

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Product Status	Active
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	150MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	384kB
Voltage - I/O	3.30V
Voltage - Core	1.80V
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-MAPBGA (15x15)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=dsp56311vf150

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signals/Connections

The DSP56311 input and output signals are organized into functional groups as shown in **Table 1-1**. **Figure 1-1** diagrams the DSP56311 signals by functional group. The remainder of this chapter describes the signal pins in each functional group.

Functional Group				
Power (V _{CC})			20	
Ground (GN	D)		66	
Clock			2	
PLL			3	
Address bus			18	
Data bus	Data bus Port A ¹			
Bus control				
Interrupt and mode control				
Host interfac	e (HI08)	Port B ²	16	
Enhanced s	nchronous serial interface (ESSI)	Ports C and D ³	12	
Serial comm	unication interface (SCI)	Port E ⁴	3	
Timer		L	3	
OnCE/JTAG	OnCE/JTAG Port			
Notes: 1. 2. 3. 4. 5.	Port A signals define the external memory interface port, including the external a Port B signals are the HI08 port signals multiplexed with the GPIO signals. Port C and D signals are the two ESSI port signals multiplexed with the GPIO si Port E signals are the SCI port signals multiplexed with the GPIO signals. There are 5 signal connections that are not used. These are designated as no c Chapter 3).	address bus, data bus, an gnals. onnect (NC) in the packaę	d control signals. ge description (see	

Table 1-1.	DSP56311	Functional	Signal	Groupinas
	000011	i anotional	erginar	anoapingo

Note: The Clock Output (CLKOUT), BCLK, BCLK, CAS, and RAS[0–3] signals used by other DSP56300 family members are supported by the DSP56311 at operating frequencies up to 100 MHz. Therefore, above 100 MHz, you must enable bus arbitration by setting the Asynchronous Bus Arbitration Enable Bit (ABE) in the operating mode register. When set, the ABE bit eliminates the required set-up and hold times for BB and BG with respect to CLKOUT. In addition, DRAM access is not supported above 100 MHz.

1.5.2 External Data Bus

Signal Name	Туре	State During Reset	State During Stop or Wait	Signal Description
D[0–23]	Input/ Output	Ignored Input	Last state: <i>Input</i> : Ignored <i>Output</i> : Last value	Data Bus —When the DSP is the bus master, D[0–23] are active-high, bidirectional input/outputs that provide the bidirectional data bus for external program and data memory accesses. Otherwise, D[0–23] drivers are tri-stated. If the last state is output, these lines have weak keepers to maintain the last output state if all drivers are tri-stated.

 Table 1-7.
 External Data Bus Signals

1.5.3 External Bus Control

Table 1-8.	External Bus Control Signals
------------	------------------------------

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
AA[0-3]	Output	Tri-stated	Address Attribute—When defined as AA, these signals can be used as chip selects or additional address lines. The default use defines a priority scheme under which only one AA signal can be asserted at a time. Setting the AA priority disable (APD) bit (Bit 14) of the Operating Mode Register, the priority mechanism is disabled and the lines can be used together as four external lines that can be decoded externally into 16 chip select signals.
RAS[0-3]	Output		Row Address Strobe —When defined as RAS, these signals can be used as RAS for DRAM interface. These signals are tri-statable outputs with programmable polarity.
RD	Output	Tri-stated	Read Enable —When the DSP is the bus master, \overline{RD} is an active-low output that is asserted to read external memory on the data bus (D[0–23]). Otherwise, \overline{RD} is tristated.
WR	Output	Tri-stated	Write Enable —When the DSP is the bus master, \overline{WR} is an active-low output that is asserted to write external memory on the data bus (D[0–23]). Otherwise, the signals are tri-stated.
ΤΑ	Input	Ignored Input	Transfer Acknowledge—If the DSP56311 is the bus master and there is no external bus activity, or the DSP56311 is not the bus master, the TA input is ignored. The TA input is a data transfer acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2, infinity) can be added to the wait states inserted by the bus control register (BCR) by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, asserted to enable completion of the bus cycle, and deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is deasserted. In number of wait states is determined by the TA input or by the BCR, whichever is longer. The BCR sets the minimum number of wait states in external bus cycles. In order to use the TA functionality, the BCR must be programmed to at least one wait state. A zero wait state access cannot be extended by TA deassertion.

Table 1-12.	Enhanced S	vnchronous	Serial	Interface	0 ((Continued)
					-	

Signal Name	lame Type State During Reset ^{1,2}		Signal Description	
STD0	Output	Ignored Input	Serial Transmit Data —Transmits data from the Serial Transmit Shift Register. STD0 is an output when data is transmitted.	
PC5	Input or Output		Port C 5 —The default configuration following reset is GPIO input PC5. When configured as PC5, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal STD0 through the Port C Control Register.	
Notes: 1. In th • If t • If t 2. The	he Stop state, the sig the last state is input, he last state is outpu Wait processing sta	nal maintains the las the signal is an igno it, these lines have v te does not affect the	st state as follows: ored input. veak keepers that maintain the last output state even if the drivers are tri-stated. e signal state.	

