

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Fixed Point
Interface	Host Interface, I ² C, UART
Clock Rate	300MHz
Non-Volatile Memory	ROM (8kB)
On-Chip RAM	464kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	400-LFBGA
Supplier Device Package	400-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=msc7119vf1200

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments

Figure 3. MSC7119 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View

lssignments

	Signal Names					
Number		S	oftware Controlle	ed	Hardware	Controlled
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
D10			V	DM		
D11			V _D	DIO		
D12			V _D	DIO		
D13			VD	DIO		
D14			VD	DIO		
D15			V _D	DIO		
D16			V _D	DIO		
D17			V	DDC		
D18			Ν	IC		
D19			Ν	IC		
D20			Ν	IC		
E1			G	ND		
E2			D	26		
E3		 D31				
E4		V _{DDM}				
E5		V _{DDM}				
E6		V _{DDC}				
E7		V _{DDC}				
E8		V _{DDC}				
E9		V _{DDC}				
E10		V _{DDM}				
E11		V _{DDIO}				
E12		V _{DDIO}				
E13		V _{DDIO}				
E14			V _D	DIO		
E15		V _{DDIO}				
E16			V	DDC		
E17		V _{DDC}				
E18		NC				
E19			Ν	IC		
E20			N	IC		
F1			V	DM		
F2			D	15		
F3			D	29		
F4			V	DDC		
F5			V	DDC		

Table 1. MSC7119 Signals by Ball Designator (continued)

MSC7119 Data Sheet, Rev. 8

ssignments

	Signal Names					
Number		S	Software Controlle	d	Hardware	Controlled
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
H2			D	12		
НЗ			D	11		
H4			V _D	DM		
H5			V _D	DM		
H6			GI	ND		
H7			GI	ND		
H8			GI	ND		
H9			GI	ND		
H10			GI	ND		
H11			GI	ND		
H12			GI	ND		
H13			GI	ND		
H14			GI	ND		
H15		Volgo				
H16			V _D	DIO		
H17		Vppc				
H18		NC				
H19	reserved HA2				A2	
H20		rese	erved		Н	A1
J1		D10				
J2		 Mad				
J3	D9					
J4		V _{DDM}				
J5		 				
J6			V _D	DM		
J7			GI	ND		
J8			GI	ND		
J9			GI	ND		
J10			GI	ND		
J11			GI	ND		
J12			GI	ND		
J13			GI	ND		
J14			GI	ND		
J15			GI	ND		
J16			V _D	DIO		
J17			V _D	DC		

Table 1. MSC7119 Signals by Ball Designator (continued)

MSC7119 Data Sheet, Rev. 8

	Signal Names					
Number		s	Software Controlle	ed	Hardware	Controlled
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
U2			C	021		
U3			D	23		
U4			V	DDM		
U5			V	DDC		
U6			V	DDC		
U7			V	DDC		
U8			V	DDC		
U9			V	DDC		
U10			V	DDC		
U11			V	DDC		
U12			V	DDC		
U13			V	DDC		
U14			V	DDC		
U15			V	DDC		
U16			V	DDC		
U17			V	DDC		
U18		reserved COL				OL
U19		тск				
U20		TRST				
V1		V _{DDM}				
V2		NC				
V3						
V4			A	.11		
V5		A10				
V6				۹5		
V7		A2				
V8			В	A0		
V9			١	1C		
V10	reserved EVNT0				NT0	
V11	SWTE	GPIA16	IRQ12	GPOA16	EV	NT4
V12	GP	1A8	IRQ6	GPOA8	T0 ⁻	тск
V13	GP	'IA4	IRQ1	GPOA4	T1I	RFS
V14	GP	'IA0	IRQ11	GPOA0	T1	TD
V15	GPI	A28	IRQ17	GPOA28	TX_ER	reserved
V16		GPID6	1	GPOD6	RXD2	reserved
V17	GPI	A22	IRQ22	GPOA22	R۶	<d0< td=""></d0<>

Table 1. MSC7119 Signals by Ball Designator (continued)

MSC7119 Data Sheet, Rev. 8

	Signal Names					
Number	Software Controlled		ed	Hardware Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
Y14	GPIA2		IRQ9	GPOA2	T1TCK	
Y15	GPIA29		IRQ16	GPOA29	TXD3	reserved
Y16	GPID5			GPOD5	RXCLK	reserved
Y17	GPIA20		IRQ20	GPOA20	ТХ	(D0
Y18	GPIA21		IRQ21	GPOA21	RXD1	
Y19	GND			ND		
Y20	GPI	A25	IRQ25	GPOA25	RX_DV o	r CRS_DV

Table 1. MSC7119 Signals by Ball Designator (continued)

2 Electrical Characteristics

This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the *MSC711x Reference Manual*.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

2.3 Thermal Characteristics

Table 4 describes thermal characteristics of the MSC7119 for the MAP-BGA package.

