E·XFL

Zilog - EZ80190AZ050SG Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	eZ80
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	50MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	100-LQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/ez80190az050sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog ₁₂

Pin No.	Symbol	Function	Signal Direction	Description
50	NMI	Nonmaskable Interrupt	Schmitt Trigger Input, Active Low	The $\overline{\text{NMI}}$ input is prioritized higher than the maskable interrupts. It is always recognized at the end of an instruction, regardless of the state of the interrupt enable control bits. This input includes a Schmitt trigger to allow RC rise times. This ext <u>ernal NMI signal is combined with an</u> internal NMI signal generated from the WDT block before being connected to the NMI input of the CPU.
51	HALT	Halt	Output, Active Low	A Low on this pin indicates the CPU has stopped because a HALT instruction is executed.
52	INSTRD	Instruction READ	Output, Active Low, tristate	INSTRD (with MREQ and RD) indicates the eZ80190 device is fetching an instruction from code memory. The eZ80190 device does not drive this line during Reset or bus acknowledge cycles.
53	IORQ	Input/Output Request	Input/Output, Active Low	IORQ indicates the CPU is accessing a location in I/O space. RD and WR indicate the type of access. The eZ80190 device does not drive this line during Reset and is an input in bus acknowledge cycles.
54	RESET	Reset	Schmitt Trigger Input, Active Low	This signal is used to initialize the eZ80190 device. This input must be Low for a minimum of 3 system clock cycles, and must be held Low until the clock is stable. This input includes a Schmitt trigger to allow RC rise times.
55	ZCL	ZDI Clock	Input with Pull-up	The ZCL pin is used to clock the data between the Zilog Debug Interface and the eZ80190 device. This pin features an internal pull-up.
56	ZDA	ZDI Data	Input/Output, Open-Drain with Pull-up	The ZDA pin is used to transfer data between the Zilog Debug Interface and the eZ80190 device. This pin is open-drain and features an internal pull-up.
57	PB0	GPIO Port B	Input/Output	The PB0 pin can be used for GPIO. It can be individually programmed as an input or output and can also be used individually as an interrupt input. Each Port B pin, when programmed as an output, can be selected to be an open-drain or open-source output.

Table 1. 100-Pin LQFP Pin Identification of the eZ80190 Device (Continued)

zilog ₁₅

Pin No.	Symbol	Function	Signal Direction	Description
68	PC1	GPIO Port C	Input/Output	The PC1 pin can be used for GPIO. It can be individually programmed as an input or output and can also be used individually as an interrupt input. Each Port C pin, when programmed as an output, can be selected to be an open-drain or open-source output. Port C is multiplexed with one channel of the UZI interface.
	MOSI1	Master Out Slave In	Input/Output	The MOSI line is configured as an output when the eZ80190 device is an SPI master device and as an input when the eZ80190 device is an SPI slave device. This signal is multiplexed with PC1.
	RxD1	Receive Data	Input	The RxD1 pin is used by the UART to receive asynchronous serial data. This signal is multiplexed with PC1.
	SDA1	I ² C Serial Data	Input/Output	The SDA1 pin carries the I^2C data signal. This signal is multiplexed with PC1.
69	PC2	GPIO Port C	Input/Output	The PC2 pin can be used for GPIO. It can be individually programmed as an input or output and can also be used individually as an interrupt input. Each Port C pin, when programmed as an output, can be selected to be an open-drain or open-source output. Port C is multiplexed with one channel of the UZI interface.
	SCK1	SPI Serial Clock	Input/Output	SPI serial clock. This signal is multiplexed with PC2.
	RTS1	Request to Send	Output, Active Low	The RTS1 pin carries the modem-control signal from the UART. This signal is multiplexed with PC2.

