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The next code examples show assembly and C functions for reading the EEPROM. The examples assume that interrupts 
are controlled so that no interrupts will occur during execution of these functions.

Note: 1. See Section 4. �About Code Examples� on page 8 .

8.6.4 GPIOR2 � General Purpose I/O Register 2

8.6.5 GPIOR1 � General Purpose I/O Register 1

8.6.6 GPIOR0 � General Purpose I/O Register 0

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or SRW00 (lower 
sector). The ALE pulse in period T4 is only present if the next instruction accesses the RAM (internal or 
external). 

Assembly Code Example(1)

EEPROM_read:
; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_read
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Start eeprom read by writing EERE
sbi EECR,EERE
; Read data from Data Register
in r16,EEDR
ret

C Code Example(1)

unsigned char EEPROM_read(unsigned int uiAddress)
{

/* Wait for completion of previous write */
while(EECR & (1<<EEPE))
;
/* Set up address register */
EEAR = uiAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from Data Register */
return EEDR;

}

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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The ripple counter that implements the prescaler runs at the frequency of the undivided clock, which may be faster than the 
CPU’s clock frequency. Hence, it is not possible to determine the state of the prescaler - even if it were readable, and the 
exact time it takes to switch from one clock division to the other cannot be exactly predicted. From the time the CLKPS 
values are written, it takes between T1 + T2 and T1 + 2 �u��T2 before the new clock frequency is active. In this interval, 2 
active clock edges are produced. Here, T1 is the previous clock period, and T2 is the period corresponding to the new 
prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed to change the CLKPS bits:
1. Write the clock prescaler change enable (CLKPCE) bit to one and all other bits in CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is not interrupted.

9.12 Register Description

9.12.1 OSCCAL � Oscillator Calibration Register

� Bits 7:0 � CAL7:0: Oscillator Calibration Value

The oscillator calibration register is used to trim the calibrated internal RC oscillator to remove process variations from the 
oscillator frequency. A pre-programmed calibration value is automatically written to this register during chip reset, giving the 
Factory calibrated frequency as specified in Table 28-3 on page 290. The application software can write this register to 
change the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 28-3 on page 290. 
Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and flash write accesses, and these write times will be affected accordingly. 
If the EEPROM or flash are written, do not calibrate to more than 8.8MHz. Otherwise, the EEPROM or flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the lowest frequency range, 
setting this bit to 1 gives the highest frequency range. The two frequency ranges are overlapping, in other words a setting of 
OSCCAL = 0x7F gives a higher frequency than OSCCAL = 0x80.

The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest frequency in 
that range, and a setting of 0x7F gives the highest frequency in the range.

9.12.2 CLKPR � Clock Prescale Register

� Bit 7 � CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE bit is only updated when the 
other bits in CLKPR are simultaneously written to zero. CLKPCE is cleared by hardware four cycles after it is written or when 
CLKPS bits are written. Rewriting the CLKPCE bit within this time-out period does neither extend the time-out period, nor 
clear the CLKPCE bit.

� Bits 3:0 � CLKPS3:0: Clock Prescaler Select Bits 3 - 0

These bits define the division factor between the selected clock source and the internal system clock. These bits can be 
written run-time to vary the clock frequency to suit the application requirements. As the divider divides the master clock input 
to the MCU, the speed of all synchronous peripherals is reduced when a division factor is used. The division factors are 
given in Table 9-16 on page 33.

Bit 7 6 5 4 3 2 1 0

(0x66) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

(0x61) CLKPCE � � � CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
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10. Power Management and Sleep Modes

10.1 Overview
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR provides 
various sleep modes allowing the user to tailor the power consumption to the application�s requirements.

When enabled, the brown-out detector (BOD) actively monitors the power supply voltage during the sleep periods. To further 
save power, it is possible to disable the BOD in some sleep modes. See Section 10.3 �BOD Disable� on page 35  for more 
details.

