E·XFL

NXP USA Inc. - DSP56311VL150R2 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	150MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	384kB
Voltage - I/O	3.30V
Voltage - Core	1.80V
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/dsp56311vl150r2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.7 Host Interface (HI08)

The HI08 provides a fast, 8-bit, parallel data port that connects directly to the host bus. The HI08 supports a variety of standard buses and connects directly to a number of industry-standard microcomputers, microprocessors, DSPs, and DMA hardware.

1.7.1 Host Port Usage Considerations

Careful synchronization is required when the system reads multiple-bit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected (as they are in the Host port). The considerations for proper operation are discussed in **Table 1-10**.

Action	Description
Asynchronous read of receive byte registers	When reading the receive byte registers, Receive register High (RXH), Receive register Middle (RXM), or Receive register Low (RXL), the host interface programmer should use interrupts or poll the Receive register Data Full (RXDF) flag that indicates data is available. This assures that the data in the receive byte registers is valid.
Asynchronous write to transmit byte registers	The host interface programmer should not write to the transmit byte registers, Transmit register High (TXH), Transmit register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register Data Empty (TXDE) bit is set indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers transfer valid data to the Host Receive (HRX) register.
Asynchronous write to host vector	The host interface programmer must change the Host Vector (HV) register only when the Host Command bit (HC) is clear. This practice guarantees that the DSP interrupt control logic receives a stable vector.

Table 1-10.	Host Port Usage Considerations
	These Tone oblige considerations

1.7.2 Host Port Configuration

HI08 signal functions vary according to the programmed configuration of the interface as determined by the 16 bits in the HI08 Port Control Register.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
H[0–7]	Input/Output	Ignored Input	Host Data —When the HI08 is programmed to interface with a non-multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the bidirectional Data bus.
HAD[0-7]	Input/Output		Host Address —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the bidirectional multiplexed Address/Data bus.
PB[0-7]	Input or Output		Port B 0–7 —When the HI08 is configured as GPIO through the HI08 Port Control Register, these signals are individually programmed as inputs or outputs through the HI08 Data Direction Register.

Table 1-11.Host Interface

2.2 Thermal Characteristics

Thermal Resistance Characteristic	Symbol	MAP-BGA Value	Unit
Junction-to-ambient, natural convection, single-layer board (1s) ^{1,2}	R _{θJA}	49	°C/W
Junction-to-ambient, natural convection, four-layer board (2s2p) ^{1,3}	R _{θJMA}	26	°C/W
Junction-to-ambient, @200 ft/min air flow, single layer board (1s) ^{1,3}	R _{θJMA}	39	°C/W
Junction-to-ambient, @200 ft/min air flow, four-layer board (2s2p) ^{1,3}	R_{\thetaJMA}	22	°C/W
Junction-to-board ⁴	$R_{\theta JB}$	14	°C/W
Junction-to-case thermal resistance ⁵	$R_{ extsf{ heta}JC}$	5	°C/W
Junction-to-package-top, natural convection ⁶	$\Psi_{\rm JT}$	2	°C/W
Junction-to-package-top, @200 ft/min air flow ⁶	$\Psi_{\rm JT}$	2	°C/W

Table 2-2. Thermal Characteristics

Notes: 1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

3. Per JEDEC JESD51-6 with the board horizontal.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

 Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.

