
E·XFL

Intel - 5ASXFB3H4F40C4N Datasheet

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

2014110	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM [®] Cortex [®] -A9 MPCore [™] with CoreSight [™]
Flash Size	
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	925MHz
Primary Attributes	FPGA - 350K Logic Elements
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FBGA, FC (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5asxfb3h4f40c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature		Description				
	Variable-precision DSP Memory controller (Arria V GX, GT, SX, and ST only)	 Native support for up to four signal processing precision levels: Three 9 x 9, two 18 x 18, or one 27 x 27 multiplier in the same variable-precision DSP block One 36 x 36 multiplier using two variable-precision DSP blocks (Arria V GZ devices only) 64-bit accumulator and cascade for systolic finite impulse responses (FIRs) Embedded internal coefficient memory Preadder/subtractor for improved efficiency DDR3 and DDR2 				
Embedded Hard IP blocks	Embedded transceiver I/O	 Custom implementation: Arria V GX and SX devices—up to 6.5536 Gbps Arria V GT and ST devices—up to 10.3125 Gbps Arria V GZ devices—up to 12.5 Gbps PCI Express[®] (PCIe[®]) Gen2 (x1, x2, or x4) and Gen1 (x1, x2, x4, or x8) hard IP with multifunction support, endpoint, and root port PCIe Gen3 (x1, x2, x4, or x8) support (Arria V GZ only) Gbps Ethernet (GbE) and XAUI physical coding sublayer (PCS) Common Public Radio Interface (CPRI) PCS Gigabit-capable passive optical network (GPON) PCS 10-Gbps Ethernet (10GbE) PCS (Arria V GZ only) Serial RapidIO[®] (SRIO) PCS Interlaken PCS (Arria V GZ only) 				
Clock networks	 Up to 650 MHz global clock network Global, quadrant, and peripheral clock networks Clock networks that are not used can be powered down to reduce dynamic power 					
Phase-locked loops (PLLs)	 High-resolution fractional PLLs Precision clock synthesis, clock delay compensation, and zero delay buffering (ZDB) Integer mode and fractional mode LC oscillator ATX transmitter PLLs (Arria V GZ only) 					

Summary of Arria V Features

4

Feature	Description
FPGA General- purpose I/Os (GPIOs)	 1.6 Gbps LVDS receiver and transmitter 800 MHz/1.6 Gbps external memory interface On-chip termination (OCT) 3.3 V support ⁽²⁾
External Memory Interface	 Memory interfaces with low latency: Hard memory controller-up to 1.066 Gbps Soft memory controller-up to 1.6 Gbps
Low-power high- speed serial interface	 600 Mbps to 12.5 Gbps integrated transceiver speed Less than 105 mW per channel at 6 Gbps, less than 165 mW per channel at 10 Gbps, and less than 170 mW per channel at 12.5 Gbps Transmit pre-emphasis and receiver equalization Dynamic partial reconfiguration of individual channels Physical medium attachment (PMA) with soft PCS that supports 9.8304 Gbps CPRI (Arria V GT and ST only) PMA with hard PCS that supports up to 9.8 Gbps CPRI (Arria V GZ only) Hard PCS that supports 10GBASE-R and 10GBASE-KR (Arria V GZ only)
HPS (Arria V SX and ST devices only)	 Dual-core ARM Cortex-A9 MPCore processor—up to 1.05 GHz maximum frequency with support for symmetric and asymmetric multiprocessing Interface peripherals—10/100/1000 Ethernet media access control (EMAC), USB 2.0 On-The-GO (OTG) controller, quad serial peripheral interface (QSPI) flash controller, NAND flash controller, Secure Digital/MultiMediaCard (SD/MMC) controller, UART, serial peripheral interface (SPI), I2C interface, and up to 85 HPS GPIO interfaces System peripherals—general-purpose timers, watchdog timers, direct memory access (DMA) controller, FPGA configuration manager, and clock and reset managers On-chip RAM and boot ROM HPS-FPGA bridges—include the FPGA-to-HPS, HPS-to-FPGA, and lightweight HPS-to-FPGA bridges that allow the FPGA fabric to issue transactions to slaves in the HPS, and vice versa FPGA-to-HPS SDRAM controller subsystem—provides a configurable interface to the multiport front end (MPFE) of the HPS SDRAM controller ARM CoreSight[™] JTAG debug access port, trace port, and on-chip trace storage

 $^{^{(2)}\,}$ Arria V GZ devices support 3.3 V with a 3.0 V V_{CCIO}.

