
E·XFL

NXP USA Inc. - DSP56311VF150B1 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details	
Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	150MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	384kB
Voltage - I/O	3.30V
Voltage - Core	1.80V
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/dsp56311vf150b1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.	DSP56311	Features	(Continued)
----------	----------	----------	-------------

Feature	Description
External Memory Expansion	 Data memory expansion to two 256 K × 24-bit word memory spaces using the standard external address lines Program memory expansion to one 256 K × 24-bit words memory space using the standard external address lines External memory expansion port Chip select logic for glueless interface to static random access memory (SRAMs) Internal DRAM controller for glueless interface to dynamic random access memory (DRAMs) up to 100 MHz operating frequency
Power Dissipation	 Very low-power CMOS design Wait and Stop low-power standby modes Fully static design specified to operate down to 0 Hz (dc) Optimized power management circuitry (instruction-dependent, peripheral-dependent, and mode-dependent)
Packaging	Molded array plastic-ball grid array (MAP-BGA) package in lead-free or lead-bearing versions.

Target Applications

DSP56311 applications require high performance, low power, small packaging, and a large amount of internal memory. The EFCOP can accelerate general filtering applications. Examples include:

- Wireless and wireline infrastructure applications
- Multi-channel wireless local loop systems
- DSP resource boards
- High-speed modem banks
- IP telephony

Product Documentation

The documents listed in **Table 2** are required for a complete description of the DSP56311 device and are necessary to design properly with the part. Documentation is available from a local Freescale distributor, a Freescale semiconductor sales office, or a Freescale Semiconductor Literature Distribution Center. For documentation updates, visit the Freescale DSP website. See the contact information on the back cover of this document.

Name	Description	Order Number
DSP56311 User's Manual	Detailed functional description of the DSP56311 memory configuration, operation, and register programming	DSP56311UM
DSP56300 Family Manual	Detailed description of the DSP56300 family processor core and instruction set	DSP56300FM
Application Notes	Documents describing specific applications or optimized device operation including code examples	See the DSP56311 product website

Table 2. DSP56311 Documentation

	Table 1-12.	Enhanced Synchronous Serial Interface 0 (Continued)
--	-------------	---	------------

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
STD0	Output	Ignored Input	Serial Transmit Data—Transmits data from the Serial Transmit Shift Register. STD0 is an output when data is transmitted.
PC5	Input or Output Port C 5—The default configuration following reset is GPIO input PC5. When configured as PC5, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal STD0 through the Port C Control Register.		
 Notes: 1. In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, these lines have weak keepers that maintain the last output state even if the drivers are tri-stated. The Wait processing state does not affect the signal state. 			

1.9 Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC10	Input or Output	Ignored Input	Serial Control 0 —For asynchronous mode, this signal is used for the receive clock I/O (Schmitt-trigger input). For synchronous mode, this signal is used either for transmitter 1 output or for serial I/O flag 0.
PD0	Input or Output		Port D 0 —The default configuration following reset is GPIO input PD0. When configured as PD0, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC10 through the Port D Control Register.
SC11	Input/Output	Ignored Input	Serial Control 1 —For asynchronous mode, this signal is the receiver frame sync I/O. For synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.
PD1	Input or Output		Port D 1 —The default configuration following reset is GPIO input PD1. When configured as PD1, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC11 through the Port D Control Register.
SC12	Input/Output	Ignored Input	Serial Control Signal 2 —The frame sync for both the transmitter and receiver in synchronous mode and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PD2	Input or Output		Port D 2 —The default configuration following reset is GPIO input PD2. When configured as PD2, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC12 through the Port D Control Register.

 Table 1-13.
 Enhanced Serial Synchronous Interface 1

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SCK1	Input/Output	Ignored Input	Serial Clock —Provides the serial bit rate clock for the ESSI. The SCK1 is a clock input or output used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PD3	Input or Output		Port D 3 —The default configuration following reset is GPIO input PD3. When configured as PD3, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SCK1 through the Port D Control Register.
SRD1	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD1 is an input when data is being received.
PD4	Input or Output		Port D 4 —The default configuration following reset is GPIO input PD4. When configured as PD4, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SRD1 through the Port D Control Register.
STD1	Output	Ignored Input	Serial Transmit Data—Transmits data from the Serial Transmit Shift Register. STD1 is an output when data is being transmitted.
PD5	Input or Output		Port D 5 —The default configuration following reset is GPIO input PD5. When configured as PD5, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal STD1 through the Port D Control Register.
 Notes: 1. In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, these lines have weak keepers that maintain the last output state even if the drivers are tri-stated. 2 The Wait processing state does not affect the signal state 			

Table 1-13. Enhanced Serial Synchronous Interface 1 (Continued)

2. The Wait processing state does not affect the signal state.

1.10 Serial Communication Interface (SCI)

The SCI provides a full duplex port for serial communication with other DSPs, microprocessors, or peripherals such as modems.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
RXD	Input	Ignored Input	Serial Receive Data—Receives byte-oriented serial data and transfers it to the SCI Receive Shift Register.
PE0	Input or Output		Port E 0 —The default configuration following reset is GPIO input PE0. When configured as PE0, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal RXD through the Port E Control Register.
TXD	Output	Ignored Input	Serial Transmit Data—Transmits data from the SCI Transmit Data Register.
PE1	Input or Output		Port E 1 —The default configuration following reset is GPIO input PE1. When configured as PE1, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal TXD through the Port E Control Register.

 Table 1-14.
 Serial Communication Interface

JTAG and OnCE Interface

1.12 JTAG and OnCE Interface

The DSP56300 family and in particular the DSP56311 support circuit-board test strategies based on the **IEEE**® **Std.** 1149.1[™] test access port and boundary scan architecture, the industry standard developed under the sponsorship of the Test Technology Committee of IEEE and the JTAG. The OnCE module provides a means to interface nonintrusively with the DSP56300 core and its peripherals so that you can examine registers, memory, or on-chip peripherals. Functions of the OnCE module are provided through the JTAG TAP signals. For programming models, see the chapter on debugging support in the *DSP56300 Family Manual*.

