

Welcome to **E-XFL.COM**

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM® Cortex®-A9 MPCore™ with CoreSight™
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	1.05GHz
Primary Attributes	FPGA - 462K Logic Elements
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FBGA, FC (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5asxfb5h4f40i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Advantage	Supporting Feature
Lowest system cost	 Requires as few as four power supplies to operate Available in thermal composite flip chip ball-grid array (BGA) packaging Includes innovative features such as Configuration via Protocol (CvP), partial reconfiguration, and design security

Summary of Arria V Features

Table 2: Summary of Features for Arria V Devices

Feature	Description
Technology	 TSMC's 28-nm process technology: Arria V GX, GT, SX, and ST—28-nm low power (28LP) process Arria V GZ—28-nm high performance (28HP) process Lowest static power in its class (less than 1.2 W for 500K logic elements (LEs) at 85°C junction under typical conditions) 0.85 V, 1.1 V, or 1.15 V core nominal voltage
Packaging	 Thermal composite flip chip BGA packaging Multiple device densities with identical package footprints for seamless migration between different device densities Leaded⁽¹⁾, lead-free (Pb-free), and RoHS-compliant options
High-performance FPGA fabric	 Enhanced 8-input ALM with four registers Improved routing architecture to reduce congestion and improve compilation time
Internal memory blocks	 M10K—10-kilobits (Kb) memory blocks with soft error correction code (ECC) (Arria V GX, GT, SX, and ST devices only) M20K—20-Kb memory blocks with hard ECC (Arria V GZ devices only) Memory logic array block (MLAB)-640-bit distributed LUTRAM where you can use up to 50% of the ALMs as MLAB memory

Send Feedback

 $^{^{(1)}}$ Contact Altera for availability.

Feature	Description
Configuration	 Tamper protection-comprehensive design protection to protect your valuable IP investments Enhanced advanced encryption standard (AES) design security features CvP Partial and dynamic reconfiguration of the FPGA Active serial (AS) x1 and x4, passive serial (PS), JTAG, and fast passive parallel (FPP) x8, x16, and x32 (Arria V GZ) configuration options Remote system upgrade

Arria V Device Variants and Packages

Table 3: Device Variants for the Arria V Device Family

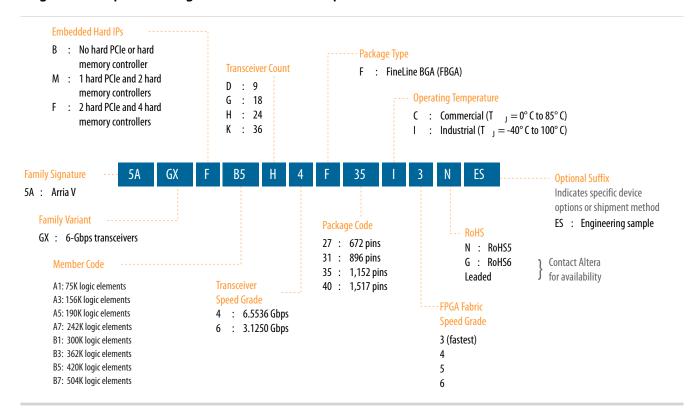
Variant	Description
Arria V GX	FPGA with integrated 6.5536 Gbps transceivers that provides bandwidth, cost, and power levels that are optimized for high-volume data and signal-processing applications
Arria V GT	FPGA with integrated 10.3125 Gbps transceivers that provides enhanced high-speed serial I/O bandwidth for cost-sensitive data and signal processing applications
Arria V GZ	FPGA with integrated 12.5 Gbps transceivers that provides enhanced high-speed serial I/O bandwidth for high-performance and cost-sensitive data and signal processing applications
Arria V SX	SoC with integrated ARM-based HPS and 6.5536 Gbps transceivers
Arria V ST	SoC with integrated ARM-based HPS and 10.3125 Gbps transceivers

Arria V GX

This section provides the available options, maximum resource counts, and package plan for the Arria V GX devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.