		MAP-BGA 1			
Characteristic	Symbol	Natural Convection	200 ft/min (1 m/s) airflow	Unit	
Junction-to-ambient ^{1, 2}	R _{θJA}	39	31	°C/W	
Junction-to-ambient, four-layer board ^{1, 3}	R _{θJA}	23	20	°C/W	
Junction-to-board ⁴	R _{θJB}	12		°C/W	
Junction-to-case ⁵	R _{θJC}	7		°C/W	
Junction-to-package-top ⁶	Ψ_{JT}	2		°C/W	
Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.					

Table 4. Thermal Characteristics for MAP-BGA Package

2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.

- **3.** Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Section 3.1, Thermal Design Considerations explains these characteristics in detail.

2.4 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC7119.

Note: The leakage current is measured for nominal voltage values must vary in the same direction (for example, both V_{DDIO} and V_{DDC} vary by +2 percent or both vary by -2 percent).

Characteristic	Symbol	Min	Typical	Мах	Unit
Core and PLL voltage	V _{DDC} V _{DDPLL}	1.14	1.2	1.26	V
DRAM interface I/O voltage ¹	V _{DDM}	2.375	2.5	2.625	V
I/O voltage	V _{DDIO}	3.135	3.3	3.465	V
DRAM interface I/O reference voltage ²	V _{REF}	$0.49 imes V_{DDM}$	1.25	$0.51 imes V_{DDM}$	V
DRAM interface I/O termination voltage ³	VTT	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	V
Input high CLKIN voltage	VIHCLK	2.4	3.0	3.465	V
DRAM interface input high I/O voltage	V _{IHM}	V _{REF} + 0.28	V _{DDM}	V _{DDM} + 0.3	V
DRAM interface input low I/O voltage	V _{ILM}	-0.3	GND	V _{REF} – 0.18	V
Input leakage current, V _{IN} = V _{DDIO}	I _{IN}	-1.0	0.09	1	μΑ
V _{REF} input leakage current	I _{VREF}	_	—	5	μA

Table 5. DC Electrical Characteristics

Characteristic	Symbol	Min	Typical	Мах	Unit
Tri-state (high impedance off state) leakage current, $V_{\text{IN}} = V_{\text{DDIO}}$	I _{OZ}	-1.0	0.09	1	μA
Signal low input current, $V_{IL} = 0.4 V$	ΙL	-1.0	0.09	1	μA
Signal high input current, V_{IH} = 2.0 V	Ι _Η	-1.0	0.09	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$, except open drain pins	V _{OH}	2.0	3.0	_	V
Output low voltage, I _{OL} = 5 mA	V _{OL}	_	0	0.4	V
Typical power at 300 MHz ⁵	Р	_	324.0	_	mW
 Notes: 1. The value of V_{DDM} at the MSC7119 device must remain within 50 mV of V_{DDM} at the DRAM device at all times. V_{REF} must be equal to 50% of V_{DDM} and track V_{DDM} variations as measured at the receiver. Peak-to-peak noise must not exceed ±2% of the DC value. V_{rec} is not applied directly to the MSC7119 device. It is the level measured at the far end signal termination. It should be equal 					

Table 5. DC Electrical Characteristics (continued)

to the MSC7119 device. It is the level measured at the far end termination. It sh to V_{REF}. This rail should track variations in the DC level of V_{REF}. Output leakage for the memory interface is measured with all outputs disabled, $0 \text{ V} \le \text{V}_{\text{OUT}} \le \text{V}_{\text{DDM}}$. The core power values were measured.using a standard EFR pattern at typical conditions (25°C, 300 MHz, 1.2 V core).

4.

5.

Table 6 lists the DDR DRAM capacitance.