Signal Name	Туре	State During Reset	Signal Description
ТСК	Input	Input	Test Clock—A test clock input signal to synchronize the JTAG test logic.
TDI	Input	Input	Test Data Input —A test data serial input signal for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor.
TDO	Output	Tri-stated	Test Data Output —A test data serial output signal for test instructions and data. TDO is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK.
TMS	Input	Input	Test Mode Select —Sequences the test controller's state machine. TMS is sampled on the rising edge of TCK and has an internal pull-up resistor.
TRST	Input	Input	Test Reset —Înitializes the test controller asynchronously. TRST has an internal pull-up resistor. TRST must be asserted during and after power-up (see EB610/D for details).
DE	Input/ Output	Input	Debug Event —As an input, initiates Debug mode from an external command controller, and, as an open-drain output, acknowledges that the chip has entered Debug mode. As an input, DE causes the DSP56300 core to finish executing the current instruction, save the instruction pipeline information, enter Debug mode, and wait for commands to be entered from the debug serial input line. This signal is asserted as an output for three clock cycles when the chip enters Debug mode as a result of a debug request or as a result of meeting a breakpoint condition. The DE has an internal pull-up resistor. This signal is not a standard part of the JTAG TAP controller. The signal connects directly to the OnCE module to initiate debug mode directly or to provide a direct external indication that the chip has entered Debug mode. All other interface with the OnCE module must occur through the JTAG port.

Table 1-16.	JTAG/OnCE Interface

Specifications

The DSP56311 is fabricated in high-density CMOS with transistor-transistor logic (TTL) compatible inputs and outputs.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}).

In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2-1.	Absolute	Maximum	Ratings
------------	----------	---------	---------

Rating ¹	Symbol	Value ^{1, 2}	Unit				
Supply Voltage	V _{CC}	-0.1 to 2.0	V				
Input/Output Supply Voltage	V _{CCQH}	-0.3 to 4.0	V				
All input voltages	V _{IN}	GND – 0.3 to V_{CCQH} + 0.3	V				
Current drain per pin excluding V_{CC} and GND	per pin excluding V _{CC} and GND I 10		mA				
Operating temperature range	TJ	-40 to +100	°C				
Storage temperature	T _{STG}	-55 to +150	°C				
 Absolute maximum ratings are stress ratings the maximum rating may affect device reliabi 	 the maximum rating may affect device reliability or cause permanent damage to the device. Power-up sequence: During power-up, and throughout the DSP56311 operation, V_{CCQH} voltage must always be higher or 						

2.3 DC Electrical Characteristics

Characteristics	Symbol	Min	Тур	Мах	Unit
Supply voltage: • Core (V _{CCQL}) and PLL (V _{CCP}) • I/O (V _{CCQH} , V _{CCA} , V _{CCD} , V _{CCC} , V _{CCH} , and V _{CCS})		1.7 3.0	1.8 3.3	1.9 3.6	v v
Input high voltage • D[0-23], BG, BB, TA • MOD/IRQ ¹ , RESET, PINIT/NMI and all JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁸	V _{IH} V _{IHP} V _{IHX}	2.0 2.0 0.8 × V _{CCQH}		V _{CCQH} + 0.3 V _{CCQH} + 0.3 V _{CCQH}	v v v
Input low voltage • D[0–23], BG, BB, TA, MOD/IRQ ¹ , RESET, PINIT • All JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁸	V _{IL} V _{ILP} V _{ILX}	-0.3 -0.3 -0.3		0.8 0.8 0.2 × V _{CCQH}	V V V
Input leakage current	I _{IN}	-10		10	μA
High impedance (off-state) input current (@ 2.4 V / 0.4 V)	I _{TSI}	-10	_	10	μA
Output high voltage • TTL $(I_{OH} = -0.4 \text{ mA})^{5,7}$ • CMOS $(I_{OH} = -10 \mu\text{A})^5$	V _{OH}	2.4 V _{CC} – 0.01			v v
Output low voltage • TTL (I_{OL} = 3.0 mA, open-drain pins I_{OL} = 6.7 mA) ^{5,7} • CMOS (I_{OL} = 10 μ A) ⁵	V _{OL}			0.4 0.01	v v
Internal supply current ² : In Normal mode In Wait mode³ In Stop mode⁴ 	I _{CCI} I _{CCW} I _{CCS}		150 7. 5 100		mA mA μA
PLL supply current		—	1	2.5	mA
Input capacitance ⁵	C _{IN}	_	_	10	pF

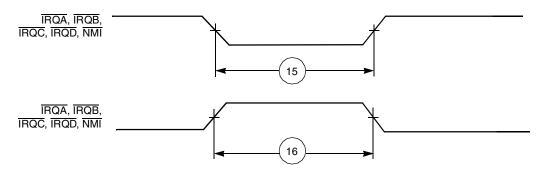
Table 2-3. DC Electrical Characteristics
--

inputs must be terminated (that is, not allowed to float). Measurements are based on synthetic intensive DSP benchmarks (see *Appendix A*). The power consumption numbers in this specification are 90 percent of the measured results of this benchmark. This reflects typical DSP applications. Typical internal supply current is measured with $V_{CCQP} = 3.3 \text{ V}$, $V_{CC} = 1.8 \text{ V}$ at $T_J = 100^{\circ}\text{C}$.

3. To obtain these results, all inputs must be terminated (that is, not allowed to float). PLL and XTAL signals are disabled during Stop state.

4. DC current in Stop mode is evaluated based on measurements. To obtain these results, all inputs not disconnected at Stop mode must be terminated (that is, not allowed to float).

5. Periodically sampled and not 100 percent tested.


6. $V_{CCQH} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{CC} = 1.8 \text{ V} \pm 0.1 \text{ V}$; $T_J = -40^{\circ}\text{C}$ to $+100 \text{ }^{\circ}\text{C}$, $C_L = 50 \text{ pF}$

7. This characteristic does not apply to XTAL and PCAP.

8. Driving EXTAL to the low V_{IHX} or the high V_{ILX} value may cause additional power consumption (DC current). To minimize power consumption, the minimum V_{IHX} should be no lower than

 $0.9 \times$ V_{CCQH} and the maximum V_{ILX} should be no higher than 0.1 \times V_{CCQH}.