Related Information


Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 1: Sample Ordering Code and Available Options for Arria V GX Devices

Maximum Resources

Table 4: Maximum Resource Counts for Arria V GX Devices

Poso	Resource		Member Code							
neso			А3	A 5	A7	B1	В3	B5	В7	
	Logic Elements (LE) (K)		156	190	242	300	362	420	504	
ALM		28,302	58,900	71,698	91,680	113,208	136,880	158,491	190,240	
Registe	er	113,208	235,600	286,792	366,720	452,832	547,520	633,964	760,960	
Mem	M10K	8,000	10,510	11,800	13,660	15,100	17,260	20,540	24,140	
ory (Kb)	MLAB	463	961	1,173	1,448	1,852	2,098	2,532	2,906	
Variab precisi Block	le- on DSP	240	396	600	800	920	1,045	1,092	1,156	
18 x 18 Multip		480	792	1,200	1,600	1,840	2,090	2,184	2,312	
PLL		10	10	12	12	12	12	16	16	

Resource		Member Code						
Neso	ui ce	C 3	C 7	D3	D7			
Transceiver	6 Gbps ⁽⁴⁾	3 (9)	6 (24)	6 (24)	6 (36)			
Transcerver	10 Gbps ⁽⁵⁾	4	12	12	20			
GPIO ⁽⁶⁾	GPIO ⁽⁶⁾		544	704	704			
LVDS	Transmitter	68	120	160	160			
LVD3	Receiver	80	136	176	176			
PCIe Hard IP Block		1	2	2	2			
Hard Memor	y Controller	2	4	4	4			

• High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

• Transceiver Architecture in Arria V Devices

Describes 10 Gbps channels usage conditions and SFF-8431 compliance requirements.

Package Plan

Table 7: Package Plan for Arria V GT Devices

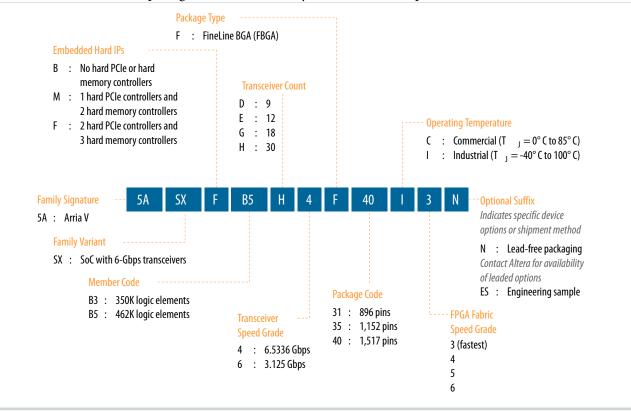
Memb		F672 (27 mm)		F896 (31 mm)		F1152 (35 mm)		F1517 (40 mm)				
er Code		ХС	VR		ХС	VR		ХС	VR		2	KCVR
	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10- Gbps	GPIO	6- Gbps	10-Gbps
C3	336	3 (9)	4	416	3 (9)	4	_	_	_	_	_	_
C7	_	_	_	384	6 (18)	8	544	6 (24)	12	_	_	_
D3	_	_	_	384	6 (18)	8	544	6 (24)	12	704	6 (24)	12
D7	_	_	_	_	_	_	544	6 (24)	12	704	6 (36)	20

The 6-Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10-Gbps channels as three 6-Gbps channels—the total number of 6-Gbps channels are shown in brackets. For example, you can also configure the Arria V GT D7 device in the F1517 package with nine 6-Gbps

⁽⁴⁾ The 6 Gbps transceiver counts are for dedicated 6-Gbps channels. You can also configure any pair of 10 Gbps channels as three 6 Gbps channels-the total number of 6 Gbps channels are shown in brackets.

⁽⁵⁾ Chip-to-chip connections only. For 10 Gbps channel usage conditions, refer to the Transceiver Architecture in Arria V Devices chapter.

⁽⁶⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.


Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 4: Sample Ordering Code and Available Options for Arria V SX Devices

The -3 FPGA fabric speed grade is available only for industrial temperature devices.