10.2 Sleep Modes
Figure 9-1 on page 23 presents the different clock systems in the ATmega164P-B/324P-B/644P-B, and their distribution. 
The figure is helpful in selecting an appropriate sleep mode. Table 10-1 shows the different sleep modes, their wake up 
sources and BOD disable ability. 

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If Timer/Counter2 is running in asynchronous mode.

To enter any of the sleep modes, the SE bit in SMCR must be written to logic one and a SLEEP instruction must be 
executed. The SM2, SM1, and SM0 bits in the SMCR register select which sleep mode will be activated by the SLEEP 
instruction. See Table 10-2 on page 38 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles 
in addition to the start-up time, executes the interrupt routine, and resumes execution from the instruction following SLEEP. 
The contents of the register file and SRAM are unaltered when the device wakes up from sleep. If a reset occurs during 
sleep mode, the MCU wakes up and executes from the reset vector.

Table 10-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources
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Idle X X X X X(2) X X X X X X X

ADCNRM X X X X(2) X X X(2) X X X

Power-down X X X X

Power-save X X(2) X X X X X

Standby(1) X X X X X

Extended standby X(2) X X(2) X X X X X
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14. I/O-Ports

14.1 Overview
All AVRfi  ports have true read-modify-write functionality when used as general digital I/O ports. This means that the direction 
of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI 
instructions. The same applies when changing drive value (if configured as output) or enabling/disabling of pull-up resistors 
(if configured as input). Each output buffer has symmetrical drive characteristics with both high sink and source capability. 
The pin driver is strong enough to drive LED displays directly. All port pins have individually selectable pull-up resistors with 
a supply-voltage invariant resistance. All I/O pins have protection diodes to both VCC and ground as indicated in Figure 14-1. 
Refer to Section 28. �Electrical Characteristics� on page 287 for a complete list of parameters.

Figure 14-1. I/O Pin Equivalent Schematic 

All registers and bit references in this section are written in general form. A lower case �x� represents the numbering letter for 
the port, and a lower case �n� represents the bit number. Howeve r, when using the register or bit defines in a program, the 
precise form must be used. For example, PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The 
physical I/O registers and bit locations are listed in Section  �Register Description� on page 72 .

Three I/O memory address locations are allocated for each port, one each for the data register � PORTx, data direction 
register � DDRx, and the port input pins � PI Nx. The port input pins I/O location is read only, while the data register and the 
data direction register are read/write. However, writing a logic one to a bit in the PINx register, will result in a toggle in the 
corresponding bit in the data register. In addition, the pull-up disable � PUD bit in MCUCR disables the pull-up function for all 
pins in all ports when set.

Using the I/O port as general digital I/O is described in Section 14.2 �Ports as General Digital I/O� on page 58 . Most port pins 
are multiplexed with alternate functions for the peripheral features on the device. How each alternate function interferes with 
the port pin is described in Section 14.3 �Alternate Port Functions� on page 62 . Refer to the individual module sections for a 
full description of the alternate functions. Note that enabling the alternate function of some of the port pins does not affect the 
use of the other pins in the port as general digital I/O.

Cpin

Rpu

Pxn
Logic

See Figure
”General Digital I/O”

for Details
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� OC1B/XCK1/PCINT28 � Port D, Bit 4

OC1B, output compare match B output: The PB4 pin can serve as an external output for the Timer/Counter1 output 
compare B. The pin has to be configured as an output (DDD4 set (one)) to serve this function. The OC1B pin is also the 
output pin for the PWM mode timer function.

XCK1, USART1 external clock. The data direction register (DDB4) controls whether the clock is output (DDD4 set �one�) or 
input (DDD4 cleared). The XCK4 pin is active only when the USART1 operates in synchronous mode.

PCINT28, pin change interrupt source 28: The PD4 pin can serve as an external interrupt source.

� INT1/TXD1/PCINT27 � Port D, Bit 3

INT1, external interrupt source 1. The PD3 pin can serve as an external interrupt source to the MCU.

TXD1, transmit data (Data output pin for the USART1). When the USART1 transmitter is enabled, this pin is configured as 
an output regardless of the value of DDD3.