Table 6. DDR DRAM Capacitance

Parameter/Condition	Symbol	Мах	Unit
Input/output capacitance: DQ, DQS	C _{IO}	30	pF
Delta input/output capacitance: DQ, DQS	C _{DIO}	30	pF
Note: These values were measured under the following conditions: • $V_{DDM} = 2.5 \text{ V} \pm 0.125 \text{ V}$ • f = 1 MHz • $T_A = 25^{\circ}\text{C}$ • $V_{OUT} = V_{DDM}/2$ • V_{OUT} (peak to peak) = 0.2 V			

2.5.2.3 Multiplication Factor Range

The multiplier block output frequency ranges depend on the divided input clock frequency as shown in Table 10.

Multiplier Block (Loop) Output Range		Minimum PLLMLTF Value	Maximum PLLMLTF Value	
	$266 \leq$ [Divided Input Clock × (PLLMLTF + 1)] \leq 532 MHz	266/Divided Input Clock	532/Divided Input Clock	
Note:	Iote: This table results from the allowed range for F _{Loop} . The minimum and maximum multiplication factors are dependent on the frequency of the Divided Input Clock.			

Table 10. PLLMLTF Ranges

2.5.2.4 Allowed Core Clock Frequency Range

The frequency delivered to the core, extended core, and peripherals depends on the value of the CLKCTRL[RNG] bit as shown in **Table 11**.

Table 11. F,	_{/co} Frequenc	y Ranges
--------------	-------------------------	----------

CLI	KCTRL[RNG] Value	Allowed Range of F _{vco}
	1	$266 \le F_{vco} \le 532 \text{ MHz}$
	0	$133 \le F_{vco} \le 266 \text{ MHz}$
Note:	This table results from the allowed range for F _{vco} , which is F _{Loop} modified by CLKCTRL[RNG].	

This bit along with the CKSEL determines the frequency range of the core clock.

CLKCTRL[CKSEL]	CLKCTRL[RNG]	Resulting Division Factor	Allowed Range of Core Clock	Comments		
11	1	1	$266 \le core \ clock \le 300 \ MHz$	Limited by maximum core frequency		
11	0	2	$133 \le core \ clock \le 266 \ MHz$	Limited by range of PLL		
01	1	2	$133 \le core \ clock \le 266 \ MHz$	Limited by range of PLL		
01	0	4	$66.5 \le \text{core clock} \le 133 \text{ MHz}$	Limited by range of PLL		
Note: This table resu	This table results from the allowed range for F _{OUT} , which depends on clock selected via CLKCTRL[CKSEL].					

2.5.2.5 Core Clock Frequency Range When Using DDR Memory

The core clock can also be limited by the frequency range of the DDR devices in the system. **Table 13** summarizes this restriction.

DDR Type	Allowed Frequency Range for DDR CK	Corresponding Range for the Core Clock	Comments
DDR 200 (PC-1600)	83–100 MHz	$166 \le core \ clock \le 200 \ MHz$	Core limited to 2 × maximum DDR frequency
DDR 266 (PC-2100)	83–133 MHz	$166 \le core \ clock \le 266 \ MHz$	Core limited to $2 \times maximum DDR$ frequency
DDR 333 (PC-2600)	83–150 MHz	$166 \le core \ clock \le 300 \ MHz$	Core limited to $2 \times maximum DDR$ frequency

Table 13. Core Clock Ranges When Using DDR

rical Characteristics

2.5.3 Reset Timing

The MSC7119 device has several inputs to the reset logic. All MSC7119 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 14** describes the reset sources.

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC7119 and configures various attributes of the MSC7119. On PORESET, the entire MSC7119 device is reset. SPLL and DLL states are reset, HRESET is driven, the SC1400 extended core is reset, and system configuration is sampled. The system is configured only when PORESET is asserted.
External Hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC7119. While HRESET is asserted, HRESET is an open-drain output. Upon hard reset, HRESET is driven and the SC1400 extended core is reset.
Software watchdog reset	Internal	When the MSC7119 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC7119 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
JTAG EXTEST, CLAMP, or HIGHZ command	Internal	When a Test Access Port (TAP) executes an EXTEST, CLAMP, or HIGHZ command, the TAP logic asserts an internal reset signal that generates an internal soft reset sequence.

	Table	14.	Reset	Sources
--	-------	-----	-------	---------

Table 15 summarizes the reset actions that occur as a result of the different reset sources.