6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Na	Characteristics	Cumbel	150	MHz	
NO.	Characteristics	Symbol	Min	Max	
1	Frequency of EXTAL (EXTAL Pin Frequency) The rise and fall time of this external clock should be 3 ns maximum.	Ef	0	150.0	
2	 EXTAL input high^{1, 2} With PLL disabled (46.7%–53.3% duty cycle⁶) With PLL enabled (42.5%–57.5% duty cycle⁶) 	ET _H	3.11 ns 2.83 ns	∞ 157.0 μs	
3	 EXTAL input low^{1, 2} With PLL disabled (46.7%–53.3% duty cycle⁶) With PLL enabled (42.5%–57.5% duty cycle⁶) 	ETL	3.11 ns 2.83 ns	∞ 157.0 μs	
4	EXTAL cycle time ² With PLL disabled With PLL enabled 	ET _C	6.67 ns 6.67 ns	∞ 273.1 μs	
5	Internal clock change from EXTAL fall with PLL disabled		4.3 ns	11.0 ns	
6	a.Internal clock rising edge from EXTAL rising edge with PLL enabled (MF = 1 or 2 or 4, PDF = 1, Ef > 15 MHz)^{3,5}		0.0 ns	1.8 ns	
	b. Internal clock falling edge from EXTAL falling edge with PLL enabled (MF ≤4, PDF \neq 1, Ef / PDF > 15 MHz) ^{3,5}		0.0 ns	1.8 ns	
7	Instruction cycle time = I _{CYC} = T _C ⁴ (see Figure 2-4) (46.7%–53.3% duty cycle) • With PLL disabled • With PLL enabled	I _{CYC}	13.33 ns 6.7 ns	∞ 8.53 μs	
Notes:	 Measured at 50 percent of the input transition. The maximum value for PLL enabled is given for minimum VCO frequency (see Table 2-4) and maximum MF. Periodically sampled and not 100 percent tested. The maximum value for PLL enabled is given for minimum VCO frequency and maximum DF. The skew is not guaranteed for any other MF value. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correction operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time 				

Table 2-5. Clock Operation

2.4.3 Phase Lock Loop (PLL) Characteristics

requirements are met.

Table 2-6.	PLL Characteristics

Characteristics	150 MHz			
Characteristics	Min	Max		
Voltage Controlled Oscillator (VCO) frequency when PLL enabled (MF \times Ef \times 2/PDF)	30	300	MHz	
PLL external capacitor (PCAP pin to V _{CCP}) (C _{PCAP} ¹) • @ MF ≤4 • @ MF > 4	(580 × MF) −100 830 × MF	(780 × MF) −140 1470 × MF	pF pF	
Note: C _{PCAP} is the value of the PLL capacitor (connected between the PCAP pin and V _{CCP}) computed using the appropriate expressi listed above.				