PCINT27, pin change interrupt source 27: The PD3 pin can serve as an external interrupt source.

� INT0/RXD1/PCINT26 � Port D, Bit 2

INT0, external interrupt source 0. The PD2 pin can serve as an external interrupt source to the MCU.

RXD1, RXD0, receive Data (data input pin for the USART1). When the USART1 receiver is enabled this pin is configured as 
an input regardless of the value of DDD2. When the USART forces this pin to be an input, the pull-up can still be controlled 
by the PORTD2 bit.

PCINT26, pin change interrupt source 26: The PD2 pin can serve as an external interrupt source.

� TXD0/PCINT25 � Port D, Bit 1

TXD0, transmit data (Data output pin for the USART0). When the USART0 transmitter is enabled, this pin is configured as 
an output regardless of the value of DDD1.

PCINT25, pin change interrupt source 25: The PD1 pin can serve as an external interrupt source.

� RXD0/T3/PCINT24 � Port D, Bit 0

RXD0, receive data (Data input pin for the USART0). When the USART0 receiver is enabled this pin is configured as an 
input regardless of the value of DDD0. When the USART forces this pin to be an input, the pull-up can still be controlled by 
the PORTD0 bit.

T3, Timer/Counter3 counter source.

PCINT24, pin change interrupt source 24: The PD0 pin can serve as an external interrupt source.

Table 14-13 on page 72 and Table 14-14 on page 72 relate the alternate functions of Port D to the overriding signals shown 
in Figure 14-5 on page 62. 
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The PWM waveform is generated by clearing (or setting) the OC0x register at the compare match between OCR0x and 
TCNT0 when the counter increments, and setting (or clearing) the OC0x register at compare match between OCR0x and 
TCNT0 when the counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated 
by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A register represent special cases when generating a PWM waveform output in the phase 
correct PWM mode. If the OCR0A is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the 
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic 
values.

At the very start of period 2 in Figure 15-7 on page 82 OCnx has a transition from high to low even though there is no 
compare match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a 
transition without compare match.

�� OCR0A changes its value from MAX, like in Figure 15-7 on page 82. When the OCR0A value is MAX the OCn pin 
value is the same as the result of a down-counting compare match. To ensure symmetry around BOTTOM the OCn 
value at MAX must correspond to the result of an up-counting compare match.

�� The timer starts counting from a value higher than the one in OCR0A, and for that reason misses the compare match 
and hence the OCn change that would have happened on the way up.

15.8 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a clock enable signal in the 
following figures. The figures include information on when interrupt flags are set. Figure 15-8 contains timing data for basic 
Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than phase 
correct PWM mode.

Figure 15-8. Timer/Counter Timing Diagram, no Prescaling 
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fclk_I/O
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The following code examples show how to access the 16-bit timer registers assuming that no interrupts updates the 
temporary register. The same principle can be used directly for accessing the OCRnA/B/C and ICRn registers. Note that 
when using �C�, the compiler handles the 16-bit access.

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended I/O map, �IN�, �OUT�, �SBIS�, �SBIC�, �CBI�, and �SBI� instructions must 
be replaced with instructions that allow access to extended I/O. Typically �LDS� and �STS� combined with 
�SBRS�, �SBRC�, �SBR�, and �CBR�.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two 
instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or 
any other of the 16-bit timer registers, then the result of the access outside the interrupt will be corrupted. Therefore, when 
both the main code and the interrupt code update the temporary register, the main code must disable the interrupts during 
the 16-bit access.

Assembly Code Examples(1)

...
; Set TCNTn to 0x01FF
ldi r17,0x01
ldi r16,0xFF
out TCNTnH,r17
out TCNTnL,r16
; Read TCNTn into r17:r16
in r16,TCNTnL
in r17,TCNTnH
...

C Code Examples(1)

unsigned int i;
...
/* Set TCNTn to 0x01FF */
TCNTn = 0x1FF;
/* Read TCNTn into i */
i = TCNTn;
...
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The following code examples show how to do an atomic write of the TCNTn register contents. Writing any of the OCRnA/B/C 
or ICRn registers can be done by using the same principle.