Maximum Resources

Table 10: Maximum Resource Counts for Arria V SX Devices

Poso	urce	Member Code			
nesu	ruice	В3	B5		
Logic Elements (LE)	(K)	350	462		
ALM		132,075	174,340		
Register	Register		697,360		
Memory (Kb)	M10K	17,290	22,820		
Memory (Ro)	MLAB	2,014	2,658		
Variable-precision D	SP Block	809	1,090		
18 x 18 Multiplier		1,618	2,180		

Pose	ource	Member Code			
neso	ruice	В3	B5		
FPGA PLL		14	14		
HPS PLL		3	3		
6 Gbps Transceiver		30	30		
FPGA GPIO ⁽⁸⁾		540	540		
HPS I/O		208	208		
LVDS	Transmitter	120	120		
LVDS	Receiver	136	136		
PCIe Hard IP Block		2	2		
FPGA Hard Memory	Controller	3	3		
HPS Hard Memory C	Controller	1	1		
ARM Cortex-A9 MP	Core Processor	Dual-core	Dual-core		

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 11: Package Plan for Arria V SX Devices

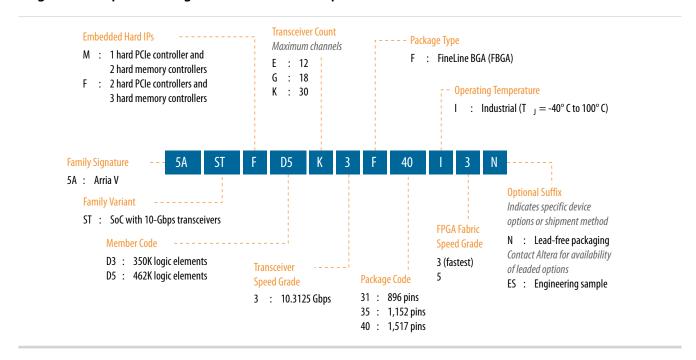
The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

	F896			F1152			F1517		
Member Code	(31 mm)			(35 mm)			(40 mm)		
Code	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR	FPGA GPIO	HPS I/O	XCVR
В3	250	208	12	385	208	18	540	208	30
B5	250	208	12	385	208	18	540	208	30

Arria V ST

This section provides the available options, maximum resource counts, and package plan for the Arria V ST devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.


⁽⁸⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

Altera Product Selector

Provides the latest information about Altera products.

Available Options

Figure 5: Sample Ordering Code and Available Options for Arria V ST Devices

Maximum Resources

Table 12: Maximum Resource Counts for Arria V ST Devices

Reso	LINEO	Member Code			
Reso	ource	D3	D5		
Logic Elements (LE)	(K)	350	462		
ALM		132,075	174,340		
Register		528,300	697,360		
Memory (Kb)	M10K	17,290	22,820		
Memory (Rb)	MLAB	2,014	2,658		
Variable-precision D	SP Block	809	1,090		
18 x 18 Multiplier		1,618	2,180		
FPGA PLL		14	14		
HPS PLL		3	3		
Transceiver	6-Gbps	30	30		
Transcerver	10-Gbps ⁽⁹⁾	16	16		

Poso	ource	Member Code			
neso	raice	D3	D5		
FPGA GPIO ⁽¹⁰⁾		540	540		
HPS I/O		208	208		
LVDS	Transmitter	120	120		
LVD3	Receiver	136	136		
PCIe Hard IP Block		2	2		
FPGA Hard Memory	Controller	3	3		
HPS Hard Memory C	Controller	1	1		
ARM Cortex-A9 MP	Core Processor	Dual-core	Dual-core		

• High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

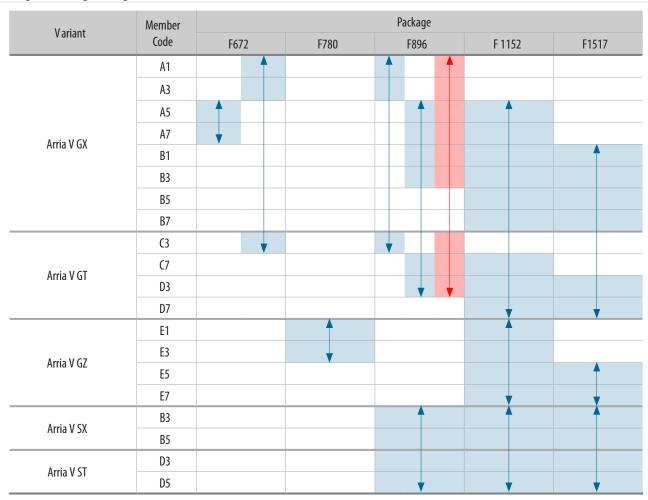
Transceiver Architecture in Arria V Devices
 Describes 10 Gbps channels usage conditions and SFF-8431 compliance requirements.