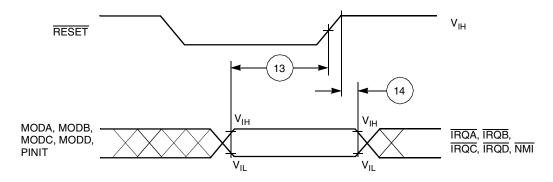


Figure 2-6. Operating Mode Select Timing

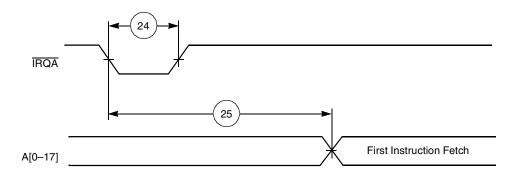


Figure 2-7. Recovery from Stop State Using IRQA

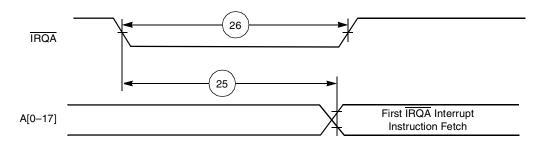


Figure 2-8. Recovery from Stop State Using IRQA Interrupt Service

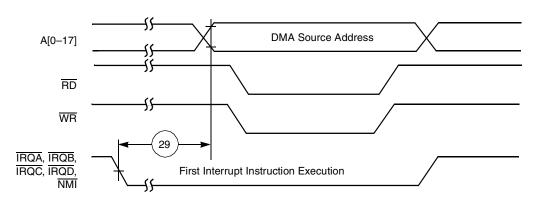


Figure 2-9. External Memory Access (DMA Source) Timing

2.4.5 External Memory Expansion Port (Port A)

2.4.5.1 SRAM Timing

	Characteristics		- · 1	150 MHz		11
No.	Characteristics	Symbol	Expression ¹	Min	Max	Unit
100	Address valid and AA assertion pulse width ²	t _{RC} , t _{WC}	$\begin{array}{l} (WS+2) \times T_{C} - 4.0 \\ [2 \leq WS \leq 7] \\ (WS+3) \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	22.7 69.3	_	ns ns
101	Address and AA valid to WR assertion	t _{AS}	$\begin{array}{l} 0.75 \times {\rm T_C} - 3.0 \\ [2 \leq \!\! WS \leq \!\! 3] \\ 1.25 \times {\rm T_C} - 3.0 \\ [WS \geq 4] \end{array}$	2.0 5.3	_	ns ns
102	WR assertion pulse width	t _{WP}	$\begin{array}{l} WS\timesT_C-4.0\\ [2\leq\!WS\leq\!\!3]\\ (WS-0.5)\timesT_C-4.0\\ [WS\geq4] \end{array}$	9.3 19.3	-	ns ns
103	WR deassertion to address not valid	t _{WR}	$\begin{array}{l} 1.25 \times T_{C} - 4.0 \\ [2 \leq \!\!WS \leq \!\!7] \\ 2.25 \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	4.3 11.0	-	ns ns
104	Address and AA valid to input data valid	t _{AA} , t _{AC}	$(WS + 0.75) \times T_C - 6.5$ [WS ≥ 2]	-	11.8	ns
105	RD assertion to input data valid	t _{OE}	$\begin{array}{l} (\text{WS + 0.25}) \times \ \text{T}_{\text{C}} - 6.5 \\ [\text{WS} \geq 2] \end{array}$	-	8.5	ns
106	RD deassertion to data not valid (data hold time)	t _{OHZ}		0.0	_	ns
107	Address valid to WR deassertion ²	t _{AW}	$\begin{array}{l} (\text{WS} + 0.75) \times \ \text{T}_{\text{C}} - 4.0 \\ [\text{WS} \geq 2] \end{array}$	14.3	—	ns
108	Data valid to \overline{WR} deassertion (data set-up time)	t _{DS} (t _{DW})	$\begin{array}{c} (\text{WS}-0.25)\times \text{ T}_{\text{C}}-5.4\\ [\text{WS}\geq 2] \end{array}$	6.3	—	ns
109	Data hold time from \overline{WR} deassertion	t _{DH}	$\begin{array}{l} 1.25 \times T_{C} - 4.0 \\ [2 \leq \!\!WS \leq \!\!7] \\ 2.25 \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	4.3 11.0	_	ns ns
110	WR assertion to data active	-	$\begin{array}{c} 0.25 \times T_{C} - 4.0 \\ [2 \leq \!\!WS \leq \!\!3] \\ -0.25 \times T_{C} - 4.0 \\ [WS \geq 4] \end{array}$	-2.4 -5.7	_	ns ns

Table 2-8. SRAM Timing

ifications

N	Characteristics	0 miles	F	150 MHz		11
No.	Characteristics	Symbol	Expression ¹	Min	Max	Unit
111	WR deassertion to data high impedance	_	1.25 × T _C [2 ≤WS ≤7] 2.25 × T _C [WS ≥ 8]	-	8.3 15.0	ns ns
112	Previous RD deassertion to data active (write)	-	$2.25 \times T_{C} - 4.0$ [2 ≤WS ≤7] 3.25 × T_{C} - 4.0 [WS ≥ 8]	11.0 17.7		ns ns
113	RD deassertion time	-	$\begin{array}{l} 1.75 \times T_{C} - 4.0 \\ [2 \leq \!\!WS \leq \!\!7] \\ 2.75 \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	7.6 14.3	_	ns ns
114	WR deassertion time ⁴	-	$\begin{array}{l} 1.5 \times T_{C} - 4.0 \\ [2 \leq \!\! WS \leq \!\! 7] \\ 2.5 \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	6.0 12.7	_	ns ns
115	Address valid to RD assertion	_	$0.5 imes T_C$ –2.8	0.5	—	ns
116	RD assertion pulse width	_	$(WS + 0.25) \times T_C - 4.0$	11.0		ns
117	RD deassertion to address not valid	-	$\begin{array}{l} 1.25 \times T_{C} - 4.0 \\ [2 \leq \!\!WS \leq \!\!7] \\ 2.25 \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	4.3 11.0	_	ns ns
118	TA set-up before RD or WR deassertion ⁵		0.25 × T _C + 1.5	3.2	—	ns
119	\overline{TA} hold after \overline{RD} or \overline{WR} deassertion		-	0	_	ns

SRAM Timing (Continued) Table 2-8.

for a category of [2 ≤WS ≤7] timing is specified for 2 wait states.) Two wait states is the minimum otherwise.

2. Timings 100 and 107 are guaranteed by design, not tested. 3. All timings for 150 MHz are measured from $0.5 \times V_{CCQH}$ to $0.5 \times V_{CCQH}$. 4. The WS number applies to the access in which the deassertion of \overline{WR} occurs and assumes the next access uses a minimal number of wait states.

Timing 118 is relative to the deassertion edge of RD or WR even if TA remains asserted. 5.

2.4.5.2 DRAM Timing

The selection guides in **Figure 2-12** and **Figure 2-15** are for primary selection only. Final selection should be based on the timing in the following tables. For example, the selection guide suggests that four wait states must be used for 100 MHz operation with Page Mode DRAM. However, consulting the appropriate table, a designer can evaluate whether fewer wait states might suffice by determining which timing prevents operation at 100 MHz, running the chip at a slightly lower frequency (for example, 95 MHz), using faster DRAM (if it becomes available), and manipulating control factors such as capacitive and resistive load to improve overall system performance.

