E·XFL

NXP USA Inc. - KMSC7119VF1200 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, I ² C, UART
Clock Rate	300MHz
Non-Volatile Memory	ROM (8kB)
On-Chip RAM	464kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmsc7119vf1200

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Signal Names								
Number		S	Software Controlled			Controlled			
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate			
F6			V _D	DC					
F7			GI	ND					
F8			GI	ND					
F9			GI	ND					
F10			V _D	DM					
F11			V _D	DM					
F12			GI	ND					
F13			GI	ND					
F14			GI	ND					
F15			V _D	DIO					
F16			V _D	DC					
F17			V _D	DC					
F18			N	С					
F19			N	с					
F20			N	с					
G1		GND							
G2			D	13					
G3			GI	ND					
G4			VD	DM					
G5			VD	DM					
G6			GI	ND					
G7			GI	ND					
G8			GI	ND					
G9			GI	ND					
G10			GI	ND					
G11			GI	ND					
G12			GI	ND					
G13			GI	ND					
G14			GI	ND					
G15			V _D	DIO					
G16			V _D	DIO					
G17			V _D	DC					
G18			N	С					
G19			N	с					
G20			N	с					
H1		D14							

Table 1. MSC7119 Signals by Ball Designator (continued)

ssignments

	Signal Names						
Number		S	Software Controlled			Controlled	
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
H2			D	12			
НЗ			D	11			
H4			V _D	DM			
H5			V _D	DM			
H6			GI	ND			
H7			GI	ND			
H8			GI	ND			
H9			GI	ND			
H10			GI	ND			
H11			GI	ND			
H12			GI	ND			
H13			GI	ND			
H14			GI	ND			
H15			V _D	DIO			
H16			V _D	DIO			
H17		Vppc					
H18			N	C			
H19		rese	erved		H	A2	
H20		rese	erved		н	A1	
J1			D	10			
J2			V _D	DM			
J3			D	9			
J4			V _D	DM			
J5			V _D	DM			
J6			V _D	DM			
J7			GI	ND			
J8			GI	ND			
J9			GI	ND			
J10			GI	ND			
J11			GI	ND			
J12			GI	ND			
J13			GI	ND			
J14			GI	ND			
J15			GI	ND			
J16			V _D	DIO			
J17			V _D	DC			

Table 1. MSC7119 Signals by Ball Designator (continued)

	Signal Names								
Number		s	Hardware	Controlled					
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate			
J18		GPIC11		GPOC11	ŀ	IA3			
J19		rese	erved		HACK/HACK	or HRRQ/HRRQ			
J20	HDSP		reserved		HREQ/HREQ	or HTRQ/HTRQ			
K1			C	00					
K2			GI	ND					
K3			C	8					
K4			V _C	DC					
K5			V _C	DM					
K6			GI	ND					
K7			GI	ND					
K8			GI	ND					
K9			GI	ND					
K10			GI	ND					
K11			GI	ND					
K12			GI	ND					
K13		GND							
K14			GI	ND					
K15			VD	DIO					
K16			VD	DIO					
K17			V _C	DC					
K18		rese	erved		ŀ	HA0			
K19		rese	erved		HDDS				
K20		rese	erved		HDS/HDS	or HWR/HWR			
L1			C	01					
L2			GI	ND					
L3			C	03					
L4			V _C	DC					
L5			V _D	DM					
L6			GI	ND					
L7			G	ND					
L8			GI	ND					
L9			G	ND					
L10			G	ND					
L11			G	ND					
L12			G	ND					
L13		GND							