1.9 Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal Name	Туре	State During Reset ^{1,2}	Signal Description	
SC10	Input or Output	Ignored Input	Serial Control 0 —For asynchronous mode, this signal is used for the receive clock I/O (Schmitt-trigger input). For synchronous mode, this signal is used either for transmitter 1 output or for serial I/O flag 0.	
PD0	Input or Output		Port D 0 —The default configuration following reset is GPIO input PD0. When configured as PD0, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC10 through the Port D Control Register.	
SC11	Input/Output	Ignored Input	Serial Control 1 —For asynchronous mode, this signal is the receiver frame sync I/O. For synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.	
PD1	Input or Output		Port D 1 —The default configuration following reset is GPIO input PD1. When configured as PD1, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC11 through the Port D Control Register.	
SC12	Input/Output	Ignored Input	Serial Control Signal 2—The frame sync for both the transmitter and receiver in synchronous mode and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).	
PD2	Input or Output		Port D 2 —The default configuration following reset is GPIO input PD2. When configured as PD2, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC12 through the Port D Control Register.	

 Table 1-13.
 Enhanced Serial Synchronous Interface 1

Signal Name	Туре	State During Reset ^{1,2}	Signal Description	
SCLK	Input/Output	Ignored Input	Serial Clock—Provides the input or output clock used by the transmitter and/or the receiver.	
PE2	Input or Output		Port E 2 —The default configuration following reset is GPIO input PE2. When configured as PE2, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal SCLK through the Port E Control Register.	
Notes: 1. In th • If t • If t 2. The	he Stop state, the sig he last state is input, he last state is outpu Wait processing sta	nal maintains the las the signal is an igno t, these lines have v te does not affect the	st state as follows: bred input. veak keepers that maintain the last output state even if the drivers are tri-stated. e signal state.	

Table 1-14. Serial Communication Interface (Continued)

1.11 Timers

The DSP56311 has three identical and independent timers. Each timer can use internal or external clocking and can either interrupt the DSP56311 after a specified number of events (clocks) or signal an external device after counting a specific number of internal events.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
TIO0	O0 Input or Output		Timer 0 Schmitt-Trigger Input/Output — When Timer 0 functions as an external event counter or in measurement mode, TIO0 is used as input. When Timer 0 functions in watchdog, timer, or pulse modulation mode, TIO0 is used as output.
			The default mode after reset is GPIO input. TIO0 can be changed to output or configured as a timer I/O through the Timer 0 Control/Status Register (TCSR0).
TIO1	Input or Output	Ignored Input	Timer 1 Schmitt-Trigger Input/Output — When Timer 1 functions as an external event counter or in measurement mode, TIO1 is used as input. When Timer 1 functions in watchdog, timer, or pulse modulation mode, TIO1 is used as output.
			The default mode after reset is GPIO input. TIO1 can be changed to output or configured as a timer I/O through the Timer 1 Control/Status Register (TCSR1).
TIO2	Input or Output	Ignored Input	Timer 2 Schmitt-Trigger Input/Output — When Timer 2 functions as an external event counter or in measurement mode, TIO2 is used as input. When Timer 2 functions in watchdog, timer, or pulse modulation mode, TIO2 is used as output.
			The default mode after reset is GPIO input. TIO2 can be changed to output or configured as a timer I/O through the Timer 2 Control/Status Register (TCSR2).
Notes: 1. In th • If t • If t 2. The	he Stop state, the sig he last state is input, he last state is outpu Wait processing sta	nal maintains the las the signal is an igno it, these lines have w te does not affect the	st state as follows: bred input. Jeak keepers that maintain the last output state even if the drivers are tri-stated. Be signal state.

				.
Table [·]	1-15.	Triple	Timer	Signals

2.2 Thermal Characteristics

Thermal Resistance Characteristic	Symbol	MAP-BGA Value	Unit
Junction-to-ambient, natural convection, single-layer board (1s) ^{1,2}	R _{θJA}	49	°C/W
Junction-to-ambient, natural convection, four-layer board (2s2p) ^{1,3}	R _{θJMA}	26	°C/W
Junction-to-ambient, @200 ft/min air flow, single layer board (1s) ^{1,3}	R _{θJMA}	39	°C/W
Junction-to-ambient, @200 ft/min air flow, four-layer board (2s2p) ^{1,3}	R_{\thetaJMA}	22	°C/W
Junction-to-board ⁴	$R_{\theta JB}$	14	°C/W
Junction-to-case thermal resistance ⁵	$R_{ extsf{ heta}JC}$	5	°C/W
Junction-to-package-top, natural convection ⁶	$\Psi_{\rm JT}$	2	°C/W
Junction-to-package-top, @200 ft/min air flow ⁶	$\Psi_{\rm JT}$	2	°C/W

Table 2-2. Thermal Characteristics

Notes: 1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

3. Per JEDEC JESD51-6 with the board horizontal.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

 Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.