Table 1. 100-Pin LQFP Pin Identification of the eZ80190 Device (Continued)

zilog[°]

Address	•••••	News	Reset	CPU	Page
(hex)	Mnemonic	Name	(hex)	Access	No.
DF	UZI1_CTL	UZI 1 Control Register	00	R/W	64
Multiply-	Accumulator				
E0	MACC_xSTART	Multiply-Accumulator <i>x</i> Starting Address Register	00	R/W	134
E1	MACC_xEND	Multiply-Accumulator <i>x</i> Ending Address Register	00	R/W	135
E2	MACC_xRELOAD	Multiply-Accumulator x Reload Register	00	R/W	137
E3	MACC_LENGTH	Multiply-Accumulator Length Register	00	R/W	138
E4	MACC_ySTART	Multiply-Accumulator y Starting Address Register	00	R/W	142
E5	MACC_yEND	Multiply-Accumulator <i>y</i> Ending Address Register	00	R/W	143
E6	MACC_yRELOAD	Multiply-Accumulator y Reload Register	00	R/W	144
E7	MACC_CTL	Multiply-Accumulator Control Register	00	R/W	145
E8	MACC_AC0	Multiply-Accumulator Byte 0 Register	XX	R/W	145
E9	MACC_AC1	Multiply-Accumulator Byte 1 Register	XX	R/W	154
EA	MACC_AC2	Multiply-Accumulator Byte 2 Register	XX	R/W	155
EB	MACC_AC3	Multiply-Accumulator Byte 3 Register	XX	R/W	156
EC	MACC_AC4	Multiply-Accumulator Byte 4 Register	XX	R/W	156
ED	MACC_STAT	Multiply-Accumulator Status Register	XX	R/W	159
DMA Con	trollers				
EE	DMA0_SAR_L	DMA0 Source Address Register—Low Byte	XX	R/W	163
EF	DMA0_SAR_H	DMA0 Source Address Register—High Byte	XX	R/W	163
F0	DMA0_SAR_U	DMA0 Source Address Upper Byte Register	XX	R/W	163
F1	DMA0_DAR_L	DMA0 Destination Address Register—Low Byte	XX	R/W	163
F2	DMA0_DAR_H	DMA0 Destination Address Register— High Byte	XX	R/W	163

Table 2. Register Map (Continued)

28

Table 3. PRT Single-Pass Mode Operation Example

Parameter	Control Register(s)	Value
PRT Enabled	TMRx_CTL[0]	1
Reload and Restart Enabled	TMRx_CTL[1]	1
PRT Clock Divider = 2	TMRx_CTL[3:2]	00b
Single-Pass Mode	TMRx_CTL[4]	0
PRT Interrupt Enabled	TMRx_CTL[6]	0
PRT Reload Value	{TMRx_RR_H, TMRx_RR_L}	0004h

CONTINUOUS Mode

In CONTINUOUS mode, when the end-of-count value, 0000h, is reached, the timer automatically reloads the 16-bit start value from the Timer Reload registers, TMRx_RR_H and TMRx_RR_L. Downcounting continues on the next clock edge. In CONTINUOUS mode, the PRT continues to count until disabled. Figure 5 displays an example of a PRT operating in CONTINUOUS mode. Timer register information is listed in Table 4.

Figure 5. PRT Continuous Mode Operation Example

zilog

56

Table 18. Chip Select x Lower Bound Register (CS0_LBR = A8h, CS1_LBR = ABh, CS2_LBR = AEh, CS3_LBR = B1h)

Bit		7	6	5	4	3	2	1	0		
Reset		0	0	0							
CPU Access R/W R/W R/W R/W						R/W	R/W	R/W	R/W		
Note: R/W =	Read/Write	е.									
Bit Position	Value	Descript	scription · Memory Chip Selects (CS_io = 0)								
[7:0] CS_LBR	00h– FFh	 For Memory Chip Selects (CS_io = 0) This bit specifies the lower bound of the Chip Select add range. The upper byte of the address bus, ADDR[23:16], compared to the values contained in these registers for determining if a Memory Chip Select signal should be get 									
		For I/O C This bit s compare determin	Chip Sel pecifies d to the ing if an	ects (C: the Chip values c I/O Chip	S_io = 1 Select contained Select) address d in thes signal st	value. A e registe nould be	ADDR[11 ers for generat	:4] is ed.		