Table 15	. Reset Acti	ons for Each	Reset Source
----------	--------------	--------------	---------------------

	Po <u>wer-On Re</u> set (PORESET)	H <u>ard Rese</u> t (HRESET)	S <u>oft Rese</u> t (SRESET)
Reset Action/Reset Source	External only	External or Internal (Software Watchdog or Bus Monitor)	JTAG Command: EXTEST, CLAMP, or HIGHZ
Configuration pins sampled (refer to Section 2.5.3.1 for details).	Yes	No	No
PLL and clock synthesis states Reset	Yes	No	No
HRESET Driven	Yes	Yes	No
Software watchdog and bus time-out monitor registers	Yes	Yes	Yes
Clock synthesis modules (STOPCTRL, HLTREQ, and HLTACK) reset	Yes	Yes	Yes
Extended core reset	Yes	Yes	Yes
Peripheral modules reset	Yes	Yes	Yes

2.5.3.1 Power-On Reset (PORESET) Pin

Asserting $\overrightarrow{\text{PORESET}}$ initiates the power-on reset flow. $\overrightarrow{\text{PORESET}}$ must be asserted externally for at least 16 CLKIN cycles after external power to the MSC7119 reaches at least 2/3 V_{DD}.

Electrical Characteristics

2.5.6 Ethernet Timing

2.5.6.1 Receive Signal Timing

Table 21. Receive Signal Timing

No.	Characteristics	Min	Max	Unit
800	Receive clock period: • MII: RXCLK (max frequency = 25 MHz) • RMII: REFCLK (max frequency = 50 MHz)	40 20		ns ns
801	Receive clock pulse width high—as a percent of clock period • MII: RXCLK • RMII: REFCLK	35 14 7	65 —	% ns ns
802	Receive clock pulse width low—as a percent of clock period: • MII: RXCLK • RMII: REFCLK	35 14 7	65 —	% ns ns
803	RXDn, RX_DV, CRS_DV, RX_ER to receive clock rising edge setup time	4	_	ns
804	Receive clock rising edge to RXDn, RX_DV, CRS_DV, RX_ER hold time	2	_	ns

Figure 10. Ethernet Receive Signal Timing

2.5.6.4 Management Interface Timing

No.	Characteristics	Min	Max	Unit
808	MDC period	400	—	ns
809	MDC pulse width high	160	-	ns
810	MDC pulse width low	160	-	ns
811	MDS falling edge to MDIO output invalid (minimum propagation delay)	0	—	ns
812	MDS falling edge to MDIO output valid (maximum propagation delay)	_	15	ns
813	MDIO input to MDC rising edge setup time	10	_	ns
814	MDC rising edge to MDIO input hold time	10	_	ns

Figure 13. Serial Management Channel Timing

2.5.7 HDI16 Signals

Table 25.	Host	Interface	(HDI16)	Timing	1,	2
-----------	------	-----------	---------	--------	----	---