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended I/O map, �IN�, �OUT�, �SBIS�, �SBIC�, �CBI�, and �SBI� instructions must 
be replaced with instructions that allow access to extended I/O. Typically �LDS� and �STS� combined with 
�SBRS�, �SBRC�, �SBR�, and �CBR�.

The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNTn.

16.3.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte only 
needs to be written once. However, note that the same rule of atomic operation described previously also applies in this 
case.

16.4 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the clock 
select logic which is controlled by the clock select (CSn2:0) bits located in the Timer/Counter control register B (TCCRnB). 
For details on clock sources and prescaler, see Section 17.10 �Timer/Counter Prescaler� on page 131 .

Assembly Code Example(1)

TIM16_WriteTCNTn:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Set TCNTn to r17:r16
out TCNTnH,r17
out TCNTnL,r16
; Restore global interrupt flag
out SREG,r18
ret

C Code Example(1)

void TIM16_WriteTCNTn(unsigned int i)
{

unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Set TCNTn to i */
TCNTn = i;
/* Restore global interrupt flag */
SREG = sreg;

}
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More advanced initialization routines can be made that include frame format as parameters, disable interrupts and so on. 
However, many applications use a fixed setting of the baud and control registers, and for these types of applications the 
initialization code can be placed directly in the main routine, or be combined with initialization code for other I/O modules.

19.7 Data Transmission � The USART Transmitter
The USART transmitter is enabled by setting the transmit enable (TXEN) bit in the UCSRnB register. When the transmitter is 
enabled, the normal port operation of the TxDn pin is overridden by the USART and given the function as the transmitter�s 
serial output. The baud rate, mode of operation and frame format must be set up once before doing any transmissions. If 
synchronous operation is used, the clock on the XCKn pin will be overridden and used as transmission clock.

19.7.1 Sending Frames with 5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The CPU can load the transmit 
buffer by writing to the UDRn I/O location. The buffered data in the transmit buffer will be moved to the shift register when the 
shift register is ready to send a new frame. The shift register is loaded with new data if it is in idle state (no ongoing 
transmission) or immediately after the last stop bit of the previous frame is transmitted. When the shift register is loaded with 
new data, it will transfer one complete frame at the rate given by the baud register, U2Xn bit or by XCKn depending on mode 
of operation.

The following code examples show a simple USART transmit function based on polling of the data register empty (UDREn) 
flag. When using frames with less than eight bits, the most significant bits written to the UDRn are ignored. The USART has 
to be initialized before the function can be used. For the assembly code, the data to be sent is assumed to be stored in 
register R16.

Note: 1. See Section 4. �About Code Examples� on page 8 .

The function simply waits for the transmit buffer to be empty by checking the UDREn flag, before loading it with new data to 
be transmitted. If the data register empty interrupt is utilized, the interrupt routine writes the data into the buffer.

Assembly Code Example(1)

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA,UDREn
rjmp USART_Transmit
; Put data (r16) into buffer, sends the data
out UDRn,r16
ret

C Code Example(1)

void USART_Transmit(unsigned char data)
{

/* Wait for empty transmit buffer */
while (!(UCSRnA & (1<<UDREn)))
;
/* Put data into buffer, sends the data */
UDRn = data;

}
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� Bit 0 � UCPOLn: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is used. The UCPOLn bit sets 
the relationship between data output change and data input sample, and the synchronous clock (XCKn).

19.11.5 UBRRnL and UBRRnH � USART Baud Rate Registers

� Bit 15:12 � Reserved

These bits are reserved for future use. For compatibility with future devices, these bit must be written to zero when UBRRH 
is written.

� Bit 11:0 � UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four most significant bits, and the 
UBRRL contains the eight least significant bits of the USART baud rate. Ongoing transmissions by the transmitter and 
receiver will be corrupted if the baud rate is changed. Writing UBRRL will trigger an immediate update of the baud rate 
prescaler.