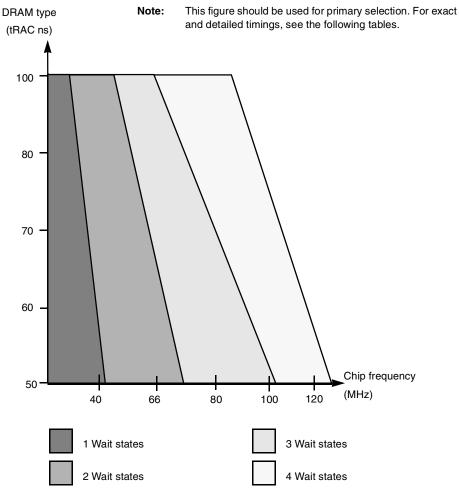
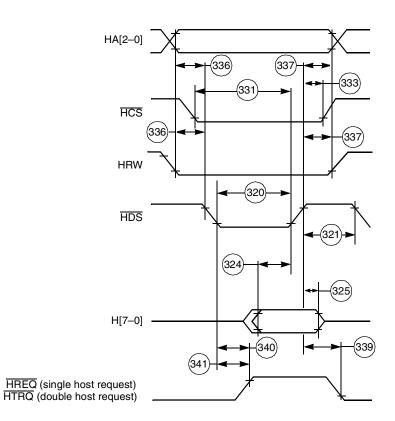


Figure 2-12. DRAM Page Mode Wait State Selection Guide

Table 2-9.	DRAM Page Mode Timings, Three Wait States ^{1,2,3}
------------	--

No.	Characteristics		Expression ⁴	100 MHz		Unit
NO.	Characteristics	Symbol	Expression	Min	Max	Unit
131	Page mode cycle time for two consecutive accesses of the same direction		$4 \times T_C$	40.0	_	ns
	Page mode cycle time for mixed (read and write) accesses	t _{PC}	$3.5 imes T_{C}$	35.0	—	ns
132	CAS assertion to data valid (read)	t _{CAC}	$2 \times T_C - 5.7$	—	14.3	ns
133	Column address valid to data valid (read)	t _{AA}	$3 imes T_C - 5.7$	_	24.3	ns

DSP56311 Technical Data, Rev. 8



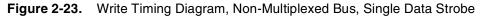

173 Co 174 Co 175 Ro 176 Co	Characteristics RAS assertion to row address not valid Column address valid to CAS assertion CAS assertion to column address not valid	Symbol t _{RAH} t _{ASC}	Expression ³ $1.75 \times T_{C} - 4.0$	Min 13.5	Max	Unit
173 Co 174 Co 175 Ro 176 Co	Column address valid to CAS assertion			13.5		Onic
174 C/ 175 R/ 176 C		t _{ASC}		10.0		ns
175 R/ 176 Co	CAS assertion to column address not valid		$0.75 imes T_C - 4.0$	3.5	_	ns
176 Co		t _{CAH}	$5.25 imes T_C - 4.0$	48.5		ns
	RAS assertion to column address not valid	t _{AR}	$7.75 imes T_C - 4.0$	73.5	_	ns
177 W	Column address valid to RAS deassertion	t _{RAL}	$6 imes T_C - 4.0$	56.0		ns
	VR deassertion to CAS assertion	t _{RCS}	$3.0 imes T_C - 4.0$	26.0	_	ns
178 C	\overline{CAS} deassertion to \overline{WR}^4 assertion	t _{RCH}	$1.75 \times T_{C} - 3.7$	13.8	_	ns
179 R	RAS deassertion to \overline{WR}^4 assertion	t _{RRH}	$0.25 imes T_{C}$ –2.0	0.5	_	ns
180 C	CAS assertion to WR deassertion	t _{WCH}	$5 imes T_C$ –4.2	45.8	_	ns
181 R	RAS assertion to WR deassertion	t _{WCR}	$7.5 imes T_C - 4.2$	70.8	_	ns
182 W	VR assertion pulse width	t _{WP}	$11.5 imes T_{C}$ –4.5	110.5	_	ns
183 W	VR assertion to RAS deassertion	t _{RWL}	$11.75\timesT_C-\!4.3$	113.2	_	ns
184 W	VR assertion to CAS deassertion	t _{CWL}	$10.25\timesT_C{-}4.3$	98.2	_	ns
185 Da	Data valid to CAS assertion (write)	t _{DS}	$5.75 imes T_C - 4.0$	53.5	_	ns
186 C/	CAS assertion to data not valid (write)	t _{DH}	$5.25 imes T_C - 4.0$	48.5	_	ns
187 R	RAS assertion to data not valid (write)	t _{DHR}	$7.75 imes T_C - 4.0$	73.5	_	ns
188 W	VR assertion to CAS assertion	t _{wcs}	$6.5 imes T_C - 4.3$	60.7		ns
189 C	CAS assertion to RAS assertion (refresh)	t _{CSR}	$1.5 imes T_C - 4.0$	11.0		ns
190 R/	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$2.75 imes T_C - 4.0$	23.5		ns
191 RI	RD assertion to RAS deassertion	t _{ROH}	$11.5 imes T_C - 4.0$	111.0		ns
192 RI	RD assertion to data valid	t _{GA}	$10 imes T_C - 7.0$	-	93.0	ns
193 RI	RD deassertion to data not valid ⁵	t _{GZ}		0.0	_	ns
194 W	VR assertion to data active		$0.75 imes T_{C} - 1.5$	6.0	_	ns
195 W	VR deassertion to data high impedance		$0.25 imes T_{C}$	_	2.5	ns

Table 2-11.	DRAM Out-of-Page and Refresh Timings, Eleven Wait States ^{1,2}	(Continued)
	DRAW Out-of-Fage and reflesh finnings, Eleven wait States	Containa

The refresh period is specified in the DRAM Control Register.
 Use the expression to compute the maximum or minimum value listed (or both if the expression includes ±).
 Either t_{RCH} or t_{RRH} must be satisfied for read cycles.
 RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