No.	Characteristics ³	Expression	Value	Unit	
40	Host Interface Clock period	T _{CORE}	Note 1	ns	
44a	Read data strobe minimum assertion width ⁴ HACK read minimum assertion width	2.0 × T _{CORE} + 9.0	Note 11	ns	
44b	Read data strobe minimum deassertion width ⁴ HACK read minimum deassertion width	$1.5 \times T_{CORE}$	Note 11	ns	
44c	Read data strobe minimum deassertion width ⁴ after "Last Data Register" reads ^{5,6} , or between two consecutive CVR, ICR, or ISR reads ⁷ HACK minimum deassertion width after "Last Data Register" reads ^{5,6}	$2.5 \times T_{CORE}$	Note 11	ns	
45	Write data strobe minimum assertion width ⁸ HACK write minimum assertion width	$1.5 \times T_{CORE}$	Note 11	ns	
46	Write data strobe minimum deassertion width ⁸ HACK write minimum deassertion width after ICR, CVR and Data Register writes ⁵	2.5 × T _{CORE}	Note 11	ns	
47	Host data input minimum setup time before write data strobe deassertion ⁸ Host data input minimum setup time before HACK write deassertion		2.5	ns	
48	Host data input minimum hold time after write data strobe deassertion ⁸ Host data input minimum hold time after HACK write deassertion	_	2.5	ns	
49	Read data strobe minimum assertion to output data active from high <u>impedance</u> ⁴ HACK read minimum assertion to output data active from high impedance	_	1.0	ns	
50	Read data strobe maximum assertion to output data valid ⁴	(2.0 × T _{CORE}) + 8.0	Note 11	ns	
51	Read data strobe maximum deassertion to output data high impedance ⁴ HACK read maximum deassertion to output data high impedance		9.0	ns	
52	Output data minimum hold time after read data strobe deassertion ⁴ Output data minimum hold time after HACK read deassertion	_	1.0	ns	
53	HCS[1–2] minimum assertion to read data strobe assertion ⁴	_	0.5	ns	
54	HCS[1–2] minimum assertion to write data strobe assertion ⁸	_	0.0	ns	
55	HCS[1–2] maximum assertion to output data valid	$(2.0 \times T_{CORE}) + 6.0$	Note 11	ns	
56	HCS[1–2] minimum hold time after data strobe deassertion ⁹	_	0.5	ns	
57	HA[0–2], HRW minimum setup time before data strobe assertion ⁹	—	5.0	ns	
58	HA[0–2], HRW minimum hold time after data strobe deassertion ⁹	—	5.0	ns	
61	Maximum delay from read data strobe deassertion to host request deassertion for "Last Data Register" read ^{4, 5, 10}	$(3.0 \times T_{CORE}) + 6.0$	Note 11	ns	
62	Maximum delay from write data strobe deassertion to host request deassertion for "Last Data Register" write ^{5,8,10}	(3.0 × T _{CORE}) + 6.0	Note 11	ns	
63	Minimum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) deassertion to HREQ assertion.	(2.0 × T _{CORE}) + 1.0	Note 11	ns	
64	Maximum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) assertion to HREQ deassertion	(5.0 × T _{CORE}) + 6.0	Note 11	ns	
Notes:	strobe(OAD=1) assertion to HREQ deassertion (5.0 × T _{CORE}) + 6.0 Note 11 ns 1. T _{CORE} = core clock period. At 300 MHz, T _{CORE} = 3.333 ns. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable. Note 11 ns 3. V _{DD} = 3.3 V ± 0.15 V; T _J = -40°C to +105 °C, C _L = 30 pF for maximum delay timings and C _L = 0 pF for minimum delay timings. In the read data strobe is HRD/HRD in the dual data strobe mode and HDS/HDS in the single data strobe mode. 5. For 64-bit transfers, the "last data register" is the register at address 0x7, which is the last location to be read or written in data transfers. This is RX0/TX0 in the little endian mode (HBE = 0), or RX3/TX3 in the big endian mode (HBE = 1). 6. This timing is applicable only if a read from the "last data register" is followed by a read from the RX[0–3] registers without first				

7. This timing is applicable only if two consecutive reads from one of these registers are executed.

8. The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode.

9. The data strobe is host read (HRD/HRD) or host write (HWR/HWR) in the dual data strobe mode and host data strobe (HDS/HDS) in the single data strobe mode.

10. The host request is HREQ/HREQ in the single host request mode and HRRQ/HRRQ and HTRQ/HTRQ in the double host request mode. HRRQ/HRRQ is deasserted only when HOTX fifo is empty, HTRQ/HTRQ is deasserted only if HORX fifo is full

11. Compute the value using the expression.

12. The read and write data strobe minimum deassertion width for non-"last data register" accesses in single and dual data strobe modes is based on timings 57 and 58.

3.2.2.5 Case 5 (not recommended for new designs)

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDM} (2.5 V) supply second.
- 3. Turn on the V_{DDC} (1.2 V) supply third.
- 4. Turn on the V_{REF} (1.25 V) supply fourth (last).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDM} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{REF} (1.25 V) supply first.
- 2. Turn off the V_{DDC} (1.2 V) supply second.
- 3. Turn off the V_{DDM} (2.5 V) supply third.
- 4. Turn of the V_{DDIO} (3.3 V) supply fourth (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down of V_{DDIO} and V_{DDM} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down for V_{DDC} and V_{DDM} is less than 2 ms for power-up and power-down.
- Refer to Figure 34 for relative timing for power sequencing case 5.

Note: Cases 1, 2, 3, and 4 are recommended for system design. Designs that use Case 5 may have large current spikes on the V_{DDM} supply at startup and is not recommended for most designs. If a design uses case 5, it must accommodate the potential current spikes. Verify risks related to current spikes using actual information for the specific application.

3.2.7 Power Supply Design

One of the most common ways to derive power is to use either a simple fixed or adjustable linear regulator. For the system I/O voltage supply, a simple fixed 3.3 V supply can be used. However, a separate adjustable linear regulator supply for the core voltage V_{DDC} should be implemented. For the memory power supply, regulators are available that take care of all DDR power requirements.