6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Figure 2-6. Operating Mode Select Timing

Figure 2-7. Recovery from Stop State Using IRQA

Figure 2-8. Recovery from Stop State Using IRQA Interrupt Service

Figure 2-11. SRAM Write Access

Ne	Chavastavistics	$\begin{tabular}{ c c c c c } \hline Symbol & Expression^4 \\ \hline t_{OFF} & & \\ \hline t_{RSH} & 2.5 \times T_C - 4.0 \\ \hline t_{RHCP} & 4.5 \times T_C - 4.0 \\ \hline t_{CAS} & 2 \times T_C - 4.0 \\ \hline t & & \\ t & & \\ \hline t & & \\ t & & \\ \hline t & & \\ t & & $	100 MHz		Unit	
NO.	Characteristics	Symbol	Expression	Min	Max	Unit
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	—	ns
135	Last CAS assertion to RAS deassertion	t _{RSH}	$2.5 imes T_C - 4.0$	21.0	—	ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$4.5 imes T_C - 4.0$	41.0	—	ns
137	CAS assertion pulse width	t _{CAS}	$2 \times T_C - 4.0$	16.0	—	ns
138	 38 Last CAS deassertion to RAS assertion⁵ BRW[1-0] = 00, 01—not applicable BRW[1-0] = 10 BRW[1-0] = 11 		$4.75 \times T_{C} - 6.0$ $6.75 \times T_{C} - 6.0$	 41.5 61.5		— ns ns
139	CAS deassertion pulse width	t _{CP}	$1.5 imes T_C - 4.0$	11.0	—	ns
140	Column address valid to CAS assertion	t _{ASC}	T _C -4.0	6.0	—	ns
141	CAS assertion to column address not valid	t _{CAH}	$2.5 imes T_C - 4.0$	21.0	—	ns
142	Last column address valid to RAS deassertion	t _{RAL}	$4 \times T_C - 4.0$	36.0	—	ns
143	WR deassertion to CAS assertion	t _{RCS}	$1.25 imes T_C - 4.0$	8.5	—	ns
144	CAS deassertion to WR assertion	t _{RCH}	$0.75 imes T_C - 4.0$	3.5	—	ns
145	CAS assertion to WR deassertion	t _{WCH}	$2.25 imes T_C - 4.2$	18.3	—	ns
146	WR assertion pulse width	t _{WP}	$3.5 imes T_C - 4.5$	30.5	—	ns
147	Last WR assertion to RAS deassertion	t _{RWL}	$3.75 imes T_C - 4.3$	33.2	—	ns
148	WR assertion to CAS deassertion	t _{CWL}	$3.25 imes T_C - 4.3$	28.2	—	ns
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 imes T_C - 4.5$	0.5	—	ns
150	CAS assertion to data not valid (write)	t _{DH}	$2.5 imes T_C - 4.0$	21.0	—	ns
151	WR assertion to CAS assertion	t _{WCS}	$1.25 imes T_C - 4.3$	8.2	—	ns
152	Last RD assertion to RAS deassertion	t _{ROH}	$3.5 imes T_C - 4.0$	31.0	—	ns
153	RD assertion to data valid	t _{GA}	$2.5 imes T_{C}$ –5.7	—	19.3	ns
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	—	ns
155	WR assertion to data active		$0.75 imes T_C - 1.5$	6.0	_	ns
156	WR deassertion to data high impedance		$0.25 imes T_C$	_	2.5	ns

Table 2-9.	DRAM Page Mode Timings, Three Wait States ^{1,2,3}	(Continued)

Notes: 1. The number of wait states for Page mode access is specified in the DRAM Control Register.

2. The refresh period is specified in the DRAM Control Register.

3. The asynchronous delays specified in the expressions are valid for the DSP56311.

4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t_{PC} equals 4 × T_C for read-after-read or write-after-write sequences). An expression is used to compute the number listed as the minimum or maximum value listed, as appropriate.

5. BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of pageaccess.

6. RD deassertion always occurs after \overline{CAS} deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

No	Characteristics	Symbol	Expression ⁴	100	Unit		
NO.	Characteristics	Symbol	Expression	Min	Max	Unit	
131	Page mode cycle time for two consecutive accesses of the same direction		$5 \times T_{C}$	50.0		ns	
	Page mode cycle time for mixed (read and write) accesses	t _{PC}	$4.5 imes T_C$	45.0	—	ns	
132	CAS assertion to data valid (read)	t _{CAC}	$2.75 imes T_{C}$ –5.7	_	21.8	ns	
133	Column address valid to data valid (read)	t _{AA}	$3.75 imes T_{C}$ –5.7	—	31.8	ns	
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	—	ns	
135	Last CAS assertion to RAS deassertion	t _{RSH}	$3.5 imes T_C - 4.0$	31.0	—	ns	
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$6 imes T_C - 4.0$	56.0	—	ns	
137	CAS assertion pulse width	t _{CAS}	$2.5\timesT_C^{}-\!4.0$	21.0	—	ns	
138	Last CAS deassertion to RAS assertion ⁵ • BRW[1-0] = 00, 01—Not applicable • BRW[1-0] = 10 • BRW[1-0] = 11			 46.5 66.5		 ns ns	
139	CAS deassertion pulse width	t _{CP}	$2 \times T_C - 4.0$	16.0	_	ns	
140	Column address valid to CAS assertion	t _{ASC}	T _C -4.0	6.0	_	ns	
141	CAS assertion to column address not valid	t _{CAH}	$3.5 imes T_C - 4.0$	31.0	—	ns	
142	Last column address valid to RAS deassertion	t _{RAL}	$5 imes T_C - 4.0$	46.0	—	ns	
143	WR deassertion to CAS assertion	t _{RCS}	$1.25 imes T_C - 4.0$	8.5	—	ns	
144	CAS deassertion to WR assertion	t _{RCH}	$1.25 imes T_C - 3.7$	8.8	—	ns	
145	CAS assertion to WR deassertion	t _{WCH}	$3.25 imes T_C - 4.2$	28.3	—	ns	
146	WR assertion pulse width	t _{WP}	$4.5 imes T_C - 4.5$	40.5	—	ns	
147	Last WR assertion to RAS deassertion	t _{RWL}	$4.75 imes T_C$ –4.3	43.2	—	ns	
148	WR assertion to CAS deassertion	t _{CWL}	$3.75 imes T_C - 4.3$	33.2	—	ns	
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 imes T_C - 4.5$	0.5	—	ns	
150	CAS assertion to data not valid (write)	t _{DH}	$3.5 imes T_C - 4.0$	31.0	—	ns	
151	\overline{WR} assertion to \overline{CAS} assertion	t _{WCS}	$1.25 imes T_C - 4.3$	8.2	—	ns	
152	Last $\overline{\text{RD}}$ assertion to $\overline{\text{RAS}}$ deassertion	t _{ROH}	$4.5 imes T_C - 4.0$	41.0	—	ns	
153	RD assertion to data valid	t _{GA}	$3.25 imes T_C$ –5.7	_	26.8	ns	
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	—	ns	
155	WR assertion to data active		$0.75 imes T_{C} - 1.5$	6.0		ns	
156	WR deassertion to data high impedance		$0.25 \times T_{C}$	_	2.5	ns	
Notes	lotes: 1. The number of wait states for Page mode access is specified in the DRAM Control Register.						