Package Plan

Table 13: Package Plan for Arria V ST Devices

The HPS I/O counts are the number of I/Os in the HPS and does not correlate with the number of HPS-specific I/O pins in the FPGA. Each HPS-specific pin in the FPGA may be mapped to several HPS I/Os.

Memb	F896 (31 mm)			F1152 (35 mm)			F1517 (40 mm)					
er Code	FPGA	HPS	ХС	VR	FPGA	HPS	ХС	VR	FPGA	HPS		KCVR
GPIO	1/0	6 Gbps	10 Gbps	GPIO I/O	6 Gbps	10 Gbps	GPIO	1/0	6 Gbps	10 Gbps		
D3	250	208	12	6	385	208	18	8	540	208	30	16
D5	250	208	12	6	385	208	18	8	540	208	30	16


⁽⁹⁾ Chip-to-chip connections only. For 10 Gbps channel usage conditions, refer to the Transceiver Architecture in Arria V Devices chapter.

⁽¹⁰⁾ The number of GPIOs does not include transceiver I/Os. In the Quartus Prime software, the number of user I/Os includes transceiver I/Os.

I/O Vertical Migration for Arria V Devices

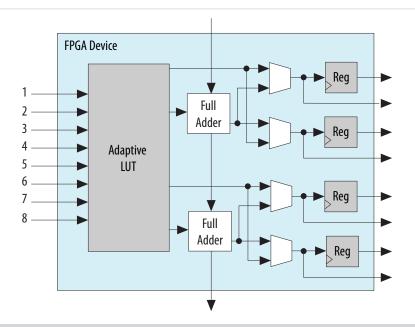
Figure 6: Vertical Migration Capability Across Arria V Device Packages and Densities

The arrows indicate the vertical migration paths. Some packages have several migration paths. The devices included in each vertical migration path are shaded. You can also migrate your design across device densities in the same package option if the devices have the same dedicated pins, configuration pins, and power pins.

You can achieve the vertical migration shaded in red if you use only up to 320 GPIOs, up to nine 6 Gbps transceiver channels, and up to four 10 Gbps transceiver (for Arria V GT devices). This migration path is not shown in the Quartus Prime software Pin Migration View.

Note: To verify the pin migration compatibility, use the Pin Migration View window in the Quartus Prime software Pin Planner.

Note: Except for Arria V GX A5 and A7, and Arria V GT C7 devices, all other Arria V GX and GT devices require a specific power-up sequence. If you plan to migrate your design from Arria V GX A5 and A7, and Arria V GT C7 devices to other Arria V devices, your design must adhere to the same required power-up sequence.


- Managing Device I/O Pins chapter, Quartus Prime Handbook Provides more information about vertical I/O migrations.
- Power Management in Arria V Devices
 Describes the power-up sequence required for Arria V GX and GT devices.

Adaptive Logic Module

Arria V devices use a 28 nm ALM as the basic building block of the logic fabric.

The ALM, as shown in following figure, uses an 8-input fracturable look-up table (LUT) with four dedicated registers to help improve timing closure in register-rich designs and achieve an even higher design packing capability than previous generations.

Figure 7: ALM for Arria V Devices

You can configure up to 50% of the ALMs in the Arria V devices as distributed memory using MLABs.

Related Information

Embedded Memory Capacity in Arria V Devices on page 20

Lists the embedded memory capacity for each device.

Table 15: Number of Multipliers in Arria V Devices

The table lists the variable-precision DSP resources by bit precision for each Arria V device.