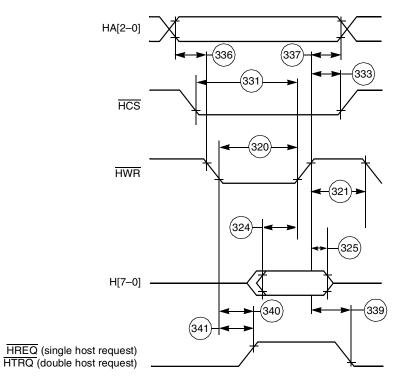
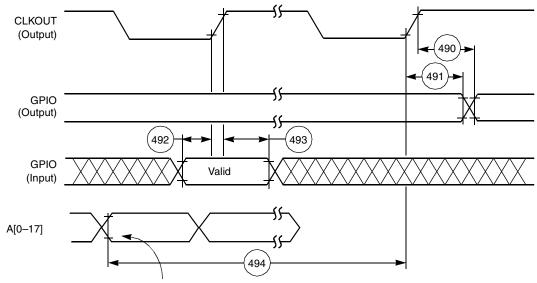


Figure 2-24. Write Timing Diagram, Non-Multiplexed Bus, Double Data Strobe

DSP56311 Technical Data, Rev. 8



2.4.10 Considerations For GPIO Use

2.4.10.1 Operating Frequency of 100 MHz or Less

Table 2-18.	GPIO Timing
-------------	-------------

No.	Characteristics	Expression	100	Unit	
NO.		Expression	Min	Мах	
490	CLKOUT edge to GPIO out valid (GPIO out delay time)		—	8.5	ns
491	CLKOUT edge to GPIO out not valid (GPIO out hold time)		0.0	—	ns
492	GPIO In valid to CLKOUT edge (GPIO in set-up time)		8.5	—	ns
493	CLKOUT edge to GPIO in not valid (GPIO in hold time)		0.0	_	ns
494	Fetch to CLKOUT edge before GPIO change	Minimum: $6.75 \times T_{C}$	67.5	—	ns
Note:	V_{CC} = 3.3 V ± 0.3 V; T _J = -40°C to +100 °C, C _L = 50 pF.	+	•		•

Fetch the instruction MOVE X0, X:(R0); X0 contains the new value of GPIO and R0 contains the address of the GPIO data register.

Figure 2-34. GPIO Timing

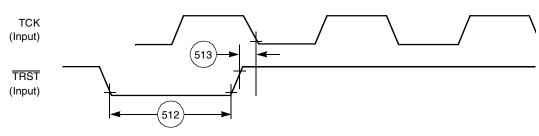


Figure 2-38. TRST Timing Diagram

2.4.12 OnCE Module TimIng

 Table 2-20.
 OnCE Module Timing

No.	Characteristics	Everacion	150 MHz		Unit				
	Characteristics	Expression	Min	Max	Unit				
500	TCK frequency of operation	Max 22.0 MHz	0.0	22.0	MHz				
514	DE assertion time in order to enter Debug mode	$1.5 imes T_{C} + 10.0$	20.0	—	ns				
515	Response time when DSP56311 is executing NOP instructions from internal memory	5.5 × T _C + 30.0	—	67.0	ns				
516	Debug acknowledge assertion time	$3 \times T_{C} + 5.0$	25.0	—	ns				
Note:	lote: $V_{CCQH} = 3.3 V \pm 0.3 V$, $V_{CC} = 1.8 V \pm 0.1 V$; $T_J = -40^{\circ}C$ to $+100 {\circ}C$, $C_L = 50 pF$								

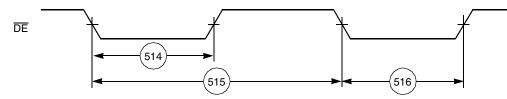


Figure 2-39. OnCE—Debug Request

Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name	
L11	GND	M13	A1	P1	NC	
L12	V _{CCA}	M14	A2	P2	H5, HAD5, or PB5	
L13	А3	N1	H6, HAD6, or PB6	P3	H3, HAD3, or PB3	
L14	A4	N2	H7, HAD7, or PB7	P4	H1, HAD1, or PB1	
M1	HA1, HA8, or PB9	N3	H4, HAD4, or PB4	P5	РСАР	
M2	HA2, HA9, or PB10	N4	H2, HAD2, or PB2	P6	GND _{P1}	
M3	HA0, HAS/HAS, or PB8	N5	RESET	P7	AA2/RAS2	
M4	V _{CCH}	N6	GND _P	P8	XTAL	
M5	H0, HAD0, or PB0	N7	AA3/RAS3	P9	V _{ccc}	
M6	V _{CCP}	N8	CAS	P10	TA	
M7	V _{CCQH}	N9	V _{CCQL}	P11	BB	
M8	EXTAL	N10	BCLK ²	P12	AA1/RAS1	
M9	CLKOUT ²	N11	BR	P13	BG	
M10	BCLK ²	N12	V _{CCC}	P14	NC	
M11	WR	N13	AA0/RAS0			
M12	RD	N14	A0			

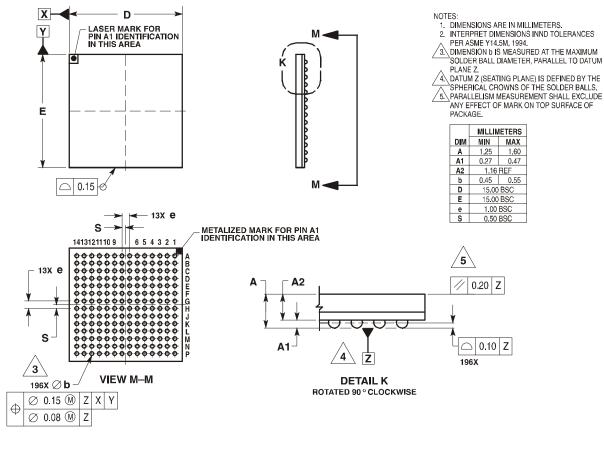
 Table 3-1.
 Signal List by Ball Number (Continued)

Notes: 1. Signal names are based on configured functionality. Most connections supply a single signal. Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some connections have two or more configurable functions; names assigned to these connections indicate the function for a specific configuration. For example, connection N2 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin. Unlike in the TQFP package, most of the GND pins are connected internally in the center of the connection array and act as heat sink for the chip. Therefore, except for GND_P and GND_{P1} that support the PLL, other GND signals do not support individual subsystems in the chip.

2. CLKOUT, $\overline{\text{BCLK}}$, and $\overline{\text{BCLK}}$ are available only if the operating frequency is $\leq 100 \text{ MHz}$.