DRAM Page Mode Timings, Four Wait States^{1,2,3} Table 2-10.

The number of wait states for Page mode access is specified in the DRAM Control Register. 1.

2. The refresh period is specified in the DRAM Control Register.

The asynchronous delays specified in the expressions are valid for the DSP56311. 3.

All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t_{PC} equals 4. 3 × T_C for read-after-read or write-after-write sequences). An expressions is used to calculate the maximum or minimum value listed, as appropriate.

BRW[1-0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page 5. access.

RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}. 6.

Ne	Chavastavistica	Symbol	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Unit		
NO.	Characteristics	Symbol Example t_{RC} t_{RAC} 6.3 t_{CAC} 3.3 t_{CAC} 3.3 t_{CAC} 3.3 t_{CAC} 3.3 t_{CAC} 3.3 t_{RAB} 7.7 t_{RAS} 7.7 t_{CSH} 6.3 t_{CAS} 3.7	Expression	Min	Max	
157	Random read or write cycle time	t _{RC}	$12 \times T_{C}$	120.0	—	ns
158	RAS assertion to data valid (read)	t _{RAC}	$6.25 imes T_{C}$ –7.0	-	55.5	ns
159	CAS assertion to data valid (read)	t _{CAC}	$3.75 imes T_C - 7.0$	_	30.5	ns
160	Column address valid to data valid (read)	t _{AA}	$4.5 imes T_C - 7.0$	-	38.0	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	—	ns
162	RAS deassertion to RAS assertion	t _{RP}	$4.25 imes T_C - 4.0$	38.5	—	ns
163	RAS assertion pulse width	t _{RAS}	$7.75 imes T_{C}$ –4.0	73.5	—	ns
164	CAS assertion to RAS deassertion	t _{RSH}	$5.25 imes T_{C}$ –4.0	48.5	—	ns
165	RAS assertion to CAS deassertion	t _{CSH}	$6.25 imes T_C - 4.0$	58.5	—	ns
166	CAS assertion pulse width	t _{CAS}	$3.75 imes T_C - 4.0$	33.5	—	ns
167	RAS assertion to CAS assertion	t _{RCD}	$2.5\times~T_{C}\pm4.0$	21.0	29.0	ns
168	RAS assertion to column address valid	t _{RAD}	$1.75\timesT_{C}\pm4.0$	13.5	21.5	ns
169	CAS deassertion to RAS assertion	t _{CRP}	$5.75 imes T_{C}$ –4.0	53.5	—	ns
170	CAS deassertion pulse width	t _{CP}	$4.25 imes T_{C} - 6.0$	36.5	—	ns
171	Row address valid to RAS assertion	t _{ASR}	$4.25 imes T_C - 4.0$	38.5	_	ns

2.4.5.3 Asynchronous Bus Arbitration Timings

BG signal for a second DSP56300 device.

Na	Ob eve stavistice	Furnessien	150 MHz		11
NO.	Characteristics	Expression	Min	Max	Unit
250	BB assertion window from BG input deassertion.	2.5× Tc + 5	—	22	ns
251	Delay from \overline{BB} assertion to \overline{BG} assertion $2 \times Tc + 5$ 18.3				ns
Notes:	 Bit 13 in the Operating Mode Register must be set to enable Asynchronous Arbitration mode. At 150 MHz, Asynchronous Arbitration mode is recommended. To guarantee timings 250 and 251, it is recommended that you assert non-overlapping BG inputs to different DSP56300 device while BC2 is the BC2 sized for any DSB56200 device while BC2 is the BC3 and BC3. 				$\frac{1}{2}$ is the

Figure 2-19. Asynchronous Bus Arbitration Timing

The asynchronous bus arbitration is enabled by internal synchronization circuits on \overline{BG} and \overline{BB} inputs. These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a result of this delay, a DSP56300 part may assume mastership and assert \overline{BB} , for some time after \overline{BG} is deasserted. This is the reason for timing 250.

Once \overline{BB} is asserted, there is a synchronization delay from \overline{BB} assertion to the time this assertion is exposed to other DSP56300 components that are potential masters on the same bus. If \overline{BG} input is asserted before that time, and \overline{BG} is asserted and \overline{BB} is deasserted, another DSP56300 component may assume mastership at the same time. Therefore, some non-overlap period between one \overline{BG} input active to another \overline{BG} input active is required. Timing 251 ensures that overlaps are avoided.