No	Characteristics	Expression	150 MHz		Unit
NO.	Characteristics	Expression	Min	Max	Unit
26	 Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop)^{2, 3} PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (Operating Mode Register Bit 6 = 0) PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (Operating Mode Register Bit 6 = 1) PLL is active during Stop (PCTL Bit 17 = 1) (implies no Stop delay) 	$\begin{array}{c} \mbox{Minimum:} \\ \mbox{PLC} \times \mbox{ET}_{C} \times \mbox{PDF} + (128K - \\ \mbox{PLC}/2) \ \times \ \mbox{T}_{C} \\ \\ \mbox{PLC} \times \mbox{ET}_{C} \times \mbox{PDF} + \\ (20.5 \pm 0.5) \ \times \ \mbox{T}_{C} \\ \\ \mbox{5.5} \times \ \mbox{T}_{C} \end{array}$	13.6 12.3 36.7	_	ms ms ns
27	Interrupt Request Rate	Maximum:			
	 HI08, ESSI, SCI, Timer DMA IRQ, NMI (edge trigger) IRQ, NMI (level trigger) 	$12 \times T_{C}$ $8 \times T_{C}$ $8 \times T_{C}$ $12 \times T_{C}$		80.0 53.3 53.3 80.0	ns ns ns ns
28	DMA Request Rate • Data read from HI08, ESSI, SCI • Data write to HI08, ESSI, SCI • Timer • IRQ, NMI (edge trigger)	$\begin{tabular}{c} \hline Maximum: \\ & 6 \times T_C \\ & 7 \times T_C \\ & 2 \times T_C \\ & 3 \times T_C \end{tabular}$		40.0 46.7 13.3 20.0	ns ns ns ns
29	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory (DMA source) access address out valid	Minimum: $4.25 \times T_{C} + 2.0$	30.3	_	ns
Notes:	 When fast interrupts are used and IRQA, IRQB, IRQC, and IRQD prevent multiple interrupt service. To avoid these timing restriction when fast interrupts are used. Long interrupts are recommended This timing depends on several settings: For PLL disable, using internal oscillator (PLL Control Register (Bit 17 = 0), a stabilization delay is required to assure that the osci Stop delay (Operating Mode Register Bit 6 = 0) provides the properit is not recommended, and these specifications do not guarantee For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and a stabilization delay is required and recovery is minimal (Operating For PLL disable, using external clock (PCTL Bit 16 = 1), no stab PCTL Bit 17 and Operating Mode Register Bit 6 settings. For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during The PLL lock procedure duration, PLL Lock Cycles (PLC), may be parallel with the stop delay counter, and stop recovery ends wher completes count or PLL lock procedure completion. PLC value for PLL disable is 0. The maximum value for ET_C is 4096 (maximum MF) divided by th MHz = 62 µs). During the stabilization period, T_C, T_H, and T_L is not well. Periodically sampled and not 100 percent tested. Value depends on clock source: For an internal oscillator, RESET duration is measured will RE reflects the crystal oscillator stabilization time after power-up. This and other components connected to the oscillator and reflects wo When the V_{CC} is valid, but the other "required RESET duration" device circuitry is in an uninitialized state that can result in signific minimize this state to the shortest possible duration. If PLL does not lose lock. V_{CCQH} = 3.3 V ±0.3 V, V_{CC} = 1.8 V±0.1 V; T_J = -40°C	are defined as level-sensitive, t hs, the deasserted Edge-trigger for Level-sensitive mode. (PCTL) Bit 16 = 0) and oscillato illator is stable before programs er delay. While Operating Mode e timings for that case. oscillator enabled during Stop (Mode Register Bit 6 setting is i ilization delay is required and re- Stop. Recovering from Stop re- e in the range of 0 to 1000 cycl in the last of these two events of the desired internal frequency (the tot constant, and their width may chile RESET is asserted, V _{CC} is ESET is asserted and V _{CC} is van is number is affected both by the rest case conditions. conditions (as specified above cant power consumption and he C, C _L = 50 pF. fT _C).	imings 19 f red mode is a red mode is a re execu- Register E PCTL Bit 1 gnored). ecovery tim quires the es. This pro- ccurs. The hat is, for 6 y vary, so ti valid, and lid. The sp e specificar) have not 1 pat-up. Des	through 21 s recomme during Stop ted. Reset Bit 6 = 1 car 7=1), no he is define PLL to get ocedure oc stop delay 6 MHz it is ming may the EXTAL ecified timin tions of the been yet migns should	apply to nded (PCTL ting the n be set, d by the locked. curs in counter 4096/66 vary as . input is ng crystal et, the d

Table 2-7.	Reset, Stop,	Mode Select,	and Interrupt	Timing ⁶	(Continued)
------------	--------------	--------------	---------------	---------------------	-------------