Table 1. MSC7119 Signals by Ball Designator (continued)

lssignments

			Signal	Names				
Number		Software Controlled			Hardware Controlled			
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
L14			V _D	DIO				
L15			V _D	DIO				
L16			V _D	DIO				
L17			V _C	DC				
L18		GPIB11		GPOB11	HCS2	/HCS2		
L19		rese	erved		HCS1	/HCS1		
L20		rese	erved		HRW or	HRD/HRD		
M1			C	2				
M2			V _D	DM				
M3			C	95				
M4			V _D	DM				
M5			V _D	DM				
M6		GND						
M7			GI	ND				
M8			GI	ND				
M9			GI	ND				
M10			GI	ND				
M11			GI	ND				
M12			GI	ND				
M13			GI	ND				
M14			GI	ND				
M15			GI	ND				
M16			V _D	DC				
M17			V _D	DC				
M18	GPI	A14	IRQ15	GPOA14	S	DA		
M19	GPI	A12	IRQ3	GPOA12	TU	TXD		
M20	GPI	A13	IRQ2	GPOA13	UF	RXD		
N1			C	94				
N2			C	96				
N3			V _F	REF				
N4			VD	DM				
N5			VD	DM				
N6			VD	DM				
N7			GI	ND				
N8			GI	ND				
N9			GI	ND				

Table 1. MSC7119 Signals by Ball Designator (continued)

ssignments

			Signal	Names			
Number		s	oftware Controlle	ed	Hardware	Controlled	
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
V18	GPI	A24	IRQ24	GPOA24	TX_	_EN	
V19		rese	erved		CI	RS	
V20			т	DI			
W1			G	ND			
W2			V _C	DDM			
W3			A	12			
W4			A	\8			
W5			P	47			
W6			A	46			
W7			P	43			
W8			Ν	IC			
W9	GPI	A17	IRQ13	GPOA17	EVNT1	CLKO	
W10	BM0	GPI	C14	GPOC14	EVI	NT2	
W11	GPI	A10	IRQ5	GPOA10	TORFS		
W12	GP	IA7	IRQ7	GPOA7	TOTFS		
W13	GP	'IA3	IRQ8	GPOA3	T1RD		
W14	GP	'IA1	IRQ10	GPOA1	T1TFS		
W15		GPID4	·	GPOD4	TXD2	reserved	
W16	GPI	A27	IRQ18	GPOA27	RXD3	reserved	
W17	GPI	A19	IRQ19	GPOA19	ТХ	D1	
W18	GPI	A23	IRQ23	GPOA23	TXCLK of	REFCLK	
W19	GPI	A26	IRQ26	GPOA26	RX_	_ER	
W20	H8BIT		reserved		MI	00	
Y1			V	DDM			
Y2			G	ND			
Y3			P	49			
Y4			P	A1			
Y5			P	40			
Y6			P	\4			
Y7			B	A1			
Y8	rese	erved	NMI		reserved		
Y9	BM1	GPI	C15	GPOC15	EVI	NT3	
Y10	GPI	A11	IRQ4	GPOA11	TOF	RCK	
Y11		GPIA9	•	GPOA9	ТО	RD	
Y12		GPIA6		GPOA6	ТО	TD	
Y13	GP	IA5	IRQ0	GPOA5	T1F	RCK	

Table 1. MSC7119 Signals by Ball Designator (continued)

2.3 Thermal Characteristics

Table 4 describes thermal characteristics of the MSC7119 for the MAP-BGA package.

		MAP-BGA 1					
Characteristic	Symbol	Natural Convection	200 ft/min (1 m/s) airflow	Unit			
Junction-to-ambient ^{1, 2}	R _{θJA}	39	31	°C/W			
Junction-to-ambient, four-layer board ^{1, 3}	R _{θJA}	23	20	°C/W			
Junction-to-board ⁴	R _{θJB}	12		°C/W			
Junction-to-case ⁵	R _{θJC}	7		°C/W			
Junction-to-package-top ⁶	Ψ_{JT}	2		°C/W			
Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.							

Table 4. Thermal Characteristics for MAP-BGA Package

2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.

- **3.** Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Section 3.1, Thermal Design Considerations explains these characteristics in detail.

2.4 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC7119.

Note: The leakage current is measured for nominal voltage values must vary in the same direction (for example, both V_{DDIO} and V_{DDC} vary by +2 percent or both vary by -2 percent).