Na	Characteristics 4.6	Symbol	Furnessian	150 MHz		Cond-	11	
NO.		Characteristics "	Symbol	Expression	Min	Мах	ition ⁵	Unit
451	TXC ri	sing edge to FST out (word-length) low			-	31.0 17.0	x ck i ck	ns
452	TXC ri	sing edge to data out enable from high impedance			_	31.0 17.0	x ck i ck	ns
453	TXC ri	sing edge to transmitter 0 drive enable assertion			_	34.0 20.0	x ck i ck	ns
454	TXC ri	sing edge to data out valid		$35 + 0.5 \times T_{C}$	_	38.4 21.0	x ck i ck	ns
455	TXC ri	sing edge to data out high impedance ³			-	31.0 16.0	x ck i ck	ns
456	TXC ri	sing edge to transmitter 0 drive enable deassertion ³			-	34.0 20.0	x ck i ck	ns
457	FST in	put (bl, wr) ⁶ set-up time before TXC falling edge ²			2.0 21.0		x ck i ck	ns
458	FST in	put (wl) ⁶ to data out enable from high impedance			_	27.0	—	ns
459	FST in	put (wl) to transmitter 0 drive enable assertion			_	31.0	—	ns
460	FST in	put (wl) ⁶ set-up time before TXC falling edge			2.5 21.0	_	x ck i ck	ns
461	FST in	put hold time after TXC falling edge			4.0 0.0	_	x ck i ck	ns
462	Flag o	utput valid after TXC rising edge			_	32.0 18.0	x ck i ck	ns
Notes:	1. 2. 3. 4. 5. 6.	For the internal clock, the external clock cycle is define the ESSI Control Register. The word-length-relative frame sync signal waveform of but spreads from one serial clock before the first bit clock bit clock of the first word in the frame. Periodically sampled and not 100 percent tested $V_{CCQH} = 3.3 V \pm 0.3 V$, $V_{CC} = 1.8 V \pm 0.1 V$; $T_J = -40^{\circ}C$ TXC (SCK Pin) = transmit clock RXC (SC0 or SCK pin) = receive clock FST (SC2 pin) = transmit frame sync FSR (SC1 or SC2 pin) receive frame sync i ck = Internal Clock; x ck = external clock i ck a = internal clock, Synchronous mode (asynchron i ck s = internal clock, Synchronous mode (synchronous bl = bit length wl = word length	d by the instru- perates the sa ck (same as th c to +100 °C, C c to +100 °C, C ous implies that	tion cycle time (timi me way as the bit-le e Bit Length Frame s $C_L = 50 \text{ pF}.$ at TXC and RXC are th TXC and RXC are th	ng 7 in 1 ngth fran Sync sign two diffe	Fable 2-5 ne sync nal) until erent clo clock)	i on page 2- signal wave the one bef cks)	6) and form, ore last

Table 2-16.	ESSI Timing	s (Continued)
-------------	-------------	---------------

wr = word length relative

Figure 2-32. ESSI Receiver Timing

2.4.9 Timer Timing

Table 2-17. Timer Timing

No.	Characteristics	Everacion	150	llait	
	Characteristics	Expression	Min	Max	Unit
480	TIO Low	2 × T _C + 2.0	15.4	—	ns
481	TIO High	2 × T _C + 2.0	15.4	—	ns
Note:	$V_{CCQH} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{CC} = 1.8 \text{ V} \pm 0.1 \text{ V}; T_{J} = -40^{\circ}\text{C} \text{ to}$	o +100 °C, C _L = 50 pF			

Figure 2-33. TIO Timer Event Input Restrictions

Figure 2-35. Test Clock Input Timing Diagram

Figure 2-36. Boundary Scan (JTAG) Timing Diagram

Figure 2-37. Test Access Port Timing Diagram

n Considerations

Equation 4: $I = 50 \times 10^{-12} \times 3.3 \times 33 \times 10^{6} = 5.48 \ mA$

The maximum internal current (I_{CCI} max) value reflects the typical possible switching of the internal buses on bestcase operation conditions—not necessarily a real application case. The typical internal current (I_{CCItyp}) value reflects the average switching of the internal buses on typical operating conditions. Perform the following steps for applications that require very low current consumption:

- **1.** Set the EBD bit when you are not accessing external memory.
- 2. Minimize external memory accesses, and use internal memory accesses.
- **3.** Minimize the number of pins that are switching.
- **4.** Minimize the capacitive load on the pins.
- 5. Connect the unused inputs to pull-up or pull-down resistors.
- **6.** Disable unused peripherals.
- 7. Disable unused pin activity (for example, CLKOUT, XTAL).

One way to evaluate power consumption is to use a current-per-MIPS measurement methodology to minimize specific board effects (that is, to compensate for measured board current not caused by the DSP). A benchmark power consumption test algorithm is listed in **Appendix A**. Use the test algorithm, specific test current measurements, and the following equation to derive the current-per-MIPS value.

Equation 5: ' MIPS = I/ MHz = $(I_{typF2} - I_{typF1})$ / (F2 - F1

Where:

I _{typF2}	=	current at F2
I _{typF1}	=	current at F1
F2	=	high frequency (any specified operating frequency)
F1	=	low frequency (any specified operating frequency lower than F2)

Note: F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application.