Chip Select x Upper Bound Register

For Memory Chip Selects, the Chip Select x Upper Bound register, listed in Table 19, defines the upper bound of the address range for which the corresponding Chip Select (if enabled) can be active. For I/O Chip Selects, this register produces no effect. The reset state for the Chip Select 0 Upper Bound register is FFh, while the reset state for the 3 other Chip Select upper bound registers is 00h.

Table 19. Chip Select x Upper Bound Register(CS0_UBR = A9h, CS1_UBR = ACh,CS2_UBR = AFh, CS3_UBR = B2h)

Bit	7	6	5	4	3	2	1	0
CS0 Reset	1	1	1	1	1	1	1	1
CS1 Reset	0	0	0	0	0	0	0	0
CS2 Reset	0	0	0	0	0	0	0	0
CS3 Reset	0	0	0	0	0	0	0	0
CPU Access	R/W							
Note: R/W = Read/Write.								

- zilog |₆
- Clear UARTx LCTL[7] to 0 to disable access of the BRG divisor registers.

UZI and BRG Control Registers

UZI Control Registers

The UZI Control registers select between the three available serial communication controllers: I²C, SPI and UART. Each of the two UZI devices on the eZ80190 device features its own UZI Control register.

Table 23. UZI (Control R	egister	iters (UZI0_CTL=CFh, UZI1_CTL=DFh) 6 5 4 3 2 1 0 0 <				^r h)		
Bit		7	6	5	4	3	2	1	0
Reset		0	0	0	0	0	0	0	0
CPU Access		R	R	R R R R R R/W R/V					
Note: R = Read	Only; R/W	= Read	/Write.						
Bit Position	Value	Descr	iption						
[7:2]	000000	Reser	ved						
[1:0]	00	All UZI devices are disabled.							
UZI_MODE	01	UART	is enab	ed.					
	10	SPI is enabled.							
	11	I ² C is	enabled	•					

BRG Divisor Latch Registers—Low Byte

This register holds the Low byte of the 16-bit divisor count loaded by the processor for baud rate generation. The 16-bit clock divisor value is returned by {BRGx_DLR_H, BRGx_DLR_L}, where x is either 0 or 1 to identify the two available UZI devices. Upon RESET, the 16-bit BRG divisor value resets to 0002h. The initial 16-bit divisor value must be between 0002h and FFFFh as the values 0000h and 0001h are invalid and proper operation is not guaranteed. Thus the minimum BRG clock divisor ratio is 2.

A write to either the Low or High byte registers for the BRG Divisor Latch causes both bytes to be loaded into the BRG counter and the count restarted.

Bit 7 of the associated UART Line Control register (UARTx_LCTL) must be set to 1 to access this register for each UZI device. For more information see UART Line Control Register on page 77 (UARTx_LCTL).

zilog

105

I²C Slave Address Register

The I2Cx_SAR register, indicated in Table 49, lists the 7-bit address of the I²C when in SLAVE mode and allows 10-bit addressing in conjunction with the I2Cx_xSAR register. I2Cx_SAR[7:1] = SLA[6:0] is the 7-bit address of the I²C when in 7-bit SLAVE mode. When the I²C receives this address after a START condition, it enters SLAVE mode. I2Cx_SAR[7] corresponds to the first bit received from the I²C bus.

When the register receives an address starting with F7h to F0h (I2Cx_SAR[7:3] = 11110b), the I²C recognizes that a 10-bit slave addressing mode is being selected. The I²C sends an ACK after receiving the I2Cx_SAR byte (the device does not generate an interrupt at this point). After the next byte of the address (I2Cx_xSAR) is received, the I²C generates an interrupt and enters SLAVE mode. Then I2Cx_SAR[2:1] is used as the upper 2 bits of the 10-bit extended address. The full 10-bit address is returned by $\{I2Cx_SAR[2:1], I2Cx_xSAR[7:0]\}$.