Feature	Description
Configuration	 Tamper protection-comprehensive design protection to protect your valuable IP investments Enhanced advanced encryption standard (AES) design security features CvP Partial and dynamic reconfiguration of the FPGA Active serial (AS) x1 and x4, passive serial (PS), JTAG, and fast passive parallel (FPP) x8, x16, and x32 (Arria V GZ) configuration options Remote system upgrade

Arria V Device Variants and Packages

Table 3: Device Variants for the Arria V Device Family

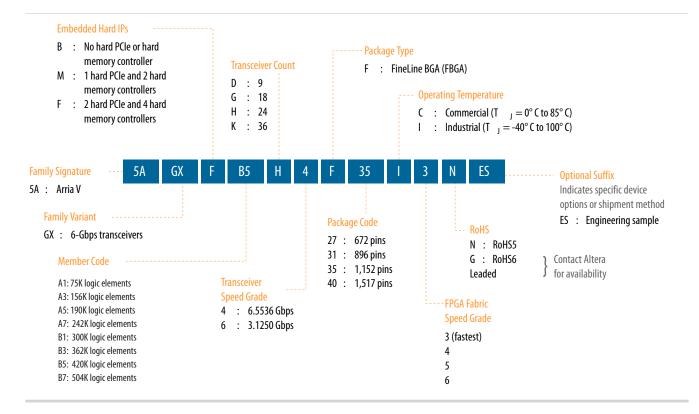
Variant	Description
Arria V GX	FPGA with integrated 6.5536 Gbps transceivers that provides bandwidth, cost, and power levels that are optimized for high-volume data and signal-processing applications
Arria V GT	FPGA with integrated 10.3125 Gbps transceivers that provides enhanced high-speed serial I/O bandwidth for cost-sensitive data and signal processing applications
Arria V GZ	FPGA with integrated 12.5 Gbps transceivers that provides enhanced high-speed serial I/O bandwidth for high-performance and cost-sensitive data and signal processing applications
Arria V SX	SoC with integrated ARM-based HPS and 6.5536 Gbps transceivers
Arria V ST	SoC with integrated ARM-based HPS and 10.3125 Gbps transceivers

Arria V GX

This section provides the available options, maximum resource counts, and package plan for the Arria V GX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.

Related Information


Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 1: Sample Ordering Code and Available Options for Arria V GX Devices

Maximum Resources

Table 4: Maximum Resource Counts for Arria V GX Devices

Poro	Resource		Member Code								
heso			A3	A5	A7	B1	B3	B5	B7		
U	Logic Elements (LE) (K)		156	190	242	300	362	420	504		
ALM	ALM		58,900	71,698	91,680	113,208	136,880	158,491	190,240		
Registe	Register		235,600	286,792	366,720	452,832	547,520	633,964	760,960		
Mem	M10K	8,000	10,510	11,800	13,660	15,100	17,260	20,540	24,140		
ory (Kb)	MLAB	463	961	1,173	1,448	1,852	2,098	2,532	2,906		
	Variable- precision DSP Block		396	600	800	920	1,045	1,092	1,156		
	18 x 18 Multiplier		792	1,200	1,600	1,840	2,090	2,184	2,312		
PLL		10	10	12	12	12	12	16	16		

Arria V Device Overview

Beco	Resource		Member Code						
Neso		C3	С7	D3	D7				
Transceiver	6 Gbps ⁽⁴⁾	3 (9)	6 (24)	6 (24)	6 (36)				
Tanscerver	10 Gbps ⁽⁵⁾	4	12	12	20				
GPIO ⁽⁶⁾	GPIO ⁽⁶⁾		544	704	704				
LVDS	Transmitter	68	120	160	160				
LVD3	Receiver	80	136	176	176				
PCIe Hard IP	PCIe Hard IP Block		2	2	2				
Hard Memor	y Controller	2	4	4	4				

Related Information

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

• **Transceiver Architecture in Arria V Devices** Describes 10 Gbps channels usage conditions and SFF-8431 compliance requirements.