4.4 PLL Performance Issues

The following explanations should be considered as general observations on expected PLL behavior. There is no test that replicates these exact numbers. These observations were measured on a limited number of parts and were not verified over the entire temperature and voltage ranges.

4.4.1 Phase Skew Performance

The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature and voltage ranges. As defined in **Figure 2**-2, *External Clock Timing*, on page 2-5 for input frequencies greater than 15 MHz and the MF \leq 4, this skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this skew is between -1.4 ns and +3.2 ns.

Pr Consumption Benchmark

	đa	Ċ742±00	
	de de	\$A43E00	
	ac	\$C2B639	
	dC	\$85A47E	
	dc	ŞABFDDF	
	dc	\$F3A2C	
	dc	\$2D7CF5	
	dc	\$E16A8A	
	dc	\$ECB8FB	
	dc	\$4BED18	
	dc	\$43F371	
	dc	\$83A556	
	dc	SE1E9D7	
	dc	SACA2C4	
	de	\$8135AD	
	dc	\$2CE0E2	
	de	\$2C1012 \$8F2C73	
	de	¢120720	
	de	2432730 ¢207520	
	dC	\$A07FA9	
	uc 1	Ş4AZ9ZE	
	ac	SA63CCF	
	dc	\$6BA65C	
	dc	\$E06D65	
	dc	\$1AA3A	
	dc	\$A1B6EB	
	dc	\$48AC48	
	dc	\$EF7AE1	
	dc	\$6E3006	
	dc	\$62F6C7	
	dc	\$6064F4	
	dc	\$87E41D	
	dc	\$CB2692	
	dc	\$2C3863	
	dc	\$C6BC60	
	dc	\$43A519	
	dc	\$6139DE	
	dc	\$ADF7BF	
	de	\$/B3F8C	
	de	\$40300C	
	da	30079D3 ¢e0e5e7	
	de	SEOL SEY	
	ac	\$023UDB	
	ac	\$A3B778	
	ac	\$ZBFE51	
	ac	SEUA6B6	
	dc	\$68FFB7	
	dc	\$28F324	
	dc	\$8F2E8D	
	dc	\$667842	
	dc	\$83E053	
	dc	\$A1FD90	
	dc	\$6B2689	
	dc	\$85B68E	
	dc	\$622EAF	
	dc	\$6162BC	
	dc	\$E4A245	
YDAT_I	END		
;****	* * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
;			T/O manisteria and manta
;	EQUATES	IOT DSP56311	1/U registers and ports
;	Tech	Jaha	1005
;	Last upo	lace: June 11	CKKT
;			• • • • • • • • • • • • • • • • • • •
; ^ ^ ^ /			

Pr Consumption Benchmark

M HREN EOU \$4 ; Host Request Enable M_HAEN EQU \$5 ; Host Acknowledge Enable M_HEN EQU \$6 ; Host Enable M_HOD EQU \$8 ; Host Request Open Drain mode ; Host Data Strobe Polarity ; Host Address Strobe Polarity ; Host Multiplexed bus select M_HDSP EQU \$9 M_HASP EQU \$A M_HMUX EQU \$B M HD HS EOU \$C ; Host Double/Single Strobe select M_HCSP EQU \$D ; Host Chip Select Polarity M_HRP_EQU \$E ; Host Request Polarity M_HAP EQU \$F ; Host Acknowledge Polarity ;------; EQUATES for Serial Communications Interface (SCI) ; ; ;------; SCI Transmit Data Register (high) ; SCI Transmit Data Register (middle) ; SCI Transmit Data Register (low) ; SCI Receive Data Register (high) ; SCI Receive Data Register (middle) ; SCI Receive Data Register (low) ; SCI Transmit Address Register ; SCI Control Register ; SCI State Register Addresses ; M_STXH EQU \$FFFF97 M_STXM EQU \$FFFF96 M_STXL EQU \$FFFF95 M_SRXH EQU \$FFFF9A M_SRXM EQU \$FFFF99 M_SRXL EQU \$FFFF98 M_STXA EQU \$FFFF94 M_SCR EQU \$FFFF9C M_SSR EQU \$FFFF93 ; SCI Status Register M_SCCR EQU \$FFFF9B ; SCI Clock Control Register ; SCI Control Register Bit Flags M_WDS EQU \$7 ; Word Select Mask (WDS0-WDS3) M_WDS0 EQU 0 ; Word Select 0 M_WDS1 EQU 1 ; Word Select 1 M_WDS2 EQU 2 ; Word Select 2 M_SSFTD EQU 3 ; SCI Shift Direction M_SBK EQU 4 ; Send Break M_WAKE EQU 5 ; Wakeup Mode Select M_RWU EQU 6 ; Receiver Wakeup Enable M_WOMS EQU 7 ; Wired-OR Mode Select M_SCRE EQU 8 ; SCI Receiver Enable M_SCTE EQU 9 ; SCI Transmitter Enable M_ILIE EQU 10 ; Idle Line Interrupt Enable ; SCI Receive Interrupt Enable M_SCRIE EQU 11 M_SCTIE EQU 12 ; SCI Transmit Interrupt Enable M_TMIE EQU 13 ; Timer Interrupt Enable M_TIR EQU 14 ; Timer Interrupt Rate M_SCKP EQU 15 ; SCI Clock Polarity M_REIE EQU 16 ; SCI Error Interrupt Enable (REIE) SCI Status Register Bit Flags ; M_TRNE EQU 0 ; Transmitter Empty M_TDRE EQU 1 ; Transmit Data Register Empty ; Receive Data Register Full M_RDRF EQU 2 M_IDLE EQU 3 ; Idle Line Flag ; Overrun Error Flag M_OR EQU 4 M_PE EQU 5 ; Parity Error M_FE EQU 6 ; Framing Error Flag M_R8 EQU 7 ; Received Bit 8 (R8) Address