(12C0 SAR = C8h 12C1 SAR = D8h)

01410714		giotoro	6 5 4 3 2 1 0 0 0 0 0 0 2/W R/W R/W R/W R/W R/W in				Boni,		
	7	6	5	4	3	2	1	0	
	0	0	0	0	0	0	0	0	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ead/Write.									
Value	Descri	otion							
00h– 7Fh	The 7-b when o	it slave a	address, in 10-bi	, or the lo t mode.	ower 7 b	its of the	e slave a	ddress,	
0	The I ² C	is not e	nabled t	o recogr	nize the	General	Call Add	dress.	
1	The I^2C is enabled to recognize the General Call Address.								
	Value 00h- 7Fh 0 1	Value Descrip 00h- The 7-b 7 0 R/W Descrip 00h- The 7-b 7Fh when o 0 The 1 ² C 1 The 1 ² C	7 6 0 0 R/W R/W Value Description 00h- The 7-bit slave 7Fh when operating 0 The I ² C is not e 1 The I ² C is enable	7 6 5 0 0 0 R/W R/W R/W Value Description 00h- The 7-bit slave address, when operating in 10-bit 0 The I ² C is not enabled to re 1 The I ² C is enabled to re	7 6 5 4 0 0 0 0 R/W R/W R/W R/W Value Description 00h- The 7-bit slave address, or the low when operating in 10-bit mode. 0 The I ² C is not enabled to recognize 1 The I ² C is enabled to recognize	7 6 5 4 3 0 0 0 0 0 R/W R/W R/W R/W R/W Itead/Write. Itead/Write. Itead/Write. Itead/Write. Value Description Itead/Write. Itead/Write. 0 0h- The 7-bit slave address, or the lower 7 b Itead/Write. 0 The 1 ² C is not enabled to recognize the Generational to recognicon to recognize the Generational to recognize	7 6 5 4 3 2 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W Value Description 00h- The 7-bit slave address, or the lower 7 bits of the when operating in 10-bit mode. 0 The I ² C is not enabled to recognize the General Cal 0 The I ² C is enabled to recognize the General Cal 0	76543210000000R/WR/WR/WR/WR/WR/WR/WRead/Write.Value Description00h-The 7-bit slave address, or the lower 7 bits of the slave a when operating in 10-bit mode.0The I^2C is not enabled to recognize the General Call Address1The I^2C is enabled to recognize the General Call Address	

Table 49. I²C Slave Address Registers

I²C Extended Slave Address Register

The I2Cx_xSAR register, listed in Table 50, is used in conjunction with the I2Cx_SAR register to provide 10-bit addressing for the I²C when in SLAVE mode. The I2Cx_SAR value forms the lower 8 bits of the 10-bit slave address. The full 10-bit address is returned by $\{I2Cx_SAR[2:1], I2Cx_xSAR[7:0]\}$.

When the register receives an address starting with F7h to F0h (I2Cx_SAR[7:3] = 11110b), the I²C recognizes that a 10-bit slave addressing mode is being selected. The I²C sends an ACK after receiving the I2Cx_SAR byte (the device does not generate an interrupt at this point). After the next byte of the address (I2Cx_xSAR) is received, the I²C generates an interrupt and enters SLAVE mode. Then I2Cx_SAR[2:1] is used as the upper 2 bits of the 10-bit extended address. The full 10-bit address is returned by $\{I2Cx_SAR[2:1], I2Cx_xSAR[7:0]\}$.

zilog ₁₁

To ensure correct detection of START and STOP conditions on the bus, the I^2C must sample the I^2C bus at least ten times faster than the bus clock speed of the fastest master on the bus. The sampling frequency should therefore be at least 1 MHz (4 MHz in FAST mode) to guarantee correct operation with other bus masters.

The I²C sampling frequency is determined by the frequency of the eZ80190 device system clock and the value in the I2Cx_CCR bits 2 to 0. The bus clock speed generated by the I²C in MASTER mode is determined by the frequency of the input clock and the values in I2Cx_CCR[2:0] and I2Cx_CCR[6:3].

I²C Software Reset Register

The I2Cx_SRR register, listed in Table 56 on page 112, is a Write Only register. Writing any value to this register will perform a software reset of the I²C module.