19.12 Examples of Baud Rate Setting
For standard crystal and resonator frequencies, the most commonly used baud rates for asynchronous operation can be 
generated by using the UBRR settings in Table 19-9 on page 167 to Table 19-12 on page 168. UBRR values which yield an 
actual baud rate differing less than 0.5% from the target baud rate, are bold in the table. Higher error ratings are acceptable, 
but the receiver will have less noise resistance when the error ratings are high, especially for large serial frames (see Section 
19.9.3 �Asynchronous Operational Range� on page 161 ). The error values are calculated using the following equation:

Table 19-7. UCSZn Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 19-8. UCPOLn Bit Settings

UCPOLn Transmitted Data Changed (Output of TxDn Pin) Received Data Sampled (Input on RxDn Pin)

0 Rising XCKn edge Falling XCKn edge

1 Falling XCKn edge Rising XCKn edge

Bit 15 14 13 12 11 10 9 8

� � � � UBRR[11:8] UBRRnH

UBRR[7:0] UBRRnL

7 6 5 4 3 2 1 0

Read/Write
R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Error[%]
BaudRateClosest Match

BaudRate
-------------------------------------------------- 1–� ' � „

� § � •100%�x=
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20.5.1 USART MSPIM Initialization

The USART in MSPIM mode has to be initialized before any communication can take place. The initialization process 
normally consists of setting the baud rate, setting master mode of operation (by setting DDR_XCKn to one), setting frame 
format and enabling the transmitter and the receiver. Only the transmitter can operate independently. For interrupt driven 
USART operation, the global interrupt flag should be cleared (and thus interrupts globally disabled) when doing the 
initialization.
Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be zero at the time 

the transmitter is enabled. Contrary to the normal mode USART operation the UBRRn must then be written to 
the desired value after the transmitter is enabled, but before the first transmission is started. Setting UBRRn to 
zero before enabling the transmitter is not necessary if the initialization is done immediately after a reset since 
UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that there is no ongoing 
transmissions during the period the registers are changed. The TXCn flag can be used to check that the transmitter has 
completed all transfers, and the RXCn flag can be used to check that there are no unread data in the receive buffer. Note 
that the TXCn flag must be cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C function that are equal in 
functionality. The examples assume polling (no interrupts enabled). The baud rate is given as a function parameter. For the 
assembly code, the baud rate parameter is assumed to be stored in the r17:r16 registers.

Note: 1. See Section 4. �About Code Examples� on page 8 .

Assembly Code Example(1)

USART_Init:
clr r18
out UBRRnH,r18
out UBRRnL,r18
; Setting the XCKn port pin as output, enables master mode.
sbi XCKn_DDR, XCKn
; Set MSPI mode of operation and SPI data mode 0.
ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)
out UCSRnC,r18
; Enable receiver and transmitter.
ldi r18, (1<<RXENn)|(1<<TXENn)
out UCSRnB,r18
; Set baud rate. 
; IMPORTANT: The Baud Rate must be set after the transmitter is 

enabled!
out UBRRnH, r17
out UBRRnL, r18
ret

C Code Example(1)

void USART_Init(unsigned int baud)
{

UBRRn = 0;
/* Setting the XCKn port pin as output, enables master mode. */
XCKn_DDR |= (1<<XCKn);
/* Set MSPI mode of operation and SPI data mode 0. */
UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);
/* Enable receiver and transmitter. */
UCSRnB = (1<<RXENn)|(1<<TXENn);
/* Set baud rate. */
/* IMPORTANT: The Baud Rate must be set after the transmitter is 

enabled 
*/
UBRRn = baud;

}
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The TWINT flag is set in the following situations:
�� After the TWI has transmitted a START/REPEATED START condition.
�� After the TWI has transmitted SLA+R/W.
�� After the TWI has transmitted an address byte.
�� After the TWI has lost arbitration.
�� After the TWI has been addressed by own slave address or general call.
�� After the TWI has received a data byte.
�� After a STOP or REPEATED START has been received while still addressed as a slave.
�� When a bus error has occurred due to an illegal START or STOP condition.