Variant	Mem ber	Variable- precision	Independ	ent Input and Ope	18 x 18 Multiplier	18 x 18 Multiplier Adder Summed		
Variant	Code	DSP Block	9 x 9 Multiplier	18 x 18 Multiplier	27 x 27 Multiplier	36 x 36 Multiplier	Adder Mode	with 36 bit Input
	A1	240	720	480	240	_	240	240
	A3	396	1,188	792	396	_	396	396
	A5	600	1,800	1,200	600	_	600	600
Arria V	A7	800	2,400	1,600	800	_	800	800
GX	B1	920	2,760	1,840	920	_	920	920
	В3	1,045	3,135	2,090	1,045	_	1,045	1,045
	B5	1,092	3,276	2,184	1,092	_	1,092	1,092
	B7	1,156	3,468	2,312	1,156	_	1,156	1,156
	C3	396	1,188	792	396	_	396	396
Arria V	C7	800	2,400	1,600	800	_	800	800
GT	D3	1,045	3,135	2,090	1,045	_	1,045	1,045
	D7	1,156	3,468	2,312	1,156	_	1,156	1,156
	E1	800	2,400	1,600	800	400	800	800
Arria V	E3	1,044	3,132	2,088	1,044	522	1,044	1,044
GZ	E5	1,092	3,276	2,184	1,092	546	1,092	1,092
	E7	1,139	3,417	2,278	1,139	569	1,139	1,139
Arria V	В3	809	2,427	1,618	809	_	809	809
SX	B5	1,090	3,270	2,180	1,090	_	1,090	1,090
Arria V	D3	809	2,427	1,618	809	_	809	809
ST	D5	1,090	3,270	2,180	1,090	_	1,090	1,090

Embedded Memory Blocks

The embedded memory blocks in the devices are flexible and designed to provide an optimal amount of small- and large-sized memory arrays to fit your design requirements.

Types of Embedded Memory

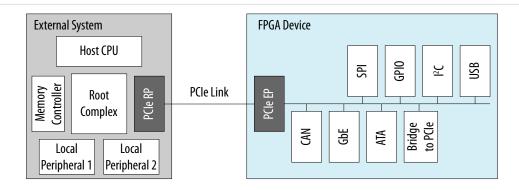
The Arria V devices contain two types of memory blocks:

- 20 Kb M20K or 10 Kb M10K blocks—blocks of dedicated memory resources. The M20K and M10K blocks are ideal for larger memory arrays while still providing a large number of independent ports.
- 640 bit memory logic array blocks (MLABs)—enhanced memory blocks that are configured from dual-purpose logic array blocks (LABs). The MLABs are ideal for wide and shallow memory arrays. The MLABs are optimized for implementation of shift registers for digital signal processing (DSP) applications, wide shallow FIFO buffers, and filter delay lines. Each MLAB is made up of ten adaptive logic modules (ALMs). In the Arria V devices, you can configure these ALMs as ten 32 x 2 blocks, giving you one 32 x 20 simple dual-port SRAM block per MLAB. You can also configure these ALMs, in Arria V GZ devices, as ten 64 x 1 blocks, giving you one 64 x 10 simple dual-port SRAM block per MLAB.

Embedded Memory Capacity in Arria V Devices

Table 16: Embedded Memory Capacity and Distribution in Arria V Devices

		M20K		M10K		ML	.AB	
Variant	Membe r Code	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Block	RAM Bit (Kb)	Total RAM Bit (Kb)
	A1	_	_	800	8,000	741	463	8,463
	A3	_	_	1,051	10,510	1538	961	11,471
	A5	_	_	1,180	11,800	1877	1,173	12,973
Arria V GX	A7	_	_	1,366	13,660	2317	1,448	15,108
Allia V GA	B1	_	_	1,510	15,100	2964	1,852	16,952
	В3	_	_	1,726	17,260	3357	2,098	19,358
	B5	_	_	2,054	20,540	4052	2,532	23,072
	В7	_	_	2,414	24,140	4650	2,906	27,046
	C3	_	_	1,051	10,510	1538	961	11,471
Arria V GT	C7	_	_	1,366	13,660	2317	1,448	15,108
Allia V GI	D3	_	_	1,726	17,260	3357	2,098	19,358
	D7	_	_	2,414	24,140	4650	2,906	27,046
	E1	585	11,700	_	_	4,151	2,594	14,294
Arria V GZ	E3	957	19,140	_	_	6,792	4,245	23,385
Arria v GZ	E5	1,440	28,800	_	_	7,548	4,718	33,518
	E7	1,700	34,000	_	_	8,490	5,306	39,306
Arria V SX	В3	_	_	1,729	17,290	3223	2,014	19,304
Allia v SA	B5	_	_	2,282	22,820	4253	2,658	25,478


PCIe Gen1, Gen2, and Gen 3 Hard IP

Arria V devices contain PCIe hard IP that is designed for performance and ease-of-use. The PCIe hard IP consists of the MAC, data link, and transaction layers.