Table 56. I ² 0	C Software	Reset Reg	gister	(I2C0_SRR = CDh, I2C1_SRR = DDh)						
Bit	7	6	5	4	3	2	1	0		
Reset	Х	Х	Х	Х	Х	Х	Х	Х		
CPU Acces	s W	W	W	W	W	W	W	W		
Note: W = W	rite Only.									
Bit Position	Value	Descripti	on							
[7:0] SRR	00h–FFh	Writing ar I ² C modu	ny value t le.	o this regi	ister perfo	orms a so	ftware res	et of the		

<mark>z</mark>ilog[°]

129

Bit Position	Value	Description
[7:0] MACC_ <i>x</i> RELOAD	00h– FFh	The reload address for MACC RAM <i>x</i> DATA.

MACC Length Register

The MACC_LENGTH register, listed in Table 63, defines the total number of x and y data pairs that are multiplied and accumulated for the MACC operation.

Table 63. MACC Le	(MACC_LENGTH = E3h)								
Bit	7		6	5	4	3	2	1	0
Reset	0		0	0	0	0	0	0	0
CPU Access	R/\	Ν	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Note: R/W = Read/W	/rite.								
Bit Position	Value	De	escriptio	on					
[7:0] MACC_LENGTH	00h– FFh	Tc ac	Total number of address pairs to be multiplied and accumulated for the current MACC operation.						

MACC y DATA Starting Address Register

The MACC_*y*START register, listed in Table 64, defines the starting address for the MACC to read 16-bit values from the *y* DATA for performing its calculations.

Table 64. MACC y DATA Starting Address Register					(MACC_ <i>y</i> START = E4h)				
Bit	7		6	5	4	3	2	1	0
Reset	0		0	0	0	0	0	0	0
CPU Access	R/\	N	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Note: R/W = Read/W	Vrite.								
Bit Position	Value	D	escriptio	on					
[7:0] MACC_ <i>y</i> START	00h– FFh	Starting address for the <i>y</i> DATA of MACC RAM.							

zilog

130

MACC y DATA Ending Address Register

The MACC_yEND register, listed in Table 65 on page 130, defines the ending address for the MACC to read 16-bit values from the *y* DATA for performing its calculations.

Table 65. MACC y DATA Ending Address Register					ster	(MACC_yEND = E5h)			
Bit	7		6	5	4	3	2	1	0
Reset	0		0	0	0	0	0	0	0
CPU Access	R/\	Ν	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Note: R/W = Read/	Write.								
Bit Position	Value	De	escriptio	on					
[7:0] MACC_ <i>y</i> END	00h– FFh	Er	Ending address for the <i>y</i> DATA of MACC RAM.						

MACC y DATA Reload Address Register

The MACC_yRELOAD register, listed in Table 66, defines the reload address within the y DATA of MACC RAM. When the y DATA address increments to the value in MACC_yEND, the next y DATA address is taken from this MACC_yRELOAD register.

Table 66. MACC y DATA Reload Address Register					(MACC_yRELOAD = E6h)				
Bit	7		6	5	4	3	2	1	0
Reset	0		0	0	0	0	0	0	0
CPU Access	R/	Ν	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Note: R/W = Read/W	rite.								
Bit Position	Value	De	escriptio	on					
[7:0] MACC_ <i>y</i> RELOAD	00h– FFh	Re	Reload address for the <i>y</i> DATA of MACC RAM.						

MACC Control Register

The MACC Control register, listed in Table 67, provides added MACC features including interrupt enable on completion of calculation. All writes to this register clear the 40-bit accumulator to 0 (MACC_ACx = 00h}.