Package Plan

Memb		F672 (27 mm)		F896 (31 mm)		F1152 (35 mm)		F1517 (40 mm)				
er Code		ХС	VR		XCVR		XCVR		XCVR		KCVR	
	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10-Gbps
C3	336	3 (9)	4	416	3 (9)	4	_	_	_	—	_	_
C7	_	_	_	384	6 (18)	8	544	6 (24)	12	—	_	—
D3	_	_	_	384	6 (18)	8	544	6 (24)	12	704	6 (24)	12
D7							544	6 (24)	12	704	6 (36)	20

Table 7: Package Plan for Arria V GT Devices

The 6-Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10-Gbps channels as three 6-Gbps channels—the total number of 6-Gbps channels are shown in brackets. For example, you can also configure the Arria V GT D7 device in the F1517 package with nine 6-Gbps

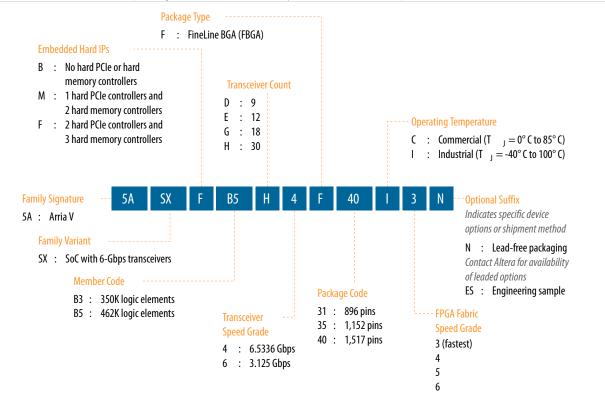
⁽⁴⁾ The 6 Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10 Gbps channels as three 6 Gbps channels-the total number of 6 Gbps channels are shown in brackets.

⁽⁵⁾ Chip-to-chip connections only. For 10 Gbps channel usage conditions, refer to the Transceiver Architecture in Arria V Devices chapter.

⁽⁶⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

12 Available Options

Related Information


Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 4: Sample Ordering Code and Available Options for Arria V SX Devices

The –3 FPGA fabric speed grade is available only for industrial temperature devices.

Maximum Resources

Table 10: Maximum Resource Counts for Arria V SX Devices

Poss	ource	Member Code			
nesc		B3	B5		
Logic Elements (LE)	(K)	350	462		
ALM		132,075	174,340		
Register		528,300	697,360		
Momory (Kb)	M10K	17,290	22,820		
Memory (Kb)	MLAB	2,014	2,658		
Variable-precision DSP Block		809	1,090		
18 x 18 Multiplier		1,618	2,180		

Arria V Device Overview

Doce	ource	Member Code			
nesc	Jurce	B3	В5		
FPGA PLL		14	14		
HPS PLL		3	3		
6 Gbps Transceiver		30	30		
FPGA GPIO ⁽⁸⁾		540	540		
HPS I/O		208	208		
LVDS	Transmitter	120	120		
	Receiver	136	136		
PCIe Hard IP Block		2	2		
FPGA Hard Memory	Controller	3	3		
HPS Hard Memory C	Controller	1	1		
ARM Cortex-A9 MP	Core Processor	Dual-core	Dual-core		

Related Information

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 11: Package Plan for Arria V SX Devices

The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

	F896			F1152			F1517		
Member Code	(31 mm)			(35 mm)			(40 mm)		
Code	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR
B3	250	208	12	385	208	18	540	208	30
B5	250	208	12	385	208	18	540	208	30

Arria V ST

This section provides the available options, maximum resource counts, and package plan for the Arria V ST devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.

⁽⁸⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

Poso	ource	Member Code			
hesu	Juice	D3	D5		
FPGA GPIO ⁽¹⁰⁾		540	540		
HPS I/O		208	208		
LVDS	Transmitter	120	120		
	Receiver	136	136		
PCIe Hard IP Block		2	2		
FPGA Hard Memory	Controller	3	3		
HPS Hard Memory C	Controller	1	1		
ARM Cortex-A9 MP	Core Processor	Dual-core	Dual-core		

Related Information

• High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

• Transceiver Architecture in Arria V Devices Describes 10 Gbps channels usage conditions and SFF-8431 compliance requirements.

Package Plan

Table 13: Package Plan for Arria V ST Devices

The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

Memb	F896 (31 mm)			F1152 (35 mm)				F1517 (40 mm)				
er Code	FPGA GPIO	HPS I/O	XC 6 Gbps	VR 10 Gbps	FPGA GPIO	HPS I/O	XC 6 Gbps	VR 10 Gbps	FPGA GPIO	HPS I/O) 6 Gbps	KCVR 10 Gbps
D3	250	208	12	6	385	208	18	8	540	208	30	16
D5	250	208	12	6	385	208	18	8	540	208	30	16

⁽⁹⁾ Chip-to-chip connections only. For 10 Gbps channel usage conditions, refer to the Transceiver Architecture in Arria V Devices chapter.