21.6 Using the TWI
The AVRfi  TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like reception of a byte or 
transmission of a START condition. Because the TWI is interrupt-based, the application software is free to carry on other 
operations during a TWI byte transfer. Note that the TWI interrupt enable (TWIE) bit in TWCR together with the global 
interrupt enable bit in SREG allow the application to decide whether or not assertion of the TWINT flag should generate an 
interrupt request. If the TWIE bit is cleared, the application must poll the TWINT flag in order to detect actions on the TWI 
bus.

When the TWINT flag is asserted, the TWI has finished an operation and awaits application response. In this case, the TWI 
status register (TWSR) contains a value indicating the current state of the TWI bus. The application software can then 
decide how the TWI should behave in the next TWI bus cycle by manipulating the TWCR and TWDR registers.

Figure 21-10 is a simple example of how the application can interface to the TWI hardware. In this example, a master wishes 
to transmit a single data byte to a slave. This description is quite abstract, a more detailed explanation follows later in this 
section. A simple code example implementing the desired behavior is also presented.

Figure 21-10. Interfacing the Application to the TWI in a Typical Transmission 

1. The first step in a TWI transmission is to transmit a START condition. This is done by writing a specific value into 
TWCR, instructing the TWI hardware to transmit a START condition. Which value to write is described later on. 
However, it is important that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The 
TWI will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the application has 
cleared TWINT, the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT flag in TWCR is set, and TWSR is updated with a 
status code indicating that the START condition has successfully been sent.
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21.7.4 Slave Transmitter Mode

In the slave transmitter mode, a number of data bytes are transmitted to a master receiver (see Figure 21-17). All the status 
codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 21-17. Data Transfer in Slave Transmitter Mode 

To initiate the slave transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the 2-wire serial interface will respond when addressed by a master. If the 
LSB is set, the TWI will respond to the general call address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the acknowledgement of 
the device�s own slave address or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or the general 
call address if enabled) followed by the data direction bit. If the direction bit is �1� (read), the TWI will operate in ST mod e, 
otherwise SR mode is entered. After its own slave address and the write bit have been received, the TWINT flag is set and a 
valid status code can be read from TWSR. The status code is used to determine the appropriate software action. The 
appropriate action to be taken for each status code is detailed in Table 21-6 on page 197. The slave transmitter mode may 
also be entered if arbitration is lost while the TWI is in the master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the transfer. State 0xC0 or state 0xC8 
will be entered, depending on whether the master receiver transmits a NACK or ACK after the final byte. The TWI is 
switched to the not addressed slave mode, and will ignore the master if it continues the transfer. Thus the master receiver 
receives all �1� as serial data. State 0xC8  is entered if the master demands additional data bytes (by transmitting ACK), even 
though the slave has transmitted the last byte (TWEA zero and expecting NACK from the master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire serial bus is still monitored 
and address recognition may resume at any time by setting TWEA. This implies that the TWEA bit may be used to 
temporarily isolate the TWI from the 2-wire serial bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the interface can 
still acknowledge its own slave address or the general call address by using the 2-wire serial bus clock as a clock source. 
The part will then wake up from sleep and the TWI will hold the SCL clock will low during the wake up and until the TWINT 
flag is cleared (by writing it to one). Further data transmission will be carried out as normal, with the AVRfi  clocks running as 
normal. Observe that if the AVR is set up with a long start-up time, the SCL line may be held low for a long time, blocking 
other data transmissions.

Note that the 2-wire serial interface data register � TWDR does not reflect the last  byte present on the bus when waking up 
from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device�s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

value 0 1 0 0 0 1 0 X

Device 1
Slave

Transmitter

SDA

VCC

SCL

Device 3 Device n........ R1 R2
Device 2

Master
Receiver
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Using the ADC interrupt flag as a trigger source makes the ADC start a new conversion as soon as the ongoing conversion 
has finished. The ADC then operates in free running mode, constantly sampling and updating the ADC data register. The 
first conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform 
successive conversions independently of whether the ADC interrupt flag, ADIF is cleared or not.