Figure 2-9. External Memory Access (DMA Source) Timing

2.4.5 External Memory Expansion Port (Port A)

2.4.5.1 SRAM Timing

	Oberneteristics	0h.e.l	Furnessien1	150	Unit	
NO.	Characteristics	Symbol	Expression	Min	Мах	Unit
100	Address valid and AA assertion pulse width ²	t _{RC} , t _{WC}	(WS + 2) × T _C −4.0 [2 ≤WS ≤7]	22.7		ns
			$\begin{array}{c} (WS+3)\timesT_C-\!\!4.0\\ [WS\geq8] \end{array}$	69.3	—	ns
101	Address and AA valid to WR assertion	t _{AS}	0.75 × T _C − 3.0 [2 ≤WS ≤3]	2.0	—	ns
			$1.25 \times T_{C} - 3.0$ [WS ≥ 4]	5.3	—	ns
102	WR assertion pulse width	t _{WP}	WS × T _C −4.0 [2 ≤WS ≤3]	9.3	—	ns
			$(WS - 0.5) \times T_{C} - 4.0$ [WS ≥ 4]	19.3	—	ns
103	WR deassertion to address not valid	t _{WR}	1.25 × T _C −4.0 [2 ≤WS ≤7]	4.3	—	ns
			$\begin{array}{c} 2.25\times \ T_{C}-4.0\\ [WS\geq 8] \end{array}$	11.0	—	ns
104	Address and AA valid to input data valid	t _{AA} , t _{AC}	$\begin{array}{l} (\text{WS} + 0.75) \times \ \text{T}_{\text{C}} - 6.5 \\ [\text{WS} \geq 2] \end{array}$		11.8	ns
105	RD assertion to input data valid	t _{OE}	$\begin{array}{l} (\text{WS} + 0.25) \times \ \text{T}_{\text{C}} - 6.5 \\ [\text{WS} \geq 2] \end{array}$	_	8.5	ns
106	RD deassertion to data not valid (data hold time)	t _{OHZ}		0.0	—	ns
107	Address valid to \overline{WR} deassertion ²	t _{AW}	$\begin{array}{l} (\text{WS} + 0.75) \times \ \text{T}_{\text{C}} - 4.0 \\ [\text{WS} \geq 2] \end{array}$	14.3	—	ns
108	Data valid to \overline{WR} deassertion (data set-up time)	t _{DS} (t _{DW})	$\begin{array}{l} (\text{WS}-0.25)\times \ \text{T}_{\text{C}}-5.4 \\ [\text{WS}\geq 2] \end{array}$	6.3	—	ns
109	Data hold time from \overline{WR} deassertion	t _{DH}	1.25 × T _C −4.0 [2 ≤WS ≤7]	4.3	—	ns
			$\begin{array}{c} 2.25 \times T_{C} - 4.0 \\ [WS \ge 8] \end{array}$	11.0	—	ns
110	WR assertion to data active	—	0.25 × T _C −4.0 [2 <ws <3]<="" td=""><td>-2.4</td><td>—</td><td>ns</td></ws>	-2.4	—	ns
			$-0.25 \times T_{C} -4.0$ [WS ≥ 4]	-5.7	—	ns

Table 2-8. SRAM Timing

Figure 2-18. DRAM Refresh Access

Figure 2-22. Read Timing Diagram, Non-Multiplexed Bus, Double Data Strobe

	Characteristics ^{4, 6}	Symbol	Funnasian	150 MHz		Cond-		
NO.		Characteristics "	Бутрої	Expression	Min	Мах	ition ⁵	Unit
451	TXCı	ising edge to FST out (word-length) low				31.0 17.0	x ck i ck	ns
452	TXCı	ising edge to data out enable from high impedance			_	31.0 17.0	x ck i ck	ns
453	TXCı	ising edge to transmitter 0 drive enable assertion			_	34.0 20.0	x ck i ck	ns
454	TXCı	ising edge to data out valid		35 + 0.5 × T _C	_	38.4 21.0	x ck i ck	ns
455	TXCı	rising edge to data out high impedance ³				31.0 16.0	x ck i ck	ns
456	TXCı	ising edge to transmitter 0 drive enable deassertion ³			_	34.0 20.0	x ck i ck	ns
457	FST input (bl, wr) ⁶ set-up time before TXC falling edge ²				2.0 21.0	_	x ck i ck	ns
458	FST input (wl) ⁶ to data out enable from high impedance				_	27.0	—	ns
459	FST i	nput (wl) to transmitter 0 drive enable assertion			_	31.0	—	ns
460	FST input (wl) ⁶ set-up time before TXC falling edge				2.5 21.0	_	x ck i ck	ns
461	FST i	nput hold time after TXC falling edge			4.0 0.0	—	x ck i ck	ns
462	Flag output valid after TXC rising edge				_	32.0 18.0	x ck i ck	ns
Notes:	1. 2.	For the internal clock, the external clock cycle is define the ESSI Control Register. The word-length-relative frame sync signal waveform o but spreads from one serial clock before the first bit cloc	d by the instruct perates the sa ck (same as th	ction cycle time (timi me way as the bit-le e Bit Length Frame S	ng 7 in 1 ngth frar Sync sigi	able 2-5 me sync nal) until	on page 2- signal wave the one bef	6) and form, ore last
	3. 4. 5. 6.	bit clock of the first word in the frame. Periodically sampled and not 100 percent tested $V_{CCQH} = 3.3 V \pm 0.3 V$, $V_{CC} = 1.8 V \pm 0.1 V$; $T_J = -40^{\circ}C$ TXC (SCK Pin) = transmit clock RXC (SC0 or SCK pin) = receive clock FST (SC2 pin) = transmit frame sync FSR (SC1 or SC2 pin) receive frame sync i ck = Internal Clock; x ck = external clock	C to +100 °C, C	С _L = 50 рF.	- <i>,</i>	,		
		 i ck a = internal clock, Asynchronous mode (asynchron i ck s = internal clock, Synchronous mode (synchronou bl = bit length wl = word length wr = word length relative 	ous implies that T	at TXC and RXC are TXC and RXC are th	two diffe e same o	erent clo clock)	cks)	