⁽¹⁰⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

I/O Vertical Migration for Arria V Devices

Figure 6: Vertical Migration Capability Across Arria V Device Packages and Densities

The arrows indicate the vertical migration paths. Some packages have several migration paths. The devices included in each vertical migration path are shaded. You can also migrate your design across device densities in the same package option if the devices have the same dedicated pins, configuration pins, and power pins.

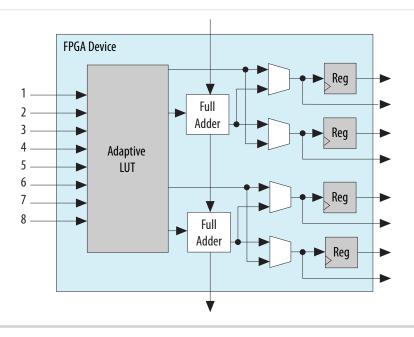
Madant	Member	Package							
Variant	Code	F67.	2	F780	F896	F 1152	F1517		
	A1					^			
	A3								
	A5								
Arria V GX	A7	V							
	B1						•		
	B3								
	B5								
	B7								
	C3		•						
Arria V GT	С7								
Alla V GI	D3				•				
	D7					•	•		
	E1					↑			
Arria V GZ	E3			•					
Allia V GZ	E5						•		
	E7					•			
Arria V SX	B3					↑			
	B5								
Arria V ST	D3								
AIIId V SI	D5					•			

You can achieve the vertical migration shaded in red if you use only up to 320 GPIOs, up to nine 6 Gbps transceiver channels, and up to four 10 Gbps transceiver (for Arria V GT devices). This migration path is not shown in the Quartus Prime software Pin Migration View.

- **Note:** To verify the pin migration compatibility, use the Pin Migration View window in the Quartus Prime software Pin Planner.
- **Note:** Except for Arria V GX A5 and A7, and Arria V GT C7 devices, all other Arria V GX and GT devices require a specific power-up sequence. If you plan to migrate your design from Arria V GX A5 and A7, and Arria V GT C7 devices to other Arria V devices, your design must adhere to the same required power-up sequence.

Arria V Device Overview

Related Information


- Managing Device I/O Pins chapter, Quartus Prime Handbook Provides more information about vertical I/O migrations.
- **Power Management in Arria V Devices** Describes the power-up sequence required for Arria V GX and GT devices.

Adaptive Logic Module

Arria V devices use a 28 nm ALM as the basic building block of the logic fabric.

The ALM, as shown in following figure, uses an 8-input fracturable look-up table (LUT) with four dedicated registers to help improve timing closure in register-rich designs and achieve an even higher design packing capability than previous generations.

Figure 7: ALM for Arria V Devices

You can configure up to 50% of the ALMs in the Arria V devices as distributed memory using MLABs.

Related Information

Embedded Memory Capacity in Arria V Devices on page 20 Lists the embedded memory capacity for each device.

Table 15: Number of Multipliers in Arria V Devices

Variant	Mem ber	Variable- precision DSP Block	Independ	ent Input and Ope	18 x 18 Multiplier	18 x 18 Multiplier Adder Summed		
variant	Code		9 x 9 Multiplier	18 x 18 Multiplier	27 x 27 Multiplier	36 x 36 Multiplier	Adder Mode	with 36 bit Input
	A1	240	720	480	240		240	240
	A3	396	1,188	792	396	—	396	396
	A5	600	1,800	1,200	600		600	600
Arria V	A7	800	2,400	1,600	800	_	800	800
GX	B1	920	2,760	1,840	920		920	920
	B3	1,045	3,135	2,090	1,045	_	1,045	1,045
	B5	1,092	3,276	2,184	1,092		1,092	1,092
	B7	1,156	3,468	2,312	1,156		1,156	1,156
	C3	396	1,188	792	396		396	396
Arria V	C7	800	2,400	1,600	800		800	800
GT	D3	1,045	3,135	2,090	1,045		1,045	1,045
	D7	1,156	3,468	2,312	1,156		1,156	1,156
	E1	800	2,400	1,600	800	400	800	800
Arria V	E3	1,044	3,132	2,088	1,044	522	1,044	1,044
GΖ	E5	1,092	3,276	2,184	1,092	546	1,092	1,092
	E7	1,139	3,417	2,278	1,139	569	1,139	1,139
Arria V	B3	809	2,427	1,618	809		809	809
SX	B5	1,090	3,270	2,180	1,090		1,090	1,090
Arria V	D3	809	2,427	1,618	809		809	809
ST	D5	1,090	3,270	2,180	1,090	_	1,090	1,090

The table lists the variable-precision DSP resources by bit precision for each Arria V device.