If auto triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to one. ADSC can also be used 
to determine if a conversion is in progress. The ADSC bit will be read as one during a conversion, independently of how the 
conversion was started.

23.5 Prescaling and Conversion Timing

Figure 23-3. ADC Prescaler 

By default, the successive approximation circuitry requires an input clock frequency between 50kHz and 200kHz to get 
maximum resolution. If a lower resolution than 10 bits is needed, the input clock frequency to the ADC can be higher than 
200kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency from any CPU frequency above 
100kHz. The prescaling is set by the ADPS bits in ADCSRA. The prescaler starts counting from the moment the ADC is 
switched on by setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is 
continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion starts at the following rising 
edge of the ADC clock cycle. See Section 23.5.1 �Differential Gain Channels� on page 213  for details on differential 
conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched on (ADEN in ADCSRA is set) 
takes 25 ADC clock cycles in order to initialize the analog circuitry.

When the bandgap reference voltage is used as input to the ADC, it will take a certain time for the voltage to stabilize. If not 
stabilized, the first value read after the first conversion may be wrong.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conversion and 13.5 ADC clock 
cycles after the start of a first conversion. When a conversion is complete, the result is written to the ADC data registers, and 
ADIF is set. In single conversion mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new 
conversion will be initiated on the first rising ADC clock edge.

When auto triggering is used, the prescaler is reset when the trigger event occurs. This assures a fixed delay from the trigger 
event to the start of conversion. In this mode, the sample-and-hold takes place 2 ADC clock cycles after the rising edge on 
the trigger source signal. Three additional CPU clock cycles are used for synchronization logic.

When using differential mode, along with auto trigging from a source other than the ADC conversion complete, each 
conversion will require 25 ADC clocks. This is because the ADC must be disabled and re-enabled after every conversion.

In free running mode, a new conversion will be started immediately after the conversion completes, while ADSC remains 
high. For a summary of conversion times, see Table 23-1 on page 212.
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23.7.1 Analog In put Circuitry

The analog input circuitry for single ended channels is illustrated in Figure 23-8 An analog source applied to ADCn is 
subjected to the pin capacitance and input leakage of that pin, regardless of whether that channel is selected as input for the 
ADC. When the channel is selected, the source must drive the S/H capacitor through the series resistance (combined 
resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately 10k�:  or less. If such a source is used, 
the sampling time will be negligible. If a source with higher impedance is used, the sampling time will depend on how long 
time the source needs to charge the S/H capacitor, with can vary widely. The user is recommended to only use low impedant 
sources with slowly varying signals, since this minimizes the required charge transfer to the S/H capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although source impedances of a few 
hundred k�:  or less is recommended.

Signal components higher than the nyquist frequency (fADC/2) should not be present for either kind of channels, to avoid 
distortion from unpredictable signal convolution. The user is advised to remove high frequency components with a low-pass 
filter before applying the signals as inputs to the ADC.

Figure 23-8. Analog Input Circuitry 

23.7.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of analog measurements. If 
conversion accuracy is critical, the noise level can be reduced by applying the following techniques:

IIL

VCC/2

CS/H = 14pF

IIH

ADCn
1 to 100k�
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26.8.7 Setting the Boot Loader Lock Bits by SPM

To set the boot loader lock bits and general lock bits, write the desired data to R0, write �X0001001� to SPMCSR and 
execute SPM within four clock cycles after writing SPMCSR.

See Table 26-2 on page 243 and Table 26-3 on page 243 for how the different settings of the boot loader bits affect the flash 
access.

If bits 5..0 in R0 are cleared (zero), the corresponding boot lock bit will be programmed if an SPM instruction is executed 
within four cycles after BLBSET and SPMEN are set in SPMCSR. The Z-pointer is don�t care during this operation, but for 
future compatibility it is recommended to load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For future 
compatibility it is also recommended to set bits 7 and 6 in R0 to �1� when writing the lock bits. When programming the lock 
bits the entire flash can be read during the operation.