Table 2-16.	ESSI Timing	(Continued)
-------------	-------------	-------------------------------

Figure 2-32. ESSI Receiver Timing

2.4.9 Timer Timing

Table 2-17. Timer Timing

No	Characteristics	Expression	150 MHz		Unit	
NO.	Characteristics	Expression	Min	Max	Unit	
480	TIO Low	2 × T _C + 2.0	15.4	—	ns	
481	TIO High	2 × T _C + 2.0	15.4	—	ns	
Note: $V_{CCQH} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{CC} = 1.8 \text{ V} \pm 0.1 \text{ V}; T_J = -40^{\circ}\text{C} \text{ to } +100 ^{\circ}\text{C}, C_L = 50 \text{ pF}$						

Figure 2-33. TIO Timer Event Input Restrictions

Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name
A1	Not Connected (NC), reserved	B12	D8	D9	GND
A2	SC11 or PD1	B13	D5	D10	GND
A3	TMS	B14	NC	D11	GND
A4	TDO	C1	SC02 or PC2	D12	D1
A5	MODB/IRQB	C2	STD1 or PD5	D13	D2
A6	D23	C3	тск	D14	V _{CCD}
A7	V _{CCD}	C4	MODA/IRQA	E1	STD0 or PC5
A8	D19	C5	MODC/IRQC	E2	V _{CCS}
A9	D16	C6	D22	E3	SRD0 or PC4
A10	D14	C7	V _{CCQL}	E4	GND
A11	D11	C8	D18	E5	GND
A12	D9	C9	V _{CCD}	E6	GND
A13	D7	C10	D12	E7	GND
A14	NC	C11	V _{CCD}	E8	GND
B1	SRD1 or PD4	C12	D6	E9	GND
B2	SC12 or PD2	C13	D3	E10	GND
B3	TDI	C14	D4	E11	GND
B4	TRST	D1	PINIT/NMI	E12	A17
B5	MODD/IRQD	D2	SC01 or PC1	E13	A16
B6	D21	D3	DE	E14	D0
B7	D20	D4	GND	F1	RXD or PE0
B8	D17	D5	GND	F2	SC10 or PD0
B9	D15	D6	GND	F3	SC00 or PC0
B10	D13	D7	GND	F4	GND
B11	D10	D8	GND	F5	GND