Embedded Memory Blocks

The embedded memory blocks in the devices are flexible and designed to provide an optimal amount of small- and large-sized memory arrays to fit your design requirements.

Types of Embedded Memory

The Arria V devices contain two types of memory blocks:

- 20 Kb M20K or 10 Kb M10K blocks—blocks of dedicated memory resources. The M20K and M10K blocks are ideal for larger memory arrays while still providing a large number of independent ports.
- 640 bit memory logic array blocks (MLABs)—enhanced memory blocks that are configured from dualpurpose logic array blocks (LABs). The MLABs are ideal for wide and shallow memory arrays. The MLABs are optimized for implementation of shift registers for digital signal processing (DSP) applications, wide shallow FIFO buffers, and filter delay lines. Each MLAB is made up of ten adaptive logic modules (ALMs). In the Arria V devices, you can configure these ALMs as ten 32 x 2 blocks, giving you one 32 x 20 simple dual-port SRAM block per MLAB. You can also configure these ALMs, in Arria V GZ devices, as ten 64 x 1 blocks, giving you one 64 x 10 simple dual-port SRAM block per MLAB.

Embedded Memory Capacity in Arria V Devices

		М20К		M1	10K	MLAB		
Variant	Membe r Code	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Total RAM Bit (Kb)
	A1	_		800	8,000	741	463	8,463
	A3	_	_	1,051	10,510	1538	961	11,471
	A5	_		1,180	11,800	1877	1,173	12,973
Arria V GX	A7	_	_	1,366	13,660	2317	1,448	15,108
Allia V GA	B1	_		1,510	15,100	2964	1,852	16,952
	B3			1,726	17,260	3357	2,098	19,358
	B5			2,054	20,540	4052	2,532	23,072
	B7	_		2,414	24,140	4650	2,906	27,046
	C3			1,051	10,510	1538	961	11,471
Arria V GT	C7	_	_	1,366	13,660	2317	1,448	15,108
Allia v GI	D3	_		1,726	17,260	3357	2,098	19,358
	D7			2,414	24,140	4650	2,906	27,046
	E1	585	11,700	_	_	4,151	2,594	14,294
Arria V GZ	E3	957	19,140	—	_	6,792	4,245	23,385
Arria V GZ	E5	1,440	28,800	_	_	7,548	4,718	33,518
	E7	1,700	34,000	—	—	8,490	5,306	39,306
Arria V SX	B3	_	_	1,729	17,290	3223	2,014	19,304
	B5	—	—	2,282	22,820	4253	2,658	25,478

Table 16: Embedded Memory Capacity and Distribution in Arria V Devices

Arria V Device Overview

PLL Features

The PLLs in the Arria V devices support the following features:

- Frequency synthesis
- On-chip clock deskew
- Jitter attenuation
- Counter reconfiguration
- Programmable output clock duty cycles
- PLL cascading
- Reference clock switchover
- Programmable bandwidth
- Dynamic phase shift
- Zero delay buffers

Fractional PLL

In addition to integer PLLs, the Arria V devices use a fractional PLL architecture. The devices have up to 16 PLLs, each with 18 output counters. One fractional PLL can use up to 18 output counters and two adjacent fractional PLLs share the 18 output counters. You can use the output counters to reduce PLL usage in two ways:

- Reduce the number of oscillators that are required on your board by using fractional PLLs
- Reduce the number of clock pins that are used in the device by synthesizing multiple clock frequencies from a single reference clock source

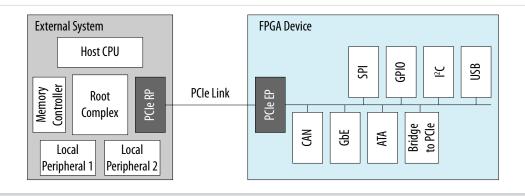
If you use the fractional PLL mode, you can use the PLLs for precision fractional-N frequency synthesis—removing the need for off-chip reference clock sources in your design.