zilog

131

Table 67. MA	CC Control Register			(MACC_CTL = E7h)					
Bit		7	6	5	4	3	2	1	0
Reset		0	0	0	0	0	0	0	0
CPU Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Note: R/W = R	Read/Write	Э.							
Bit Position	Value	Descript	ion						
7	0	MACC in	terrupt i	s disable	ed.				
MACC_IE	1	The MAC defined. when it c	CC interr The MA complete	rupt is er CC gene s this ca	nabled fo erates ar llculation	or the cal interrup (DONE	lculation ot reques).	currentl st to the	y bein CPU
6	0	All NOIS	E bits ad	dded to t	he accu	mulator	using IN	_SHIFT	are 0.
NOISE	1	All NOIS	E bits ad	dded to t	he accu	mulator	using IN	_SHIFT	are 1.
[5:3] OUT_SHIFT	000	No right- Accumul DATA_O	shift is p ator regi UT[40:0	erforme isters by] = MAC	d during the CPL C_ACx[READs J. 39:0].	from the	MACC	
	001	Reads fro right-shif DATA_O	om the N ted by 1 UT[40:0	MACC A bit with)] = {2{M	ccumula a fill by t ACC_A0	tor regis he sign Cx[39]}, I	ters by t bit (msb MACC_/	he CPU = bit 39) ACx[38:1	are).]}.
	010	Reads fro right-shif DATA_O	om the N ted by 2 UT[40:0	MACC A bits with)] = {3{M	ccumula n a fill by ACC_A0	tor regis the sign Cx[39]}, I	ters by t bit (ms MACC_/	he CPU b = bit 39 ACx[38:2	are 9). 2]}.
	011	Reads fro right-shif DATA_O	om the N ted by 3 UT[40:0	MACC A bits with)] = {4{M	ccumula n a fill by ACC_A0	tor regis the sign Cx[39]}, I	ters by t bit (ms MACC_/	he CPU b = bit 39 ACx[38:3	are 9). 3]}.
	100	Reads fro right-shif DATA_O	om the N ted by 4 UT[40:0	MACC A bits with)] = {5{M	ccumula n a fill by ACC_AC	tor regis the sign Cx[39]}, I	ters by t bit (ms MACC_/	he CPU b = bit 39 ACx[38:4	are 9). !]}.
	101	Reads fro right-shif DATA_O	om the N ted by 5 UT[40:0	MACC A bits with)] = {6{M	ccumula n a fill by ACC_AC	tor regis the sign Cx[39]}, I	ters by t bit (ms MACC_/	he CPU b = bit 39 ACx[38:5	are 9). 5]}.
	110	Reads fro right-shif DATA_O	om the N ted by 6 UT[40:0	MACC A bits with)] = {7{M	ccumula n a fill by ACC_A0	tor regis the sign Cx[39]}, I	ters by t bit (ms MACC_/	he CPU b = bit 39 ACx[38:6	are 9). 6]}.
	111	Reads fro right-shif DATA_O	om the N ted by 7 UT[40:0	MACC A bits with] = {8{M	ccumula n a fill by ACC_A0	tor regis the sign Cx[39]}, I	ters by t bit (ms MACC_/	he CPU b = bit 39 ACx[38:7	are 9). 7]}.

zilog

135

MACC Status Register

The MACC STAT register, listed in Table 73, reflects the current status of the Multiply-Accumulator. Writing a value of 80h to the MACC STAT register when the CALC bank has completed its calculation (DONE) and the DATA register is not loaded with a new calculation (EMPTY) swaps the banks to allow the pending result to be retrieved.

The eZ80190 device uses two distinct numbered banks, banks 0 and 1. The value in bit 4 of the MACC STAT register indicates which of these two banks is currently accessible as the DATA bank. In general, there is no requirement for software to monitor which numbered bank is currently the DATA bank and which is the CALC bank.

Table 73. MACC Status Register				(MACC_STAT = EDh)						
Bit	7	6	5	4	3	2	1	0		
Reset	0	0	0	0	0	0	0	0		
CPU Access	W	/ R	R	R	R	R	R	R		
Note: R = Read; V	v = Write.									
Bit Position	Value	Descripti	on							
[7:5]	000	Reserved								
4 BANK	0	The current DATA bank is Bank 0. The current DATA bank is always reset to Bank 0 when both banks are EMPTY.						A bank PTY.		
	1	The current CALC bank is Bank 1.								
[3:2] CALC_STAT	00	The CALC bank is EMPTY. No calculation is set up for execution.								
	01	Invalid.								
	10	The CALC bank is IN PROGRESS. The MACC is current executing on a data set.								
	11	The CALC bank is DONE. The MACC has completed execution of the operations defined by the CALC bank control registers. The result is stored in the CALC bank accumulator registers. The CALC bank must be swapped with the DATA bank to allow the CPU to access the resu						ed ank oank apped e result.		