Characteristic	Symbol	Min	Typical	Мах	Unit
Core and PLL voltage	V _{DDC} V _{DDPLL}	1.14	1.2	1.26	V
DRAM interface I/O voltage ¹	V _{DDM}	2.375	2.5	2.625	V
I/O voltage	V _{DDIO}	3.135	3.3	3.465	V
DRAM interface I/O reference voltage ²	V _{REF}	$0.49 imes V_{DDM}$	1.25	$0.51 imes V_{DDM}$	V
DRAM interface I/O termination voltage ³	VTT	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	V
Input high CLKIN voltage	VIHCLK	2.4	3.0	3.465	V
DRAM interface input high I/O voltage	V _{IHM}	V _{REF} + 0.28	V _{DDM}	V _{DDM} + 0.3	V
DRAM interface input low I/O voltage	V _{ILM}	-0.3	GND	V _{REF} – 0.18	V
Input leakage current, V _{IN} = V _{DDIO}	I _{IN}	-1.0	0.09	1	μΑ
V _{REF} input leakage current	I _{VREF}	_	—	5	μA

Table 5. DC Electrical Characteristics

2.5.3.2 Reset Configuration

The MSC7119 has two mechanisms for writing the reset configuration:

- From a host through the host interface (HDI16)
- From memory through the I²C interface

Five signal levels (see **Chapter 1** for signal description details) are sampled on **PORESET** deassertion to define the boot and operating conditions:

- BM[0-1]
- SWTE
- H8BIT
- HDSP

2.5.3.3 Reset Timing Tables

Table 16 and Figure 4 describe the reset timing for a reset configuration write.

Table 16. Timing for a Reset Configuration Write

No.	Characteristics	Expression	Unit
1	Required external PORESET duration minimum	16/F _{CLKIN}	clocks
2	Delay from PORESET deassertion to HRESET deassertion	521/F _{CLKIN}	clocks
Note:	Timings are not tested, but are guaranteed by design.		

Figure 4. Timing Diagram for a Reset Configuration Write

2.5.6.4 Management Interface Timing

No.	Characteristics	Min	Max	Unit
808	MDC period	400	—	ns
809	MDC pulse width high	160	-	ns
810	MDC pulse width low	160	-	ns
811	MDS falling edge to MDIO output invalid (minimum propagation delay)	0	—	ns
812	MDS falling edge to MDIO output valid (maximum propagation delay)	_	15	ns
813	MDIO input to MDC rising edge setup time	10	_	ns
814	MDC rising edge to MDIO input hold time	10	_	ns

Figure 13. Serial Management Channel Timing

2.5.7 HDI16 Signals

Table 25.	Host	Interface	(HDI16)	Timing	1,	2
-----------	------	-----------	---------	--------	----	---