The transceiver fractional PLLs that are not used by the transceiver I/Os can be used as general purpose fractional PLLs by the FPGA fabric.

FPGA General Purpose I/O

Arria V devices offer highly configurable GPIOs. The following list describes the features of the GPIOs:

- Programmable bus hold and weak pull-up
- + LVDS output buffer with programmable differential output voltage (V $_{\rm OD}$) and programmable preemphasis
- On-chip parallel termination (R_T OCT) for all I/O banks with OCT calibration to limit the termination impedance variation
- On-chip dynamic termination that has the ability to swap between series and parallel termination, depending on whether there is read or write on a common bus for signal integrity
- Unused voltage reference (VREF) pins that can be configured as user I/Os (Arria V GX, GT, SX, and ST only)
- Easy timing closure support using the hard read FIFO in the input register path, and delay-locked loop (DLL) delay chain with fine and coarse architecture


PCIe Gen1, Gen2, and Gen 3 Hard IP

Arria V devices contain PCIe hard IP that is designed for performance and ease-of-use. The PCIe hard IP consists of the MAC, data link, and transaction layers.

The PCIe hard IP supports PCIe Gen3, Gen 2, and Gen 1 end point and root port for up to x8 lane configuration.

The PCIe endpoint support includes multifunction support for up to eight functions, as shown in the following figure. The integrated multifunction support reduces the FPGA logic requirements by up to 20,000 LEs for PCIe designs that require multiple peripherals.

Figure 8: PCIe Multifunction for Arria V Devices

The Arria V PCIe hard IP operates independently from the core logic. This independent operation allows the PCIe link to wake up and complete link training in less than 100 ms while the Arria V device completes loading the programming file for the rest of the device.

In addition, the PCIe hard IP in the Arria V device provides improved end-to-end datapath protection using ECC.

External Memory Interface

This section provides an overview of the external memory interface in Arria V devices.

Hard and Soft Memory Controllers

Arria V GX, GT, SX, and ST devices support up to four hard memory controllers for DDR3 and DDR2 SDRAM devices. Each controller supports 8 to 32 bit components of up to 4 gigabits (Gb) in density with two chip selects and optional ECC. For the Arria V SoC devices, an additional hard memory controller in the HPS supports DDR3, DDR2, and LPDDR2 SDRAM devices.

All Arria V devices support soft memory controllers for DDR3, DDR2, and LPDDR2 SDRAM devices, QDR II+, QDR II, and DDR II+ SRAM devices, and RLDRAM II devices for maximum flexibility.

Note: DDR3 SDRAM leveling is supported only in Arria V GZ devices.

Arria V Device Overview

Altera Corporation

23

External Memory Performance

Interface	Voltage	Hard Controller (MHz)	Soft Controller (MHz)			
interiace	(V)	Arria V GX, GT, SX, and ST	Arria V GX, GT, SX, and ST	Arria V GZ		
DDR3 SDRAM	1.5	533	667	800		
DDRJ SDRAM	1.35	533	600	800		
DDR2 SDRAM	1.8	400	400	400		
LPDDR2 SDRAM	1.2	_	400	_		
RLDRAM 3	1.2	_	—	667		
RLDRAM II	1.8		400	533		
	1.5		400	533		
QDR II+ SRAM	1.8		400	500		
QDK II+ SKAM	1.5		400	500		
QDR II SRAM	1.8		400	333		
	1.5		400	333		
DDR II+	1.8		400	<u> </u>		
SRAM ⁽¹²⁾	1.5		400	_		

Table 18: External Memory Interface Performance in Arria V Devices

Related Information

External Memory Interface Spec Estimator

For the latest information and to estimate the external memory system performance specification, use Altera's External Memory Interface Spec Estimator tool.

HPS External Memory Performance

Table 19: HPS External Memory Interface Performance

The hard processor system (HPS) is available in Arria V SoC devices only.

Interface	Voltage (V)	HPS Hard Controller (MHz)
DDR3 SDRAM	1.5	533
DDR5 SDRAM	1.35	533
LPDDR2 SDRAM	1.2	333

Arria V Device Overview

⁽¹²⁾ Not available as Altera[®] IP.

Related Information

External Memory Interface Spec Estimator

For the latest information and to estimate the external memory system performance specification, use Altera's External Memory Interface Spec Estimator tool.