Supply	Symbol	Nominal Voltage	Current Rating
Core	V _{DDC}	1.2 V	1.5 A per device
Memory	V _{DDM}	2.5 V	0.5 A per device
Reference	V _{REF}	1.25 V	10 µA per device
I/O	V _{DDIO}	3.3 V	1.0 A per device

Table 33	. Recommended	Power	Supply	Ratings
----------	---------------	-------	--------	---------

3.3 Estimated Power Usage Calculations

The following equations permit estimated power usage to be calculated for individual design conditions. Overall power is derived by totaling the power used by each of the major subsystems:

$$P_{TOTAL} = P_{CORE} + P_{PERIPHERALS} + P_{DDRIO} + P_{IO} + P_{LEAKAGE}$$
 Eqn. 3

This equation combines dynamic and static power. Dynamic power is determined using the generic equation:

$$C \times V^2 \times F \times 10^{-3} mW$$
 Eqn. 4

where,

C = load capacitance in pF

V = peak-to-peak voltage swing in V

F = frequency in MHz

3.3.1 Core Power

Estimation of core power is straightforward. It uses the generic dynamic power equation and assumes that the core load capacitance is 750 pF, core voltage swing is 1.2 V, and the core frequency is 300 MHz. This yields:

$$P_{CORE} = 750 \ pF \times (1.2 \ V)^2 \times 300 \ MHz \times 10^{-3} = 324.0 \ mW$$
 Eqn. 5

This equation allows for adjustments to voltage and frequency if necessary.

BM[3–0]	Boot Port	Input Clock Frequency	Clock Divide	PLL	CKSEL	RNG Bit	Core Clock Frequency	Comments
HDI Boot Mo	odes							
0000	HDI16	< F _{max}	N/A	N/A	00	0	< F _{max}	Not clocked by the PLL. Can boot as 8- or 16-bit HDI.
0101	HDI16	22.2-25 MHz	1	12	11	1	266–300 MHz	Can boot as 8- or 16-bit HDI.
0010	HDI16	25-33.3 MHz	2	32	01	1	200–266 MHz]
0111	HDI16	33-66 MHz	3	12	11	1	132–264 MHz]
0100	HDI16	44.3-50 MHz	2	12	11	1	266–300 MHz]
SPI Boot Mo	odes - Using H	A3, HCS2, BM3, I	BM2 Pins					
1000	SPI (SW)	< F _{max}	N/A	N/A	00	0	< F _{max}	The boot program automatically
1001	SPI (SW)	15.6-25 MHz	1	17	11	0	133–212.5 MHz	determines whether EEPROM
1010	SPI (SW)	33-50 MHz	2	16	11	0	132–200 MHz	or Flash memory.
1011	SPI (SW)	44.3-75 MHz	3	18	11	0	133–225 MHz]
SPI Boot Mo	odes - Using U	RXD, UTXD, SCL	., SDA Pins					
1100	SPI (SW)	< F _{max}	N/A	N/A	00	0	< F _{max}	Boots through different set of pins.
I ² C Boot Mo	des	•			•			·
0001	I ² C	< 100 MHz	N/A	N/A	00	0	< 100 MHz	Not clocked by the PLL. I^2C is limited to a maximum bit rate of 400 Kbps. With a clock divider of 128, this limits the maximum input clock frequency to 100 MHz.
Reserved								
0011	Reserved	—	—		—	—	_	_
0110	Reserved	_	—		—	_	_	—
1101	Reserved	_	—		—	_	_	—
1110	Reserved	—	—		_	_		—
1111	Reserved	—	—	_	-	—	_	
 Notes: 1. The clock divider determines the value used in the clock module CLKCTRL[PLLDVF] field. 2. The clock multiplier determines the value used in the clock module CLKCTRL[PLLMLTF] field. 								

3. F_{max} is determined by the maximum frequency of the peripheral and of the SC1400 core as specified in the data sheet.

3.4.3 Boot

After a power-on reset, the PLL is bypassed and the device is directly clocked from the CLKIN pin. Thus, the device operates slowly during the boot process. After the boot program is loaded, it can enable the PLL and start the device operating at a higher speed. The MSC7119 can boot from an external host through the HDI16 or download a user program through the I²C port. The boot operating mode is set by configuring the BM[0–3] signals sampled at the rising edge of PORESET, as shown in **Table 35**. See the *MSC711x Reference Manual* for details of boot program operation.