168

Table 97. Block Transfer and Compare Instructions

Mnemonic	Instruction
CPD (CPDR)	Compare and Decrement (with Repeat)
CPI (CPIR)	Compare and Increment (with Repeat)
LDD (LDDR)	Load and Decrement (with Repeat)
LDI (LDIR)	Load and Increment (with Repeat)

Table 98. Exchange Instructions

Mnemonic	Instruction
EX	Exchange registers
EXX	Exchange CPU Multibyte register banks

Table 99. Input/Output Instructions

Mnemonic	Instruction
IN	Input from I/O
IN0	Input from I/O on Page 0
IND (INDR)	Input from I/O and Decrement (with Repeat)
IND2 (IND2R)	Input from I/O and Decrement (with Repeat)
INDM (INDMR)	Input from I/O and Decrement (with Repeat)
INI (INIR)	Input from I/O and Increment (with Repeat)
INI2 (INI2R)	Input from I/O and Increment (with Repeat)
INIM (INIMR)	Input from I/O and Increment (with Repeat)
OTDM (OTDMR)	Output to I/O and Decrement (with Repeat)
OTIM (OTIMR)	Output to I/O and Increment (with Repeat)
OUT	Output to I/O
OUT0	Output to I/0 on Page 0
OUTD (OTDR)	Output to I/O and Decrement (with Repeat)
OUTD2 (OTD2R)	Output to I/O and Decrement (with Repeat)

zilog[°]

169

Table 99. Input/Output Instructions (Continued)

Mnemonic	Instruction
OUTI (OTIR)	Output to I/O and Increment (with Repeat)
OUTI2 (OTI2R)	Output to I/O and Increment (with Repeat)
TSTIO	Test I/O

Table 100. Load Instructions

Mnemonic	Instruction
LD	Load
LEA	Load Effective Address
PEA	Push Effective Address
POP	Рор
PUSH	Push

Table 101. Logical Instructions

Mnemonic	Instruction
AND	Logical AND
CPL	Complement Accumulator
OR	Logical OR
TST	Test Accumulator
XOR	Logical Exclusive OR

Table 102. Processor Control Instructions

Mnemonic	Instruction
CCF	Complement Carry Flag
DI	Disable Interrupts
El	Enable Interrupts
HALT	Halt

181

DC Characteristics

Table 113 lists the Direct Current characteristics of the eZ80190 device.

Table 113. DC Characteristics

		Standard Temperature Range = 0 °C to 70 °C		Extended Temperature Range = -40 °Cto 105 °C			
Symbol	Parameter	Min	Max	Min	Max	Units	Conditions
V _{DD}	Supply Voltage	3.0	3.6	3.0	3.6	V	
V _{IL}	Low Level Input Voltage	-0.3	0.8V	-0.3	0.8V	V	
V _{IH}	High Level Input Voltage	0.7xV _{DD}	5.5	0.7xV _{DD}	5.5	V	
V _{OL}	Low Level Output Voltage		0.4		0.4	V	V _{DD} = 3.0 V; I _{OL} = 1 mA
V _{OH}	High Level Output Voltage	2.4		2.4		V	V _{DD} = 3.0 V; I _{OH} = ,— mA
I _{IL}	Input Leakage Current	-10	+10	-10	+10	μA	V_{DD} = 3.6 V; V_{IN} = V_{DD} or V_{SS}^*
I _{TL}	Tri-State Leakage Current	-10	+10	-10	+10	μA	V _{DD} = 3.6 V
* This co	ndition excludes the Z	DA and ZCL p	oins, when a	driven Low, du	ue to the pre	sence of	on-chip pull-ups.