Signal Name No. Signal Name No. Signal Name No. GND F11 GND K4 H7 Na GND G4 GND K5 HA0 Ma GND G5 GND K6 HA1 Ma GND G5 GND K6 HA1 Ma GND G6 GND K7 HA10 L1 GND G6 GND K8 HA2 Ma GND G8 GND K9 HA8 Ma GND G8 GND K10 HA9 Ma GND G10 GND K11 HACK/HACK J1 GND G11 GND L4 HAD0 Ma GND H4 GND L5 HAD1 P4 GND H5 GND L6 HAD2 N4 GND H6 GND L7 HAD3 P3							
GND G4 GND K5 HA0 MM GND G5 GND K6 HA1 MM GND G6 GND K7 HA10 L1 GND G7 GND K8 HA2 MM GND G8 GND K9 HA8 MM GND G9 GND K10 HA9 MM GND G10 GND K11 HA2 MM GND G9 GND K10 HA9 MM GND G11 GND L4 HAD0 MM GND H4 GND L5 HAD1 P4 GND H6 GND L7 HAD3 P3 GND H8 GND L9 HAD4 N3 GND H9 GND L10 HAD6 N4 GND H1 GND _{P1} P6 HGS/HAS M3 GND	Signal Name		Signal Name		Signal Name	Ball No.	
GNDG5GNDK6HA1M1GNDG6GNDK7HA10L1GNDG7GNDK8HA2M2GNDG8GNDK9HA8M1GNDG9GNDK10HA9M2GNDG10GNDK11HACK/HACKJ1GNDG11GNDL4HAD0M5GNDH4GNDL5HAD1P4GNDH4GNDL6HAD2N4GNDH4GNDL6HAD2N4GNDH5GNDL6HAD2N4GNDH6GNDL7HAD3P3GNDH8GNDL9HAD6N1GNDH9GNDL10HAD6N1GNDH1GNDpN6HA5/HASM3GNDH1GNDpN6HA5/HASM3GNDJ4GNDpN6HA5/HASM3GNDJ5H0M5HD5/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ6H1P4HRD/HRDJ2GNDJ8H3P3HRRQ/HRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK6	GND	F11	GND	K4	H7	N2	
GNDG6GNDK7HA10L1GNDG7GNDK8HA2M2GNDG8GNDK9HA8M2GNDG9GNDK10HA9M2GNDG10GNDK11HACK/HACKJ1GNDG11GNDL4HAD0M2GNDH4GNDL5HAD1P4GNDH4GNDL5HAD1P4GNDH6GNDL6HAD2N4GNDH6GNDL7HAD3P3GNDH8GNDL9HAD5P2GNDH8GNDL1HAD6N1GNDH9GNDL10HAD6N1GNDH9GNDL11HAD7N2GNDJ4GNDpN6HAS/HASM3GNDJ5H0M5HDS/HDSJ3GNDJ6H11P4HRD/HRDJ2GNDJ6H11P4HRD/HRDJ2GNDJ6H13P3HRRQ/HRQJ1GNDJ8H3P3HRRQ/HRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK2GNDJ10H5P2HTRQ/HTRQK2GNDJ10H5P2HTRQ/HTRQK2GNDJ10H5P2HTRQ/HTRQK2GND <t< td=""><td>GND</td><td>G4</td><td>GND</td><td>K5</td><td>HAO</td><td>M3</td></t<>	GND	G4	GND	K5	HAO	M3	
GND G7 GND K8 HA2 M2 GND G8 GND K9 HA8 M1 GND G9 GND K10 HA8 M1 GND G10 GND K10 HA9 M2 GND G10 GND K11 HACK/HACK J1 GND G11 GND L4 HAD0 M2 GND H4 GND L5 HAD1 P4 GND H5 GND L6 HAD2 M4 GND H6 GND L7 HAD3 P3 GND H7 GND L8 HAD4 M3 GND H8 GND L9 HAD5 P2 GND H9 GND L10 HAD5 M3 GND H10 GNDp L11 HAD7 M2 GND J4 GNDp M6 HAS/HAS M3 GND <td>GND</td> <td>G5</td> <td>GND</td> <td>K6</td> <td>HA1</td> <td>M1</td>	GND	G5	GND	K6	HA1	M1	
GNDG8GNDK9HA8M1GNDG9GNDK10HA9M2GNDG10GNDK11HACK/HACKJ1GNDG11GNDL4HAD0M2GNDH4GNDL5HAD1P4GNDH4GNDL5HAD1P4GNDH5GNDL6HAD2M4GNDH6GNDL7HAD3P5GNDH6GNDL9HAD5P2GNDH8GNDL10HAD6N1GNDH9GNDL10HAD6N1GNDH9GNDL11HAD7N2GNDH1GNDPN6HAS/HASM3GNDJ4GNDP1P4HE0/HEDJ2GNDJ5H0M5HE0/HEDJ2GNDJ6H1P4HRD/HRDJ2GNDJ6H1P4HRD/HRDJ2GNDJ6H1P4HRD/HRDJ2GNDJ7H2N4HREQ/HRQK2GNDJ8H3P3HRRQ/HRQJ1GNDJ10H5P2HTRQ/HRQK2GNDJ10H5P2HTRQ/HRQK2GNDJ10H5P2HTRQ/HRQK2GNDJ10H5P2HTRQ/HRQK2GNDJ10H5P2HTRQ/HRQK2GN	GND	G6	GND	K7	HA10	L1	
GNDG9GNDK10HA9M2GNDG10GNDGNDK11HACK/HACKJ1GNDG11GNDL4HAD0M4GNDG11GNDL5HAD1P4GNDH4GNDL5HAD1P4GNDH5GNDL6HAD2N4GNDH6GNDL7HAD3P3GNDH7GNDL8HAD4N5GNDH8GNDL9HAD5P2GNDH9GNDL10HAD6N1GNDH10GNDL11HAD6N1GNDH11GNDpN6HAS/HASM2GNDJ4GNDp1P4HTS/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ8H3P3HRRQ/HRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK2	GND	G7	GND	K8	HA2	M2	
GNDG10GNDK11HACK/HACKJ1GNDG11GNDL4HAD0M8GNDH4GNDL5HAD1P4GNDH5GNDL6HAD2M4GNDH6GNDL7HAD3P3GNDH6GNDL7HAD3P3GNDH7GNDL8HAD4M3GNDH8GNDL9HAD5P2GNDH9GNDL10HAD6M1GNDH1GNDL11HAD6M3GNDH11GNDPN6HAS/HASM3GNDJ4GNDP1P6HCS/HCSL1GNDJ5H0M5HDS/HDSJ3GNDJ6H11P4HRD/HRDJ2GNDJ6H13P3HRRQ/HRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HRQK2	GND	G8	GND	K9	HA8	M1	