The PCIe hard IP supports PCIe Gen3, Gen 2, and Gen 1 end point and root port for up to x8 lane configuration.

The PCIe endpoint support includes multifunction support for up to eight functions, as shown in the following figure. The integrated multifunction support reduces the FPGA logic requirements by up to 20,000 LEs for PCIe designs that require multiple peripherals.

Figure 8: PCIe Multifunction for Arria V Devices

The Arria V PCIe hard IP operates independently from the core logic. This independent operation allows the PCIe link to wake up and complete link training in less than 100 ms while the Arria V device completes loading the programming file for the rest of the device.

In addition, the PCIe hard IP in the Arria V device provides improved end-to-end datapath protection using ECC.

External Memory Interface

This section provides an overview of the external memory interface in Arria V devices.

Hard and Soft Memory Controllers

Arria V GX,GT, SX, and ST devices support up to four hard memory controllers for DDR3 and DDR2 SDRAM devices. Each controller supports 8 to 32 bit components of up to 4 gigabits (Gb) in density with two chip selects and optional ECC. For the Arria V SoC devices, an additional hard memory controller in the HPS supports DDR3, DDR2, and LPDDR2 SDRAM devices.

All Arria V devices support soft memory controllers for DDR3, DDR2, and LPDDR2 SDRAM devices, QDR II+, QDR II, and DDR II+ SRAM devices, and RLDRAM II devices for maximum flexibility.

Note: DDR3 SDRAM leveling is supported only in Arria V GZ devices.

24

External Memory Performance

Table 18: External Memory Interface Performance in Arria V Devices

Interface	Voltage	Hard Controller (MHz)	Soft Controller (MHz)			
interrace	(V)	Arria V GX, GT, SX, and ST	Arria V GX, GT, SX, and ST	Arria V GZ		
DDR3 SDRAM	1.5	533	667	800		
DDR3 3DRAM	1.35	533	600	800		
DDR2 SDRAM	1.8	400	400	400		
LPDDR2 SDRAM	1.2	_	400	_		
RLDRAM 3	1.2	_	_	667		
RLDRAM II	1.8	_	400	533		
KLDIMINI II	1.5	_	400	533		
QDR II+ SRAM	1.8	_	400	500		
QDR II+ SIMM	1.5	_	400	500		
QDR II SRAM	1.8	_	400	333		
QDR II SRAM	1.5	_	400	333		
DDR II+	1.8	_	400	_		
SRAM ⁽¹²⁾	1.5	_	400	_		

Related Information

External Memory Interface Spec Estimator

For the latest information and to estimate the external memory system performance specification, use Altera's External Memory Interface Spec Estimator tool.

HPS External Memory Performance

Table 19: HPS External Memory Interface Performance

The hard processor system (HPS) is available in Arria V SoC devices only.

Interface	Voltage (V)	HPS Hard Controller (MHz)
DDR3 SDRAM	1.5	533
DDR3 3DRAM	1.35	533
LPDDR2 SDRAM	1.2	333

⁽¹²⁾ Not available as Altera® IP.