SCI Clock Control Register ; M CD EOU \$FFF ; Clock Divider Mask (CD0-CD11) ; Clock Out Divider M_COD EQU 12 M_SCP EQU 13 ; Clock Prescaler M_RCM EQU 14 ; Receive Clock Mode Source Bit M_TCM EQU 15 ; Transmit Clock Source Bit ;------; EQUATES for Synchronous Serial Interface (SSI) ; ; ;-----; Register Addresses Of SSIO ; Register Addresses Of SSI0 M_TX00 EQU \$FFFFBC ; SSI0 Transmit Data Register 0 M_TX01 EQU \$FFFFBB ; SSI0 Transmit Data Register 1 M_TX02 EQU \$FFFFBA ; SSI0 Transmit Data Register 2 M_TSR0 EQU \$FFFFB9 ; SSI0 Time Slot Register M_RX0 EQU \$FFFFB8 ; SSI0 Receive Data Register M_CRB0 EQU \$FFFFB6 ; SSI0 Control Register B M_CRA0 EQU \$FFFFB5 ; SSI0 Control Register A M_TSMA0 EQU \$FFFFB4 ; SSI0 Transmit Slot Mask Register A M_RSMA0 EQU \$FFFFB2 ; SSI0 Receive Slot Mask Register A M_RSMB0 EQU \$FFFFB1 ; SSI0 Receive Slot Mask Register B Register Addresses Of SSI1 ; Register Addresses Of SSI1 M_TX10 EQU \$FFFFAC ; SSI1 Transmit Data Register 0 M_TX11 EQU \$FFFFAB ; SSI1 Transmit Data Register 1 M_TX12 EQU \$FFFFAA ; SSI1 Transmit Data Register 2 M_TSR1 EQU \$FFFFA9 ; SSI1 Time Slot Register M_RX1 EQU \$FFFFA8 ; SSI1 Receive Data Register M_CRB1 EQU \$FFFFA6 ; SSI1 Control Register B M_CRA1 EQU \$FFFFA5 ; SSI1 Control Register A M_TSMA1 EQU \$FFFFA3 ; SSI1 Transmit Slot Mask Register A M_RSMA1 EQU \$FFFFA2 ; SSI1 Transmit Slot Mask Register B M_RSMA1 EQU \$FFFFA2 ; SSI1 Receive Slot Mask Register A M_RSMA1 EQU \$FFFFA2 ; SSI1 Receive Slot Mask Register A M_RSMA1 EQU \$FFFFA2 ; SSI1 Receive Slot Mask Register A M_RSMA1 EQU \$FFFFA2 ; SSI1 Receive Slot Mask Register A M_RSMA1 EQU \$FFFFA2 ; SSI1 Receive Slot Mask Register A M_RSMB1 EQU \$FFFFA1 ; SSI1 Receive Slot Mask Register B SSI Control Register A Bit Flags ; M_PM EQU \$FF ; Prescale Modulus Select Mask (PM0-PM7) M_PSR EQU 11 ; Prescaler Range M_DC EQU \$1F000 ; Frame Rate Divider Control Mask (DC0-DC7) M_ALC EQU 18 ; Alignment Control (ALC) M_WL EQU \$380000 ; Word Length Control Mask (WL0-WL7) M_SSC1 EQU 22 ; Select SC1 as TR #0 drive enable (SSC1) SSI Control Register B Bit Flags ; M_OF EQU \$3 ; Serial Output Flag Mask M_OF0 EQU 0 ; Serial Output Flag 0 M_OF1 EQU 1 ; Serial Output Flag 1 ; Serial Control Direction Mask M_SCD EQU \$1C M_SCD0 EQU 2 ; Serial Control 0 Direction M_SCD1 EQU 3 ; Serial Control 1 Direction ; Serial Control 2 Direction M_SCD2 EQU 4 M_SCKD EQU 5 ; Clock Source Direction