Low-Power Serial Transceivers

Arria V devices deliver the industry's lowest power consumption per transceiver channel:

- 12.5 Gbps transceivers at less than 170 mW
- 10 Gbps transceivers at less than 165 mW
- 6 Gbps transceivers at less than 105 mW

Arria V transceivers are designed to be compliant with a wide range of protocols and data rates.

Transceiver Channels

The transceivers are positioned on the left and right outer edges of the device. The transceiver channels consist of the physical medium attachment (PMA), physical coding sublayer (PCS), and clock networks.

The following figures are graphical representations of a top view of the silicon die, which corresponds to a reverse view for flip chip packages. Different Arria V devices may have different floorplans than the ones shown in the figures.

Arria V Device Overview

Altera Corporation

Features	Capability					
PLL-based clock recovery	Superior jitter tolerance					
Programmable serializer and deserializer (SERDES)	Flexible SERDES width					
Equalization and pre-emphasis	 Arria V GX, GT, SX, and ST devices—Up to 14.37 dB of pre-emphasis and up to 4.7 dB of equalization Arria V GZ devices—4-tap pre-emphasis and de-emphasis 					
Ring oscillator transmit PLLs	611 Mbps to 10.3125 Gbps					
LC oscillator ATX transmit PLLs (Arria V GZ devices only)	600 Mbps to 12.5 Gbps					
Input reference clock range	27 MHz to 710 MHz					
Transceiver dynamic reconfigu- ration	Allows the reconfiguration of a single channel without affecting the operation of other channels					

PCS Features

The Arria V core logic connects to the PCS through an 8, 10, 16, 20, 32, 40, 64, 66, or 67 bit interface, depending on the transceiver data rate and protocol. Arria V devices contain PCS hard IP to support PCIe Gen1, Gen2, and Gen3, GbE, Serial RapidIO (SRIO), GPON, and CPRI.

All other standard and proprietary protocols within the following speed ranges are also supported:

- 611 Mbps to 6.5536 Gbps—supported through the custom double-width mode (up to 6.5536 Gbps) and custom single-width mode (up to 3.75 Gbps) of the transceiver PCS hard IP.
- 6.5536 Gbps to 10.3125 Gbps—supported through dedicated 80 or 64 bit interface that bypass the PCS hard IP and connects the PMA directly to the core logic. In Arria V GZ, this is supported in the transceiver PCS hard IP.

Table 21: Transceiver PCS Features for Arria V GX, GT, ST, and SX Devices

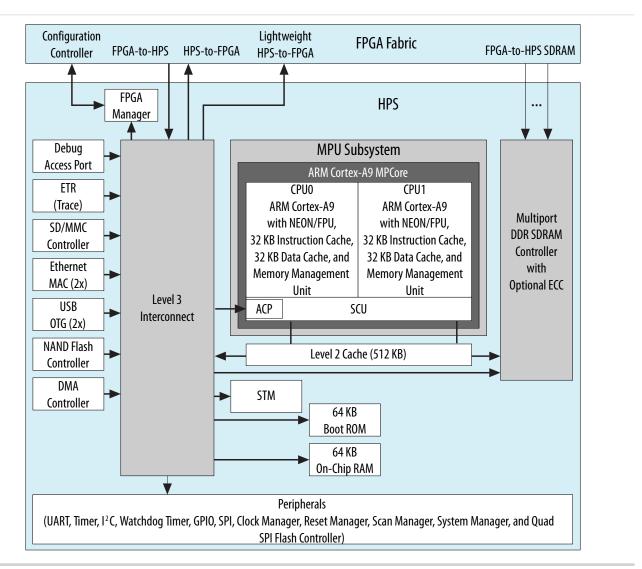
PCS Support ⁽¹³⁾	Data Rates (Gbps)	Transmitter Data Path Feature	Receiver Data Path Feature
Custom single- and double-width modes	0.611 to ~6.5536	Phase compensation FIFO	Word aligner8B/10B decoder
SRIO	1.25 to 6.25	Byte serializer8B/10B encoder	• Byte deserializer
Serial ATA	1.5, 3.0, 6.0		Phase compensation FIFO

Arria V Device Overview

Altera Corporation

⁽¹³⁾ Data rates above 6.5536 Gbps up to 10.3125 Gbps, such as 10GBASE-R, are supported through the soft PCS.