In the following pages, Figure 36 displays the typical current consumption of the eZ80190 device versus the number of WAIT states while operating 25 °C, 3.3 V, and with either a 1 MHz or 5 MHz system clock. Figure 37 displays the typical current consumption of the eZ80190 device versus the number of WAIT states while operating 25 °C, 3.3 V, and with either a 20 MHz or 50 MHz system clock. Figure 38 displays the typical current consumption of the eZ80190 device versus the system clock frequency while operating 25 °C, 3.3 V, and with either a 20 MHz or 50 MHz states. Figure 39 displays the typical current consumption of the eZ80190 device versus the system clock frequency while operating 25 °C, 3.3 V, and using 0, 2, or 7 WAIT states. Figure 39 displays the typical current consumption of the eZ80190 device versus the system clock frequency while operating at 3.3 V, 7 WAIT states, and with either a 5 MHz, 20 MHz, or 50 MHz system clock.

zilog[°]

		Delay (ns)		
Parameter	Description	Min.	Max.	
T ₁	Clock Rise to ADDR Valid Delay		10.2	
T ₂	Clock Rise to ADDR Hold Time	1.6	_	
T ₃	Clock Rise to Output DATA Valid Delay		10.2	
T ₄	DATA Hold Time from Clock Rise	5.0	_	
T ₅	Clock Rise to $\overline{\text{CSx}}$ Assertion Delay	3.0	10.5	
Т ₆	Clock Rise to $\overline{\text{CSx}}$ Deassertion Delay	3.0	9.7	
T ₇	Clock Rise to MREQ Assertion Delay	2.8	9.6	
T ₈	Clock Rise to MREQ Deassertion Delay	1.6	6.9	
T ₉	Clock Fall to WR Assertion Delay	1.5	3.9	
T ₁₀	Clock Rise to WR Deassertion Delay*	1.4	4.1	

Table 116. External Write Timing

* At the conclusion of a write cycle, deassertion of WR always occurs before any change to ADDR, DATA, CSx, or MREQ.

187

zilog[°]

189

Table 117. External I/O Read Timing (Continued)

		Delay (ns)		
Parameter	Description	Min	Мах	
T ₉	Clock Rise to RD Assertion Delay	3.0	9.8	
T ₁₀	Clock Rise to RD Deassertion Delay	2.5	7.1	

External I/O Write Timing

Figure 43 and Table 118 display the timing for external I/O writes.

Figure 43. External I/O Write Timing

Figure 46. Port Input Sample Timing

General-Purpose I/O Port Output Timing

Figure 47 and Table 119 on page 194 display the timing of the GPIO outputs.

Figure 47. GPIO Port Output Timing

eZ80190

193

Product Specification

zilog

Ordering Information

Order eZ80190 from Zilog[®], using the following part numbers. For more information regarding ordering, consult your local Zilog sales office. Zilog website <u>www.zilog.com</u>, lists all regional offices and provides additional eZ80190 product information.

Table 122 lists a part number, a product specification index code, and a brief description of each eZ80190 part.

Table 122. Ordering Information

Part	PSI	Description		
eZ80190	eZ80190AZ050SC	100-pin LQFP, 50MHz, Standard Temperature		
	eZ80190AZ050EC	100-pin LQFP, 50MHz, Extended Temperature		
eZ80190 Development Kit	eZ8019000100ZCO	Complete Development Kit		

The latest information regarding software and other product updates is available for down-load at <u>www.zilog.com</u>.

Part Number Description

Zilog part numbers consist of a number of components, as indicated in the following examples:

Zilog Base Product			
eZ80 [®]	eZ80 CPU	Zilog prefix	
190	Product N	umber	
AZ	Package		
050	Speed		
S or E	Temperatu	ıre	
С	Environmental Flow		
Package		AZ = LQFP (also called the VQFP)	
Speed		050 = 50 MHz	
Standard Temperature		S = 0 °C to +70 °C	
Extended Temperature		E = -40 °C to +105 °C	
Environmental Flow		C = Plastic Standard	

zilog ₁₉₇

Example. Part number eZ80190AZ050SC is an eZ80[®] CPU product in an LQFP package, operating with a 50 MHz external clock frequency over a 0 °C to +70 °C temperature range, and built using the Plastic Standard environmental flow.