Pr Consumption Benchmark

M_IPRC EQU \$FFFFF M_IPRP EQU \$FFFFFE			; ;	Interrupt Priority Register Core Interrupt Priority Register Peripheral
;	Regi	ister Addresses		
;; ; ; ;	EQUZ	ATES for Exception Proces		ng
M_SSRSB	EQU	ŞFFFF	;	SSI Receive Slot Bits Mask B (RS16-RS31)
;	SSI	Receive Slot Mask Regist	er	В
M_SSRSA	EQU	ŞFFFF	;	SSI Receive Slot Bits Mask A (RS0-RS15)
;	SSI	Receive Slot Mask Regist	er	- A
M_SSTSB	EQU	\$FFFF	;	SSI Transmit Slot Bits Mask B (TS16-TS31)
;	SSI	Transmit Slot Mask Regis	te	er B
M_SSTSA	EQU	\$FFFF	;	SSI Transmit Slot Bits Mask A (TS0-TS15)
;	SSI	Transmit Slot Mask Regis	te	er A
M_RDF EÇ	20 0 20 7		;	Receive Data Register Full
M_ROE EQ	2U 5 DU 6		;	Receiver Overrun Error Flag Transmit Data Register Empty
M_RFS EQ M_TUE EQ	2U 3 2U 4		; ;	Receive Frame Sync Flag Transmitter Underrun Error FLag
M_TFS EQ	20 1 20 2		;	Transmit Frame Sync Flag
M_IFO EQ M TF1 EQ	2U0 2U1		;	Serial Input Flag 0 Serial Input Flag 1
M_IF_EQU	J \$3		;	Serial Input Flag Mask
;	SSI	Status Register Bit Flag	ß	
M_SREIE	EQU	23	;	SI Receive Error Interrupt Enable
M_STEIE	EQU	22	;	SSI Transmit Error Interrupt Enable
M_SRLIE	EQU	21	;	SSI Receive Last Slot Interrupt Enable
M_SSRIE	EQU EOU	20	;	SSI Receive Interrupt Enable SSI Transmit Last Slot Interrupt Enable
M_SSTIE	EQU	18	;	SSI Transmit Interrupt Enable
M_SSRE H	EQU 1	10	;	SSI Receive Enable
M_SSIEL M_SSTE0	EOU	16	;	SSI Transmit #0 Enable
M_SSTE2	EQU	14	;	SSI Transmit #2 Enable
M_SSTE H	EQU S	\$1C000	;	SSI Transmit enable Mask
M_MOD EQ	20 13 20 13	3	;	SSI Mode Select
M_CKP EQ M_SYN EQ	20 I. CU 12	2	;	Sync/Async Control
M_FSP EQ	QU 1()	;	Frame Sync Polarity
M_FSR EQ	QU 9		;	Frame Sync Relative Timing
M_FSL1 H	EQU 8	3	;	Frame Sync Length 1
M_FSL EQ	QU \$1 Fott "	180	;	Frame Sync Length Mask (FSL0-FSL1)
M_SHFD B	EQU 6	5	;	Shift Direction

I_VEC EQU \$0 endif

•_____ ; Non-Maskable interrupts I_RESET EQU I_VEC+\$00 ; Hardware RESET I_STACK EQU I_VEC+\$02 ; Stack Error I_ILL EQU I_VEC+\$04 ; Illegal Instruction I_DBG EQU I_VEC+\$06 ; Debug Request I TRAP EOU I VEC+\$08 ; Trap I NMI EOU I VEC+\$0A ; Non Maskable Interrupt :-----; Interrupt Request Pins ;------I_IRQA EQU I_VEC+\$10 ; IRQA ; IRQB I_IRQB EQU I_VEC+\$12 I_IRQC EQU I_VEC+\$14 ; IRQC I_IRQD EQU I_VEC+\$16 ; IRQD ; DMA Interrupts ;------I_DMA0 EQU I_VEC+\$18 ; DMA Channel 0 ; DMA Channel 1 I_DMA1 EQU I_VEC+\$1A I_DMA2 EQU I_VEC+\$1C ; DMA Channel 2 I_DMA3 EQU I_VEC+\$1E I_DMA4 EQU I_VEC+\$20 ; DMA Channel 3 ; DMA Channel 4 ; DMA Channel 5 I_DMA5 EQU I_VEC+\$22 ;------; Timer Interrupts ;------I_TIMOC EQU I_VEC+\$24 ; TIMER 0 compare __ I_TIM0OF EQU I_VEC+\$26 ; TIMER 0 overflow I_TIM1C EQU I_VEC+\$28 ; TIMER 1 compare I_TIM1OF EQU I_VEC+\$2A ; TIMER 1 overflow I_TIM2C EQU I_VEC+\$2C ; TIMER 2 compare I_TIM2OF EQU I_VEC+\$2E ; TIMER 2 overflow ;-----; ESSI Interrupts ;-----; ESSIO Receive Data ; ESSIO Receive Data w/ exception Status ; ESSIO Receive last slot I_SIORD EQU I_VEC+\$30 I_SIORDE EQU I_VEC+\$32 I_SIORLS EQU I_VEC+\$34 I_SIOTD EQU I_VEC+\$36 ; ESSIO Transmit data ; ESSIO Transmit Data w/ exception Status ; ESSIO Transmit last slot I_SIOTDE EQU I_VEC+\$38 I_SIOTLS EQU I_VEC+\$3A ; ESSI1 Receive Data I_SI1RD EQU I_VEC+\$40 ; ESSI1 Receive Data w/ exception Status I_SI1RDE EQU I_VEC+\$42 I_SI1RLS EQU I_VEC+\$44 ; ESSI1 Receive last slot I_SI1TD EQU I_VEC+\$46 ; ESSI1 Transmit data ; ESSI1 Transmit Data w/ exception Status I_SI1TDE EQU I_VEC+\$48 ; ESSI1 Transmit last slot I_SI1TLS EQU I_VEC+\$4A :-----; SCI Interrupts I_SCIRD EQU I_VEC+\$50 ; SCI Receive Data I_SCIRDE EQU I_VEC+\$52 ; SCI Receive Data With Exception Status I_SCITD EQU I_VEC+\$54 ; SCI Receive Data With Exception Status ; SCI Transmit Data I_SCITD EQU I_VEC+\$54