No.	Characteristics ³	Expression	Value	Unit
40	Host Interface Clock period	T _{CORE}	Note 1	ns
44a	Read data strobe minimum assertion width ⁴ HACK read minimum assertion width	2.0 × T _{CORE} + 9.0	Note 11	ns
44b	Read data strobe minimum deassertion width ⁴ HACK read minimum deassertion width	$1.5 \times T_{CORE}$	Note 11	ns
44c	Read data strobe minimum deassertion width ⁴ after "Last Data Register" reads ^{5,6} , or between two consecutive CVR, ICR, or ISR reads ⁷ HACK minimum deassertion width after "Last Data Register" reads ^{5,6}	2.5 × T _{CORE}	Note 11	ns
45	Write data strobe minimum assertion width ⁸ HACK write minimum assertion width	$1.5 \times T_{CORE}$	Note 11	ns
46	Write data strobe minimum deassertion width ⁸ HACK write minimum deassertion width after ICR, CVR and Data Register writes ⁵	2.5 × T _{CORE}	Note 11	ns
47	Host data input minimum setup time before write data strobe deassertion ⁸ Host data input minimum setup time before HACK write deassertion	_	2.5	ns
48	Host data input minimum hold time after write data strobe deassertion ⁸ Host data input minimum hold time after HACK write deassertion	_	2.5	ns
49	Read data strobe minimum assertion to output data active from high <u>impedance</u> ⁴ HACK read minimum assertion to output data active from high impedance	_	1.0	ns
50	Read data strobe maximum assertion to output data valid ⁴ HACK read maximum assertion to output data valid	$(2.0 \times T_{COBF}) + 8.0$	Note 11	ns
51	Read data strobe maximum deassertion to output data high impedance ⁴ HACK read maximum deassertion to output data high impedance		9.0	ns
52	Output data minimum hold time after read data strobe deassertion ⁴ Output data minimum hold time after HACK read deassertion	_	1.0	ns
53	HCS[1–2] minimum assertion to read data strobe assertion ⁴	_	0.5	ns
54	HCS[1–2] minimum assertion to write data strobe assertion ⁸	—	0.0	ns
55	HCS[1–2] maximum assertion to output data valid	(2.0 × T _{CORE}) + 6.0	Note 11	ns
56	HCS[1–2] minimum hold time after data strobe deassertion ⁹	_	0.5	ns
57	HA[0–2], HRW minimum setup time before data strobe assertion ⁹	—	5.0	ns
58	HA[0–2], HRW minimum hold time after data strobe deassertion ⁹	—	5.0	ns
61	Maximum delay from read data strobe deassertion to host request deassertion for "Last Data Register" read ^{4, 5, 10} $(3.0 \times T_{CORE}) + 6.0$ Note 11ns			
62	Maximum delay from write data strobe deassertion to host request deassertion for "Last Data Register" write ^{5,8,10}	(3.0 × T _{CORE}) + 6.0	Note 11	ns
63	Minimum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) deassertion to HREQ assertion. (2.0 × T _{CORE}) + 1.0		ns	
64	Maximum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) assertion to HREQ deassertion	(5.0 × T _{CORE}) + 6.0	Note 11	ns
Notes:	 T_{CORE} = core clock period. At 300 MHz, T_{CORE} = 3.333 ns. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable. V_{DD} = 3.3 V ± 0.15 V; T_J = -40°C to +105 °C, C_L = 30 pF for maximum delay timings and C_L = 0 pF for minimum delay timings. The read data strobe is HRD/HRD in the dual data strobe mode and HDS/HDS in the single data strobe mode. For 64-bit transfers, the "last data register" is the register at address 0x7, which is the last location to be read or written in data transfers. This is RX0/TX0 in the little endian mode (HBE = 0), or RX3/TX3 in the big endian mode (HBE = 1). This timing is applicable only if a read from the "last data register" is followed by a read from the RX[0-3] registers without first polling RXDE or HBEO bits or writing for the assertion of the HBEO/HBEO signal. 			

7. This timing is applicable only if two consecutive reads from one of these registers are executed.

8. The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode.

9. The data strobe is host read (HRD/HRD) or host write (HWR/HWR) in the dual data strobe mode and host data strobe (HDS/HDS) in the single data strobe mode.

10. The host request is HREQ/HREQ in the single host request mode and HRRQ/HRRQ and HTRQ/HTRQ in the double host request mode. HRRQ/HRRQ is deasserted only when HOTX fifo is empty, HTRQ/HTRQ is deasserted only if HORX fifo is full

11. Compute the value using the expression.

12. The read and write data strobe minimum deassertion width for non-"last data register" accesses in single and dual data strobe modes is based on timings 57 and 58.

Figure 14 and Figure 15 show HDI16 read signal timing. Figure 16 and Figure 17 show HDI16 write signal timing.

