device because it allows multiple applications on a single device—saving the board space and reducing the power consumption.

Altera simplifies the time-intensive task of partial reconfiguration by building this capability on top of the proven incremental compile and design flow in the Quartus Prime design software. With the Altera solution, you do not need to know all the intricate device architecture details to perform a partial reconfiguration.

Partial reconfiguration is supported through the FPP x16 configuration interface. You can seamlessly use partial reconfiguration in tandem with dynamic reconfiguration to enable simultaneous partial reconfiguration of both the device core and transceivers.

Enhanced Configuration and Configuration via Protocol

Table 23: Configuration Modes and Features of Arria V Devices

Arria V devices support 1.8 V, 2.5 V, 3.0 V, and 3.3 V⁽¹⁹⁾ programming voltages and several configuration modes.

Mode	Data Width	Max Clock Rate (MHz)	Max Datal Rate (Mbps)	Decompression		Partial econfiguratio (20)	Remote System Update
AS through the EPCS and EPCQ serial configuration device	1 bit, 4 bits	100	_	Yes	Yes	_	Yes
PS through CPLD or external microcontroller	1 bit	125	125	Yes	Yes	_	_

⁽¹⁹⁾ Arria V GZ does not support 3.3 V.

⁽²⁰⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

Date	Version	Changes
July 2012	2.1	 Added –I3 speed grade to Figure 1 for Arria V GX devices. Updated the 6-Gbps transceiver speed from 6.553 Gbps to 6.5536 Gbps in Figure 3 and Figure 1.
June 2012	2.0	 Restructured the document. Added the "Embedded Memory Capacity" and "Embedded Memory Configurations" sections. Added Table 1, Table 3, Table 12, Table 15, and Table 16. Updated Table 2, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 13, Table 14, and Table 19. Updated Figure 1, Figure 2, Figure 3, Figure 4, and Figure 8. Updated the "FPGA Configuration and Processor Booting" and "Hardware and Software Development" sections. Text edits throughout the document.
February 2012	1.3	 Updated Table 1–7 and Table 1–8. Updated Figure 1–9 and Figure 1–10. Minor text edits.
December 2011	1.2	Minor text edits.
November 2011	1.1	 Updated Table 1–1, Table 1–2, Table 1–3, Table 1–4, Table 1–6, Table 1–7, Table 1–9, and Table 1–10. Added "SoC FPGA with HPS" section. Updated "Clock Networks and PLL Clock Sources" and "Ordering Information" sections. Updated Figure 1–5. Added Figure 1–6. Minor text edits.
August 2011	1.0	Initial release.