SoC with HPS


Each SoC combines an FPGA fabric and an HPS in a single device. This combination delivers the flexibility of programmable logic with the power and cost savings of hard IP in these ways:

- Reduces board space, system power, and bill of materials cost by eliminating a discrete embedded processor
- Allows you to differentiate the end product in both hardware and software, and to support virtually any interface standard
- Extends the product life and revenue through in-field hardware and software updates

HPS Features

The HPS consists of a dual-core ARM Cortex-A9 MPCore processor, a rich set of peripherals, and a shared multiport SDRAM memory controller, as shown in the following figure.

Figure 12: HPS with Dual-Core ARM Cortex-A9 MPCore Processor

Partial Reconfiguration

Note: Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

Partial reconfiguration allows you to reconfigure part of the device while other sections of the device remain operational. This capability is important in systems with critical uptime requirements because it allows you to make updates or adjust functionality without disrupting services.

Apart from lowering cost and power consumption, partial reconfiguration increases the effective logic density of the device because placing device functions that do not operate simultaneously is not necessary. Instead, you can store these functions in external memory and load them whenever the functions are required. This capability reduces the size of the device because it allows multiple applications on a single device—saving the board space and reducing the power consumption.

Altera simplifies the time-intensive task of partial reconfiguration by building this capability on top of the proven incremental compile and design flow in the Quartus Prime design software. With the Altera solution, you do not need to know all the intricate device architecture details to perform a partial reconfiguration.

Partial reconfiguration is supported through the FPP x16 configuration interface. You can seamlessly use partial reconfiguration in tandem with dynamic reconfiguration to enable simultaneous partial reconfiguration of both the device core and transceivers.

Enhanced Configuration and Configuration via Protocol

Table 23: Configuration Modes and Features of Arria V Devices

mina v devices suppo	10100 ()=0			<u>r - 8</u>	8 1010800		iniguration modes.
Mode	Data Width	Max Clock Rate (MHz)	Max Data I Rate (Mbps)	Decompressio		Partial econfiguratio (20)	Remote System Update
AS through the EPCS and EPCQ serial configura- tion device	1 bit, 4 bits	100		Yes	Yes		Yes
PS through CPLD or external microcontroller	1 bit	125	125	Yes	Yes	_	_

Arria V devices support 1.8 V, 2.5 V, 3.0 V, and 3.3 V⁽¹⁹⁾ programming voltages and several configuration modes.

Arria V Device Overview

⁽¹⁹⁾ Arria V GZ does not support 3.3 V.

⁽²⁰⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

Document Revision History

Date	Version	Changes
December 2015	2015.12.21	 Updated RoHS and optional suffix information in sample ordering code and available options diagrams for Arria V GX and GT devices. Changed instances of <i>Quartus II</i> to <i>Quartus Prime</i>.
January 2015	2015.01.23	 Updated package dimension for Arria V GZ H780 package from 29 mm to 33 mm. Updated dual-core ARM Cortex-A9 MPCore processor maximum frequency from 800 MHz to 1.05 GHz.
December 2013	2013.12.26	 10-Gbps Ethernet (10GbE) PCS and Interlaken PCS are for Arria V GZ only. Removed "Preliminary" texts from Ordering Code figures, Maximum Resources, Package Plan and I/O Vertical Migration tables. Added link to Altera Product Selector for each device variant. Added leaded package options. Removed the note "The number of PLLs includes general-purpose fractional PLLs and transceiver fractional PLLs." for all PLLs in the Maximum Resource Counts table. Corrected FPGA GPIO for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 F896 package from 170 to 250. Corrected FPGA GPIO for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 F1152 package from 350 to 385. Corrected FPGA GPIO for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 F1517 package from 528 to 540. Corrected LVDS Transmitter for Arria V SX B3 and B5 as well as Arria V ST D3 and D5 F1517 package from 121 to 120. Added links to Altera's External Memory Spec Estimator tool to the topics listing the external memory interface performance. Added x2 for PCIe Gen3, Gen 2, and Gen 1.
August 2013	2013.08.19	 Removed the note about the PCIe hard IP on the right side of the device in the F896 package of the Arria V GX variant. These devices do not have PCIe hard IP on the right side. Added transceiver speed grade 6 to the available options of the Arria V SX variant. Corrected the maximum LVDS transmitter channel counts for the Arria V GX A1 and A3 devices from 68 to 67. Corrected the maximum FPGA GPIO count for Arria V ST D5 devices from 540 to 528.

Arria V Device Overview