3.4.3.1 HDI16 Boot

If the MSC7119 device boots from an external host through the HDI16, the port is configured as follows:

- Operate in Non-DMA mode.
- Operate in polled mode on the device side.
- Operate in polled mode on the external host side.
- External host must write four 16-bit values at a time with the first word as the most significant and the fourth word as the least significant.

When booting from a power-on reset, the HDI16 is additionally configurable as follows:

- 8- or 16-bit mode as specified by the H8BIT pin.
- Data strobe as specified by the HDSP and HDDS pins.

These pins are sampled only on the deassertion of power-on reset. During a boot from a hard reset, the configuration of these pins is unaffected.

Note: When the HDI16 is used for booting or other purposes, bit 0 is the least significant bit and not the most significant bit as for other DSP products.

3.4.3.2 I²C Boot

When the MSC7119 device is configured to boot from the I^2C port, the boot program configures the GPIO pins for I^2C operation. Then the MSC7118 device initiates accesses to the I^2C module, downloading data to the MSC7118 device. The I^2C interface is configured as follows:

- PLL is disabled and bypassed so that the I²C module is clocked with the IPBus clock.
- I²C interface operates in master mode and polling is used.
- EPROM operates in slave mode.
- Clock divider is set to 128.
- Address of slave during boot is 0xA0.

The IPBus clock is internally divided to generate the bit clock, as follows:

- CLKIN must be a maximum of 100 MHz
- PLL is bypassed.
- IPBus clock = CLKIN/2 is a maximum of 50 MHz.
- I²C bit clock must be less than or equal to:
 - IPBus clock/I²C clock divider
 - 50 MHz (max)/128
 - 390.6 KHz

This satisfies the maximum clock rate requirement of 400 kbps for the I^2C interface. For details on the boot procedure, see the "Boot Program" chapter of the *MSC711x Reference Manual*.

3.4.3.3 SPI Boot

When the MSC7119 device is configured to boot from the SPI port, the boot program configures the GPIO pins for SPI operation. Then the MSC7118 device initiates accesses to the SPI module, downloading data to the MSC7118 device. When the SPI routines run in the boot ROM, the MSC7118 is always configured as the SPI master. Booting through the SPI is supported for serial EEPROM devices and serial Flash devices. When a READ_ID instruction is issued to the serial memory device and the device returns a value of 0x00 or 0xFF, the routines for accessing a serial EEPROM are used, at a maximum frequency of 4 Mbps. Otherwise, the routines for accessing a serial Flash are used, and they can run at faster speeds. Booting is performed through one of two sets of pins:

- Main set: BM[2–3], HA3, and HCS2, which allow use of the PLL.
- Alternate set: UTXD, URXD, SDA, and SCL, which cannot be used with the PLL.

In either configuration, an error during SPI boot is flagged on the EVNT3 pin. For details on the boot procedure, see the "Boot Program" chapter of the *MSC711x Reference Manual*.

ware Design Considerations

3.5.3 General Routing

The general routing considerations for the DDR are as follows:

- All DDR signals must be routed next to a solid reference:
 - For data, next to solid ground planes.
 - For address/command, power planes if necessary.
- All DDR signals must be impedance controlled. This is system dependent, but typical values are 50–60 ohm.
- Minimize other cross-talk opportunities. As possible, maintain at least a four times the trace width spacing between all DDR signals to non-DDR signals.
- Keep the number of vias to a minimum to eliminate additional stubs and capacitance.
- Signal group routing priorities are as follows:
 - DDR clocks.
 - Route MVTT/MVREF.
 - Data group.
 - Command/address.
- Minimize data bit jitter by trace matching.

3.5.4 Routing Clock Distribution

The DDR clock distribution considerations are as follows:

- DDR controller supports six clock pairs:
 - 2 DIMM modules.
 - Up to 36 discrete chips.
- For route traces as for any other differential signals:
 - Maintain proper difference pair spacing.
 - Match pair traces within 25 mm.
- Match all clock traces to within 100 mm.
- Keep all clocks equally loaded in the system.
- Route clocks on inner critical layers.

3.5.5 Data Routing

The DDR data routing considerations are as follows:

- Route each data group (8-bits data + DQS + DM) on the same layer. Avoid switching layers within a byte group.
- Take care to match trace lengths, which is extremely important.
- To make trace matching easier, let adjacent groups be routed on alternate critical layers.
- Pin swap bits within a byte group to facilitate routing (discrete case).
- Tight trace matching is recommended within the DDR data group. Keep each 8-bit datum and its DM signal within ± 25 mm of its respective strobe.
- Minimize lengths across the entire DDR channel:
 - Between all groups maintain a delta of no more than 500 mm.
 - Allows greater flexibility in the design for readjustments as needed.
- DDR data group separation:
 - If stack-up allows, keep DDR data groups away from the address and control nets.
 - Route address and control on separate critical layers.
 - If resistor networks (RNs) are used, attempt to keep data and command lines in separate packages.