Figure 9: Device Chip Overview for Arria V GX and GT Devices

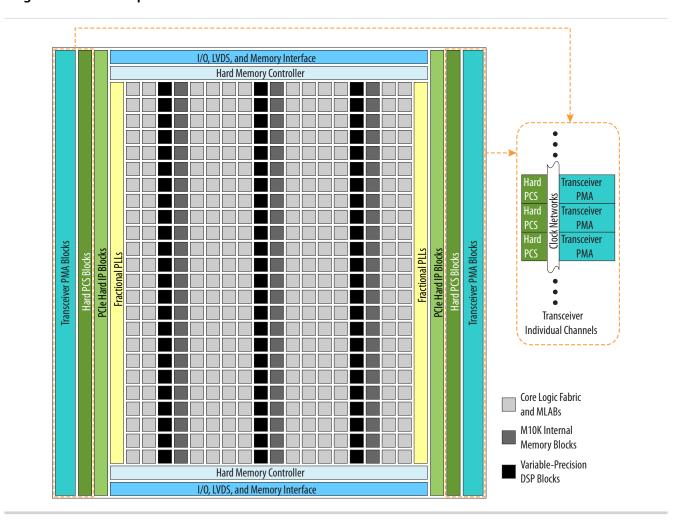


Figure 10: Device Chip Overview for Arria V GZ Devices

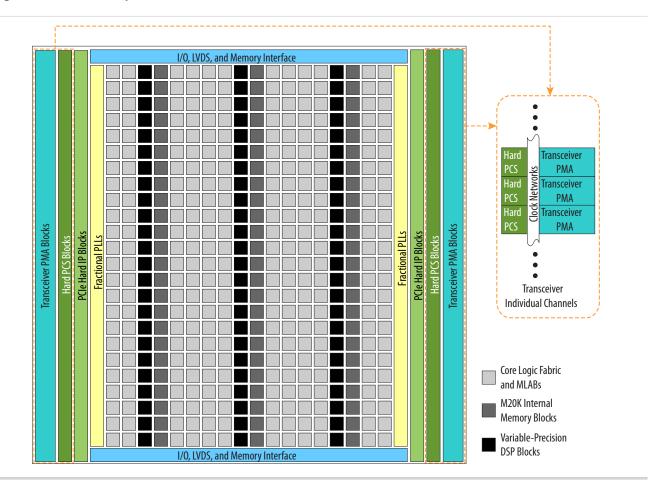
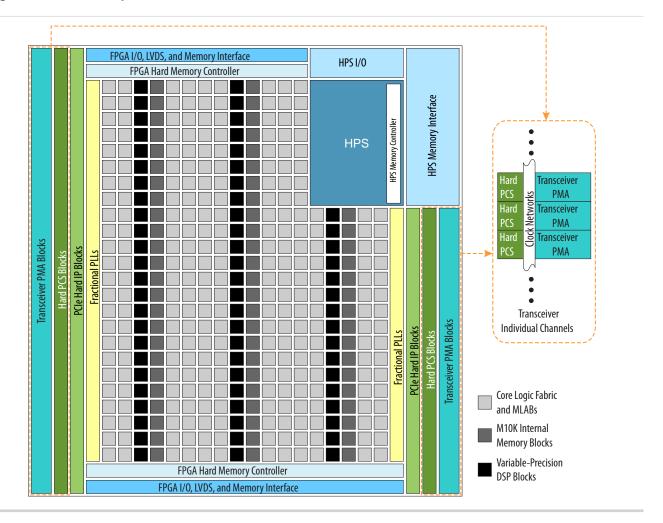



Figure 11: Device Chip Overview for Arria V SX and ST Devices

PMA Features

To prevent core and I/O noise from coupling into the transceivers, the PMA block is isolated from the rest of the chip—ensuring optimal signal integrity. For the transceivers, you can use the channel PLL of an unused receiver PMA as an additional transmit PLL.

Table 20: PMA Features of the Transceivers in Arria V Devices

Features	Capability
Backplane support	 Arria V GX, GT, SX, and ST devices—Driving capability at 6.5536 Gbps with up to 25 dB channel loss Arria V GZ devices—Driving capability at 12.5 Gbps with up to 16 dB channel loss
Chip-to-chip support	 Arria V GX, GT, SX, and ST devices—Up to 10.3125 Gbps Arria V GZ devices—Up to 12.5 Gbps