26.8.8 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to flash. Reading the fuses and lock bits from 
software will also be prevented during the EEPROM write operation. It is recommended that the user checks the status bit 
(EEPE) in the EECR register and verifies that the bit is cleared before writing to the SPMCSR register.

26.8.9 Reading the Fuse and Lock Bits from Software

It is possible to read both the fuse and lock bits from software. To read the lock bits, load the Z-pointer with 0x0001 and set 
the BLBSET and SPMEN bits in SPMCSR. When an (E)LPM instruction is executed within three CPU cycles after the 
BLBSET and SPMEN bits are set in SPMCSR, the value of the lock bits will be loaded in the destination register. The 
BLBSET and SPMEN bits will auto-clear upon completion of reading the lock bits or if no (E)LPM instruction is executed 
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLBSET and SPMEN are cleared, 
(E)LPM will work as described in the instruction set manual.

The algorithm for reading the fuse low byte is similar to the one described above for reading the lock bits. To read the fuse 
low byte, load the Z-pointer with 0x0000 and set the BLBSET and SPMEN bits in SPMCSR. When an (E)LPM instruction is 
executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the value of the fuse low byte (FLB) 
will be loaded in the destination register as shown below. Refer to Table 27-5 on page 257 for a detailed description and 
mapping of the fuse low byte.

Similarly, when reading the fuse high byte, load 0x0003 in the Z-pointer. When an (E)LPM instruction is executed within 
three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the value of the fuse high byte (FHB) will be loaded 
in the destination register as shown below. Refer to Table 27-4 on page 257 for detailed description and mapping of the fuse 
high byte.

When reading the extended fuse byte, load 0x0002 in the Z-pointer. When an (E)LPM instruction is executed within three 
cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the value of the extended fuse byte (EFB) will be loaded 
in the destination register as shown below. Refer to Table 27-3 on page 256 for detailed description and mapping of the 
extended fuse byte.

Fuse and lock bits that are programmed, will be read as zero. Fuse and lock bits that are unprogrammed, will be read as 
one.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd � � BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd � � � � � EFB2 EFB1 EFB0
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Figure 27-8. Parallel Programming Timing, Loading Sequence with Timing Requirements (1) 

Note: The timing requirements shown in Figure 27-7 on page 268 (i.e., tDVXH, tXHXL, and tXLDX) also apply to loading 
operation.

Figure 27-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with Timing Requirements (1) 

Note: 1. The timing requirements shown in Table 27-7 on page 268 (i.e., tDVXH, tXHXL, and tXLDX) also apply to reading 
operation.
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Figure 27-13. State Machine Sequence for Changing the Instruction Word 

27.10.2 AVR_RESET (0xC)

The AVRfi  specific public JTAG instruction for setting the AVR device in the reset mode or taking the device out from the 
reset mode. The TAP controller is not reset by this instruction. The one bit reset register is selected as data register. Note 
that the reset will be active as long as there is a logic �one� in  the reset chain. The output from this chain is not latched. 

The active states are:
�� Shift-DR: The reset register is shifted by the TCK input.

27.10.3 PROG_ENABLE (0x4)

The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-bit programming enable 
register is selected as data register. The active states are the following:

�� Shift-DR: The programming enable signature is shifted into the data register.
�� Update-DR: The programming enable signature is compared to the correct value, and programming mode is entered 

if the signature is valid.

Test Logic Reset
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0 0
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1 1
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Update IRUpdate DR

1

1 0 1 0

1
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0
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29.2.7 BOD Threshold

Figure 29-42. ATmega324P-B: BOD Threshold versus Temperature (V BOT = 4.3V) 

Figure 29-43. ATmega324P-B: BOD Threshold versus Temperature (V BOT = 2.7V) 

Figure 29-44. ATmega324P-B: Calibrated Bandgap Voltage versus V CC 
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