GNDG11GNDL4HAD0M8GNDH4GNDL5HAD1P4GNDH5GNDL6HAD2M4GNDH6GNDL7HAD3P3GNDH7GNDL8HAD4M3GNDH7GNDL9HAD5P2GNDH9GNDL10HAD6M4GNDH9GNDL10HAD7M2GNDH10GNDL11HAD7M2GNDJ4GNDP1P6HCS/HCSL1GNDJ5H0M5HDS/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ7H2N4HREQ/HREQK2GNDJ8H3P3HRRQ/HRQJ1GNDJ10H5P2HTRQ/HTRQK2GNDK10K5F2K17K2GNDK6K17K6K17K6GNDK6K17K6K17K6GNDK6K17K6K6K6GNDK6K7K6K7K7GNDK6K7K6K6K6GNDK6K7K6K6K6GNDK6K7K6K6K6GNDK6K7K6K6K6GNDK6K7K6K6K6GNDK6K7K6K6	GND	G9	GND	K10	HA9	M2	
GNDH4GNDL5HAD1P4GNDH5GNDL6HAD2N4GNDH6GNDL7HAD3P3GNDH7GNDL8HAD4N3GNDH8GNDL9HAD5P2GNDH9GNDL10HAD6N1GNDH9GNDL11HAD6N1GNDH10GNDL11HAD7N2GNDH11GNDPN6HAS/HASM3GNDJ4GNDP1P6HCS/HCSL1GNDJ5H0M5HDS/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ7H2N4HREQ/HREQK2GNDJ8H3P3HRRO/HRQJ1GNDJ10H5P2HTRO/HTRQK2GNDJ10H5P2HTRO/HTRQK2GNDJ10H5P3HTRO/HTRQK2GNDJ10H5P4HTRO/HTRQK2GNDJ10H5P4HTRO/HTRQK4	GND	G10	GND	K11	HACK/HACK	J1	
GNDH5GNDL6HAD2N4GNDH6GNDL7HAD3P3GNDH7GNDL8HAD4N3GNDH8GNDL9HAD5P2GNDH9GNDL10HAD6N1GNDH9GNDL10HAD6N1GNDH10GNDL11HAD7N2GNDH11GNDPN6HAS/HASM3GNDJ4GNDP1P6HCS/HCSL1GNDJ5H0M5HDS/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ7H2N4HREQ/HREQK2GNDJ8H3P3HRRQ/HRRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK2	GND	G11	GND	L4	HAD0	M5	
GNDH6GNDL7HAD3P3GNDH7GNDL8HAD4N3GNDH8GNDL9HAD5P2GNDH9GNDL10HAD6N1GNDH10GNDL11HAD7N2GNDH11GNDpN6HAS/HASM3GNDJ4GNDp1P6HCS/HCSL1GNDJ5H0M5HDS/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ8H3P3HRRQ/HRRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK2	GND	H4	GND	L5	HAD1	P4	
GNDH7GNDL8HAD4N3GNDH8GNDL9HAD5P2GNDH9GNDL10HAD6N1GNDH10GNDL11HAD7N2GNDH11GNDPN6HAS/HASM3GNDJ4GNDP1P6HCS/HCSL1GNDJ5H0M5HDS/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ6H1P4HREQ/HREQK2GNDJ8H3P3HRRQ/HRRQJ1GNDJ0H5P2HTRQ/HTRQK2	GND	H5	GND	L6	HAD2	N4	
GNDH8GNDL9HAD5P2GNDH9GNDL10HAD6N1GNDH10GNDL11HAD7N2GNDH11GNDpN6HAS/HASM3GNDJ4GNDp1P6HCS/HCSL1GNDJ5H0M5HDS/HDSJ3GNDJ6H11P4HRD/HRDJ2GNDJ6H1P4HREQ/HREQK2GNDJ8H3P3HRRQ/HRRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK2	GND	H6	GND	L7	HAD3	P3	
GNDH9GNDL10HAD6N1GNDH10GNDL11HAD7N2GNDH11GNDPN6HAS/HASM3GNDJ4GNDP1P6HCS/HCSL1GNDJ5H0M5HDS/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ7H2N4HREQ/HREQK2GNDJ9H4N3HRWJ2GNDJ0H5P2HTRQ/HTRQK2	GND	H7	GND	L8	HAD4	N3	
GNDH10GNDL11HAD7N2GNDH11GNDpN6HAS/HASM3GNDJ4GNDp1P6HCS/HCSL1GNDJ5H0M5HDS/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ7H2N4HREQ/HREQK2GNDJ8H3P3HRRQ/HRRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK2	GND	H8	GND	L9	HAD5	P2	
GNDH11GND _P N6HAS/HASM3GNDJ4GND _{P1} P6HCS/HCSL1GNDJ5H0M5HDS/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ7H2N4HREQ/HREQK2GNDJ8H3P3HRRQ/HRRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK2	GND	H9	GND	L10	HAD6	N1	
GNDJ4GND GNDP6HCS/HCSL1GNDJ5H0M5HDS/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ7H2N4HREQ/HREQK2GNDJ8H3P3HRRQ/HRRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK2	GND	H10	GND	L11	HAD7	N2	
GNDJ5H0M5HDS/HDSJ3GNDJ6H1P4HRD/HRDJ2GNDJ7H2N4HREQ/HREQK2GNDJ8H3P3HRRQ/HRRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK2	GND	H11	GND _P	N6	HAS/HAS	M3	
GNDJ6H1P4HRD/HRDJ2GNDJ7H2N4HREQ/HREQK2GNDJ8H3P3HRRQ/HRRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK2	GND	J4	GND _{P1}	P6	HCS/HCS	L1	
GNDJ7H2N4HREQ/HREQK2GNDJ8H3P3HRRQ/HRRQJ1GNDJ9H4N3HRWJ2GNDJ10H5P2HTRQ/HTRQK2	GND	J5	H0	M5	HDS/HDS	J3	
GND J8 H3 P3 HRRQ/HRRQ J1 GND J9 H4 N3 HRW J2 GND J10 H5 P2 HTRQ/HTRQ K2	GND	J6	H1	P4	HRD/HRD	J2	
GND J9 H4 N3 HRW J2 GND J10 H5 P2 HTRQ/HTRQ K2	GND	J7	H2	N4	HREQ/HREQ	K2	
GND J10 H5 P2 HTRQ/HTRQ K2	GND	J8	H3	P3	HRRQ/HRRQ	J1	
	GND	J9	H4	N3	HRW	J2	
GND J11 H6 N2 HWR/HWR J3	GND	J10	H5	P2	HTRQ/HTRQ	K2	
	GND	J11	H6	N2	HWR/HWR	J3	