Protocol	Data Rates (Gbps)	Transmitter Data Path Features	Receiver Data Path Features
40GBASE-R Ethernet 100GBASE-R Ethernet	4 x 10.3125 10 x 10.3125	 TX FIFO 64B/66B encoder Scrambler Alignment marker insertion Gearbox Block stripper 	 RX FIFO 64B/66B decoder Descrambler Lane reorder Deskew Alignment marker lock Block synchronization Gear box Destripper
40G and 100G OTN	(4+1) x 11.3 (10+1) x 11.3	 TX FIFO Channel bonding Byte serializer	RX FIFOLane deskewByte deserializer
GbE	1.25	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding GbE state machine 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer Byte ordering GbE state machine
XAUI	3.125 to 4.25	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding XAUI state machine for bonding four channels 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer Byte ordering XAUI state machine for realigning four channels
SRIO	1.25 to 6.25	 Phase compensation FIFO Byte serializer 8B/10B encoder Bit-slip Channel bonding SRIO V2.1-compliant x2 and x4 channel bonding 	 Word aligner Deskew FIFO Rate match FIFO 8B/10B decoder Byte deserializer Byte ordering SRIO V2.1-compliant x2 and x4 deskew state machine

Partial Reconfiguration

Note: Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

Partial reconfiguration allows you to reconfigure part of the device while other sections of the device remain operational. This capability is important in systems with critical uptime requirements because it allows you to make updates or adjust functionality without disrupting services.

Apart from lowering cost and power consumption, partial reconfiguration increases the effective logic density of the device because placing device functions that do not operate simultaneously is not necessary. Instead, you can store these functions in external memory and load them whenever the functions are required. This capability reduces the size of the device because it allows multiple applications on a single device—saving the board space and reducing the power consumption.

Altera simplifies the time-intensive task of partial reconfiguration by building this capability on top of the proven incremental compile and design flow in the Quartus Prime design software. With the Altera solution, you do not need to know all the intricate device architecture details to perform a partial reconfiguration.

Partial reconfiguration is supported through the FPP x16 configuration interface. You can seamlessly use partial reconfiguration in tandem with dynamic reconfiguration to enable simultaneous partial reconfiguration of both the device core and transceivers.

Enhanced Configuration and Configuration via Protocol

Table 23: Configuration Modes and Features of Arria V Devices

Arria V devices support 1.8 V, 2.5 V, 3.0 V, and 3.3 V⁽¹⁹⁾ programming voltages and several configuration modes.

Mode	Data Width	Max Clock Rate (MHz)	Max Datal Rate (Mbps)	Decompression		Partial econfiguratio (20)	Remote System Update
AS through the EPCS and EPCQ serial configuration device	1 bit, 4 bits	100	_	Yes	Yes	_	Yes
PS through CPLD or external microcontroller	1 bit	125	125	Yes	Yes	_	_

⁽¹⁹⁾ Arria V GZ does not support 3.3 V.

⁽²⁰⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support.

Date	Version	Changes
June 2013	2013.06.03	Removed statements about contacting Altera for SFF-8431 compliance requirements. Refer to the Transceiver Architecture in Arria V Devices chapter for the requirements.
May 2013	2013.05.06	 Moved all links to the Related Information section of respective topics for easy reference. Added link to the known document issues in the Knowledge Base. Updated the available options, maximum resource counts, and per package information for the Arria V SX and ST device variants. Updated the variable DSP multipliers counts for the Arria V SX and ST device variants. Clarified that partial reconfiguration is an advanced feature. Contact Altera for support of the feature. Added footnote to clarify that MLAB 64 bits depth is available only for Arria V GZ devices. Updated description about power-up sequence requirement for device migration to improve clarity.
January 2013	2013.01.11	 Added the L optional suffix to the Arria V GZ ordering code for the – I3 speed grade. Added a note about the power-up sequence requirement if you plan to migrate your design from the Arria V GX A5 and A7, and Arria V GT C7 devices to other Arria V devices.
November 2012	2012.11.19	 Updated the summary of features. Updated Arria V GZ information regarding 3.3 V I/O support. Removed Arria V GZ engineering sample ordering code. Updated the maximum resource counts for Arria V GX and GZ. Updated Arria V ST ordering codes for transceiver count. Updated transceiver counts for Arria V ST packages. Added simplified floorplan diagrams for Arria V GZ, SX, and ST. Added FPP x32 configuration mode for Arria V GZ only. Updated CvP (PCIe) remote system update support information. Added HPS external memory performance information. Updated template.
October 2012	3.0	 Added Arria V GZ information. Updated Table 1, Table 2, Table 3, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, and Table 21. Added the "Arria V GZ" section. Added Table 8, Table 9 and Table 22.