Figure 14. Read Timing Diagram, Single Data Strobe

Figure 15. Read Timing Diagram, Double Data Strobe

Figure 16. Write Timing Diagram, Single Data Strobe

Figure 17. Write Timing Diagram, Double Data Strobe

Figure 18. Host DMA Read Timing Diagram, HPCR[OAD] = 0

Figure 19. Host DMA Write Timing Diagram, HPCR[OAD] = 0

2.5.8 I²C Timing

				
No.	Chanastariatia	Fa	11	
		Min	Мах	Unit
450	SCL clock frequency	0	400	kHz
451	Hold time START condition	(SCL clock period/2) – 0.3		μs
452	SCL low period	(SCL clock period/2) – 0.3	_	μs
453	SCL high period	(SCL clock period/2) - 0.1	_	μs
454	Repeated START set-up time (not shown in figure)	$2 \times 1/F_{BCK}$	_	μs
455	Data hold time	0	_	μs
456	Data set-up time	250		ns
457	SDA and SCL rise time	_	700	ns
458	SDA and SCL fall time	_	300	ns
459	Set-up time for STOP	(SCL clock period/2) - 0.7	_	μs
460	Bus free time between STOP and START	(SCL clock period/2) - 0.3	_	μs
Note:	SDA set-up time is referenced to the rising edge of SCL. SDA hold time is referenced to the falling edge of SCL. Load capacitance on SDA and SCL is 400 pF.			

Table 26. I²C Timing

Figure 20. I²C Timing Diagram

2.5.9 UART Timing

No.	Characteristics	Expression	Min	Мах	Unit
	Internal bus clock (APBCLK)	F _{CORE} /2		150	MHz
	Internal bus clock period (1/APBCLK)	T _{APBCLK}	6.67	—	ns
400	URXD and UTXD inputs high/low duration	$16 \times T_{APBCLK}$	106.67	—	ns
401	URXD and UTXD inputs rise/fall time		_	5	ns
402	UTXD output rise/fall time			5	ns

Figure 21. UART Input Timing

2.5.10 EE Timing

Table 28. EE0 Timing

Number			Characteristics	Туре	Min
(65		EE0 input to the core	Asynchronous	4 core clock periods
66			EE0 output from the core	Synchronous to core clock	1 core clock period
Notes:	1.	The	e core clock is the SC1400 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset.		
	2.	Cor	nfigure the direction of the EE pin in the EE_CTRL register (see the SC140/SC1400 Core Reference Manual for details.		
	3.	Ref	efer to Table 1-11 on page 1-16 for details on EE pin functionality.		

Figure 24 shows the signal behavior of the EE pin.

Figure 28. Test Access Port Timing Diagram

Figure 29. TRST Timing Diagram

NP

ware Design Considerations

3.2 **Power Supply Design Considerations**

This section outlines the MSC7119 power considerations: power supply, power sequencing, power planes, decoupling, power supply filtering, and power consumption. It also presents a recommended power supply design and options for low-power consumption. For information on AC/DC electrical specifications and thermal characteristics, refer to **Section 2**.

3.2.1 Power Supply

The MSC7119 requires four input voltages, as shown in Table 32.

Voltage	Symbol	Value
Core	V _{DDC}	1.2 V
Memory	V _{DDM}	2.5 V
Reference	V _{REF}	1.25 V
I/O	V _{DDIO}	3.3 V

Table 32. MSC7119 Voltages

You should supply the MSC7119 core voltage via a variable switching supply or regulator to allow for compatibility with possible core voltage changes on future silicon revisions. The core voltage is supplied with 1.2 V (+5% and -10%) across V_{DDC} and GND and the I/O section is supplied with 3.3 V (± 10%) across V_{DDIO} and GND. The memory and reference voltages supply the DDR memory controller block. The memory voltage is supplied with 2.5 V across V_{DDM} and GND. The reference voltage is supplied across V_{REF} and GND and must be between $0.49 \times V_{DDM}$ and $0.51 \times V_{DDM}$. Refer to the JEDEC standard JESD8 (*Stub Series Terminated Logic for 2.5 Volts* (STTL_2)) for memory voltage supply requirements.