Table 3-2. Signal List by Signal Name (Continued)



Signal Name	Ball No.	Signal Name	Ball No.	Signal Name	Ball No.
IRQA	C4	PC3	H3	STD1	C2
IRQB	A5	PC4	E3	TA	P10
IRQC	C5	PC5	E1	ТСК	C3
IRQD	B5	PCAP	P5	TDI	B3
MODA	C4	PD0	F2	TDO	A4
MODB	A5	PD1	A2	TIO0	L3
MODC	C5	PD2	B2	TIO1	L2
MODD	B5	PD3	G1	TIO2	K3
NC	A1	PD4	B1	TMS	A3
NC	A14	PD5	C2	TRST	B4
NC	B14	PE0	F1	TXD	G3
NC	P1	PE1	G3	V _{CCA}	H12
NC	P14	PE2	G2	V _{CCA}	K12
NMI	D1	PINIT	D1	V _{CCA}	L12
PB0	M5	RASO	N13	V _{CCC}	N12
PB1	P4	RAS1	P12	V _{CCC}	P9
PB10	M2	RAS2	P7	V _{CCD}	A7
PB11	J2	RAS3	N7	V _{CCD}	C9
PB12	J3	RD	M12	V _{CCD}	C11
PB13	L1	RESET	N5	V _{CCD}	D14
PB14	K2	RXD	F1	V _{CCH}	M4
PB15	J1	SC00	F3	V _{CCP}	M6
PB2	N4	SC01	D2	V _{CCQH}	F12
PB3	P3	SC02	C1	V _{CCQH}	H1
PB4	N3	SC10	F2	V _{CCQH}	M7
PB5	P2	SC11	A2	V _{CCQL}	C7
PB6	N1	SC12	B2	V _{CCQL}	G13
PB7	N2	SCK0	H3	V _{CCQL}	H2
PB8	M3	SCK1	G1	V _{CCQL}	N9
PB9	M1	SCLK	G2	V _{CCS}	E2
PC0	F3	SRD0	E3	V _{CCS}	K1
PC1	D2	SRD1	B1	WR	M11
PC2	C1	STD0	E1	XTAL	P8

 Table 3-2.
 Signal List by Signal Name (Continued)

3.2 MAP-BGA Package Mechanical Drawing

CASE 1128C-01 ISSUE O

DATE 07/28/98

Figure 3-3. DSP56311 Mechanical Information, 196-pin MAP-BGA Package

;

Interrupt Priority Register Core (IPRC)

M IAL EOU \$7 ; IRQA Mode Mask M_IALO EQU O ; IRQA Mode Interrupt Priority Level (low) M_IAL1 EQU 1 ; IRQA Mode Interrupt Priority Level (high) M_IAL2 EQU 2 ; IRQA Mode Trigger Mode M IBL EOU \$38 ; IRQB Mode Mask M IBLO EOU 3 ; IRQB Mode Interrupt Priority Level (low) M_IBL1 EQU 4 ; IRQB Mode Interrupt Priority Level (high) ; IRQB Mode Trigger Mode M IBL2 EOU 5 M ICL EOU \$1C0 ; IRQC Mode Mask M ICLO EOU 6 ; IRQC Mode Interrupt Priority Level (low) M ICL1 EOU 7 ; IRQC Mode Interrupt Priority Level (high) ; IRQC Mode Trigger Mode M ICL2 EOU 8 M_IDL EQU \$E00 ; IRQD Mode Mask ; IRQD Mode Interrupt Priority Level (low) M_IDL0 EQU 9 M_IDL1 EQU 10 ; IRQD Mode Interrupt Priority Level (high) ; IRQD Mode Trigger Mode M_IDL2 EQU 11 M_D0L EQU \$3000 ; DMA0 Interrupt priority Level Mask M_DOLO EQU 12 ; DMA0 Interrupt Priority Level (low) M_DOL1 EQU 13 ; DMA0 Interrupt Priority Level (high) M_D1L EQU \$C000 ; DMA1 Interrupt Priority Level Mask M_D1L0 EQU 14 ; DMA1 Interrupt Priority Level (low) M_D1L1 EQU 15 ; DMA1 Interrupt Priority Level (high) M_D2L EQU \$30000 ; DMA2 Interrupt priority Level Mask M_D2L0 EQU 16 ; DMA2 Interrupt Priority Level (low) M D2L1 EOU 17 ; DMA2 Interrupt Priority Level (high) M_D3L EQU \$C0000 ; DMA3 Interrupt Priority Level Mask ... EQU 20 M_D4L1 EQU 21 M_D5L EQU \$C00000 M_D5L0 EQU 22 M_D5L1 EQU 23 M_D3L0 EQU 18 ; DMA3 Interrupt Priority Level (low) ; DMA3 Interrupt Priority Level (high) ; DMA4 Interrupt priority Level Mask ; DMA4 Interrupt Priority Level (low) ; DMA4 Interrupt Priority Level (high) ; DMA5 Interrupt priority Level Mask ; DMA5 Interrupt Priority Level (low) ; DMA5 Interrupt Priority Level (high) Interrupt Priority Register Peripheral (IPRP) ; M_HPL EQU \$3 ; Host Interrupt Priority Level Mask M_HPL0 EQU 0 ; Host Interrupt Priority Level (low) M_HPL1 EQU 1 ; Host Interrupt Priority Level (high) M_SOL EQU \$C ; SSIO Interrupt Priority Level Mask M_SOLO EQU 2 ; SSIO Interrupt Priority Level (low) M_SOL1 EQU 3 ; SSIO Interrupt Priority Level (high) M_S1L EQU \$30 ; SSI1 Interrupt Priority Level Mask M_S1L0 EQU 4 ; SSI1 Interrupt Priority Level (low) M_S1L1 EQU 5 ; SSI1 Interrupt Priority Level (high) M_SCL EQU \$C0 ; SCI Interrupt Priority Level Mask M_SCL0 EQU 6 ; SCI Interrupt Priority Level (low) M_SCL1 EQU 7 ; SCI Interrupt Priority Level (high) ; TIMER Interrupt Priority Level Mask M_TOL EQU \$300 M_TOLO EQU 8 ; TIMER Interrupt Priority Level (low) ; TIMER Interrupt Priority Level (high) M_TOL1 EQU 9 ;------; EQUATES for TIMER ; ;

DSP56311 Technical Data, Rev. 8

Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Solder Spheres	Order Number
DSP56311	1.8 V core	Molded Array Process-Ball Grid	196	150	Lead-free	DSP56311VL150
	3.3 V I/O Array (MAP-BGA)				Lead-bearing	DSP56311VF150

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations not listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GMBH Technical Information Center Schatzbogen 7 81829 München, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T. Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Order No.: DSP56311 Rev. 8 2/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 1999, 2005.