3.6 Connectivity Guidelines

This section summarizes the connections and special conditions, such as pull-up or pull-down resistors, for the MSC7119 device. Following are guidelines for signal groups and configuration settings:

- Clock and reset signals.
 - SWTE is used to configure the MSC7119 device and is sampled on the deassertion of PORESET, so it should be tied to V_{DDC} or GND either directly or through pull-up or pull-down resistors until PORESET is deasserted. After PORESET, this signal can be left floating.
 - BM[0–1] configure the MSC7119 device and are sampled until PORESET is deasserted, so they should be tied to V_{DDIO} or GND either directly or through pull-up or pull-down resistors.
 - HRESET should be pulled up.
- *Interrupt signals*. When used, **IRQ** pins must be pulled up.
- HDI16 signals.
 - When they are configured for open-drain, the HREQ/HREQ or HTRQ/HTRQ signals require a pull-up resistor. However, these pins are also sampled at power-on reset to determine the HDI16 boot mode and may need to be pulled down. When these pins must be pulled down on reset and pulled up otherwise, a buffer can be used with the HRESET signal as the enable.
 - When the device boots through the HDI16, the HDDS, HDSP and H8BIT pins should be pulled up or down, depending on the required boot mode settings.
- Ethernet MAC/TDM2 signals. The MDIO signal requires an external pull-up resistor.
- I^2C signals. The SCL and SDA signals, when programmed for I^2C , requires an external pull-up resistor.
- *General-purpose I/O (GPIO) signals*. An unused GPIO pin can be disconnected. After boot, program it as an output pin.
- Other signals.
 - The $\overline{\text{TEST0}}$ pin must be connected to ground.
 - The TPSEL pin should be pulled up to enable debug access via the EOnCE port and pulled down for boundary scan.
 - Pins labelled NO CONNECT (NC) must not be connected.
 - When a 16-pin double data rate (DDR) interface is used, the 16 unused data pins should be no connects (floating) if the used lines are terminated.
 - Do not connect DBREQ to DONE (as you would for the MSC8101 device). Connect DONE to one of the EVNT pins, and DBREQ to HRRQ.

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Solder Spheres	Order Number
MSC7119	1.2 V core	2 V core Molded Array Process-Ball Grid 400	300	Lead-free	MSC7119VM1200	
3.3 V I/O					Lead-bearing	MSC7119VF1200

7 Revision History

Table 36 provides a revision history for this data sheet.

Revision	Date	Description
0	Sep. 2005	Initial public release.
1	Oct 2005	Added explanatory note to HDI16 timing table.
2	Oct. 2005	 Added information about signals GPIOB11, GPIOC11, GPIOD7, and GPIOD8 to the signal descriptions and pinout location lists.
3	Dec. 2005	 Added information about signals GPIOA16, GPIOA17, GPIOA27, GPIOA28, and GPIOA29 to signal description and pinout location lists.
4	Feb. 2006	Updated orderable part numbers.
5	Nov. 2006	Updated Reference Manual reference to MSC711x Reference Manual.Updated arrows in Host DMA Writing Timing figure.
6	Jun. 2007	 Updated to new data sheet format. Reorganized and renumbered sections, figures, and tables. Added a note to clarify the definition of TCK timing 700 in new Table 31. Removed references to V_{CCSYN} and V_{CCSYN1} in the new power supply design recommendation Section 3.2.
7	Aug 2007	• The power-up and power-down sequences described in Section 3.2 starting on page 42 have been expanded to five possible design scenarios/cases. These cases replace the previously recommended power-up/power-down sequence recommendations. Section 3.2 has been clarified by adding subsection headings.
8	Apr 2008	• Change the PLL filter resistor from 20 Ω to 2 Ω in Section 3.2.5.

Table 36. Document Revision History

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MSC7119 Rev. 8 4/2008 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale™, the Freescale logo, CodeWarrior, fieldBIST, and StarCore are trademarks of Freescale Semiconductor, Inc. IEEE, 802.3, 802.3u, 802.3x, and 802.3ac are trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004, 2008. All rights reserved.