3.2.2 Power Sequencing

One consequence of multiple power supplies is that the voltage rails ramp up at different rates when power is initially applied. The rates depend on the power supply, the type of load on each power supply, and the way different voltages are derived. It is extremely important to observe the power up and power down sequences at the board level to avoid latch-up, forward biasing of ESD devices, and excessive currents, which all lead to severe device damage.

Note: There are five possible power-up/power-down sequence cases. The first four cases listed in the following sections are recommended for new designs. The fifth case is not recommended for new designs and must be carefully evaluated for current spike risks based on actual information for the specific application.

3.2.2.1 Case 1

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) supply second.
- 3. Turn on the V_{DDM} (2.5 V) supply third.
- 4. Turn on the V_{REF} (1.25 V) supply fourth (last).

The power-down sequence is as follows:

- 1. Turn off the V_{REF} (1.25 V) supply first.
- 2. Turn off the V_{DDM} (2.5 V) supply second.
- 3. Turn off the V_{DDC} (1.2 V) supply third.
- 4. Turn of the V_{DDIO} (3.3 V) supply fourth (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down of V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 30** for relative timing for power sequencing case 1.

Time Figure 30. Voltage Sequencing Case 1

3.2.2.3 Case 3

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) supply second.
- 3. Turn on the V_{DDM} (2.5 V) and V_{REF} (1.25 V) supplies simultaneously (third).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDC} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{DDM} (2.5 V) and V_{REF} (1.25 V) supplies simultaneously (first).
- 2. Turn off the V_{DDC} (1.2 V) supply second.
- 3. Turn of the V_{DDIO} (3.3 V) supply third (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down for V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down time for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to Figure 32 for relative timing for Case 3.

Figure 32. Voltage Sequencing Case 3

ware Design Considerations

3.2.2.4 Case 4

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V), V_{DDM} (2.5 V), and V_{REF} (1.25 V) supplies simultaneously (second).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDC} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{DDC} (1.2 V), V_{REF} (1.25 V), and V_{DDM} (2.5 V) supplies simultaneously (first).
- 2. Turn of the V_{DDIO} (3.3 V) supply last.

Use the following guidelines:

- Make sure that the time interval between the ramp-up or ramp-down time for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to Figure 33 for relative timing for Case 4.

Figure 33. Voltage Sequencing Case 4

3.3.6 Example Total Power Consumption

Using the examples in this section and assuming four peripherals and 10 I/O lines active, a total power consumption value is estimated as the following:

$$P_{TOTAL} = 324.0 + (4 \times 4.32) + 326.3 + (10 \times 5.44) + 64 = 784.98 \text{ mW}$$
 Eqn. 13

3.4 Reset and Boot

This section describes the recommendations for configuring the MSC7119 at reset and boot.

3.4.1 Reset Circuit

HRESET is a bidirectional signal and, if driven as an input, should be driven with an open collector or open-drain device. For an open-drain output such as **HRESET**, take care when driving many buffers that implement input bus-hold circuitry. The bus-hold currents can cause enough voltage drop across the pull-up resistor to change the logic level to low. Either a smaller value of pull-up or less current loading from the bus-hold drivers overcomes this issue. To avoid exceeding the MSC7119 output current, the pull-up value should not be too small (a 1 K Ω pull-up resistor is used in the MSC711xADS reference design).

3.4.2 Reset Configuration Pins

Table 34 shows the MSC7119 reset configuration signals. These signals are sampled at the deassertion (rising edge) of PORESET. For details, refer to the Reset chapter of the *MSC711x Reference Manual*.

Signal	Description	Settings	
BM[3-0]	Determines boot mode.	See Table 35 for details.	
SWTE	Determines watchdog functionality.	0 Watchdog timer disabled.	
		1 Watchdog timer enabled.	
HDSP	Configures HDI16 strobe polarity.	0 Host Data strobes active low.	
		1 Host Data strobes active high.	
H8BIT	Configures HDI16 operation mode.	0 HDI16 port configured for 16-bit operation.	
		1 HDI16 port configured for 8-bit operation.	

Table 34. Reset Configuration Signals