 Table 3-1.
 Signal List by Ball Number

Signal Name	Ball No.	Signal Name	Ball No.	Signal Name	Ball No.
A0	N14	BR	N11	D9	A12
A1	M13	CAS	N8	DE	D3
A10	H13	CLKOUT	M9	EXTAL	M8
A11	H14	D0	E14	GND	D4
A12	G14	D1	D12	GND	D5
A13	G12	D10	B11	GND	D6
A14	F13	D11	A11	GND	D7
A15	F14	D12	C10	GND	D8
A16	E13	D13	B10	GND	D9
A17	E12	D14	A10	GND	D10
A2	M14	D15	B9	GND	D11
A3	L13	D16	A9	GND	E4
A4	L14	D17	B8	GND	E5
A5	K13	D18	C8	GND	E6
A6	K14	D19	A8	GND	E7
A7	J13	D2	D13	GND	E8
A8	J12	D20	B7	GND	E9
A9	J14	D21	B6	GND	E10
AA0	N13	D22	C6	GND	E11
AA1	P12	D23	A6	GND	F4
AA2	P7	D3	C13	GND	F5
AA3	N7	D4	C14	GND	F6
BB	P11	D5	B13	GND	F7
BCLK	M10	D6	C12	GND	F8
BCLK	N10	D7	A13	GND	F9
BG	P13	D8	B12	GND	F10

 Table 3-2.
 Signal List by Signal Name

Power Consumption Benchmark

The following benchmark program evaluates DSP56311 power use in a test situation. It enables the PLL, disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
****
          *****
;**
;*
;*
                  CHECKS Typical Power Consumption
                                                              *
;*
                                                              *
*****
     page
           200,55,0,0,0
     nolist
I_VEC EQU $000000
                            ; Interrupt vectors for program debug only
START EQU $8000
                            ; MAIN (external) program starting address
INT_PROG EQU $100
                            ; INTERNAL program memory starting address
INT_XDAT EQU $0
                            ; INTERNAL X-data memory starting address
INT_YDAT EQU $0
                             ; INTERNAL Y-data memory starting address
     INCLUDE "ioequ.asm"
     INCLUDE "intequ.asm"
      list
     org
           P:START
;
     movep #$0243FF,x:M_BCR ; ; BCR: Area 3 = 2 w.s (SRAM)
                             ; Default: 2w.s (SRAM)
;
     movep #$0d0000,x:M_PCTL
                             ; XTAL disable
                              ; PLL enable
                              ; CLKOUT disable
;
                              ; Load the program
;
           #INT_PROG,r0
     move
           #PROG_START,r1
     move
           #(PROG_END-PROG_START), PLOAD_LOOP
     do
           p:(r1)+,x0
     move
     move
           x0,p:(r0)+
     nop
PLOAD_LOOP
;
                              ; Load the X-data
;
           #INT_XDAT,r0
     move
           #XDAT_START,r1
     move
           #(XDAT_END-XDAT_START), XLOAD_LOOP
     do
           p:(r1)+,x0
     move
     move
           x0,x:(r0)+
```

Pr Consumption Benchmark

N

XLOAD_	LOOP		
;	the 37	J	
; Load	the r-	lala	
,	move	#INT YDAT.r0	
	move	#YDAT_START,r1	
	do	#(YDAT_END-YDAT_STAR	T),YLOAD_LOOP
	move	p:(r1)+,x0	
	move	x0,y:(r0)+	
YLOAD_	LOOP		
;			
	ami	INT PROG	
	51		
PROG_S	TART		
	move	#\$0,r0	
	move	#\$0,r4	
	move	#\$31,mU #\$3f m4	
	nove	#\$JT,III4	
,	clr	a	
	clr	b	
	move	#\$0,x0	
	move	#\$0,x1	
	move	#\$0,y0	
	move	#\$0,y1	-1-7
	bset	#4, omr	; ebd
; sbr	dor	#60. end	
	mac	x0,y0,ax:(r0)+,x1	y:(r4)+,y1
	mac	x1,y1,ax:(r0)+,x0	y:(r4)+,y0
	add	a,b	
	mac	x0,y0,ax:(r0)+,x1	
	mac	x1,y1,a	y:(r4)+,y0
and	move	bl,x:ŞII	
_ena	bra	shr	
	nop	551	
	nop		
	nop		
	nop		
PROG_E	ND		
	nop		
	пор		
XDAT_S	TART		
;	org	x:0	
	dc	\$262EB9	
	dc	\$86F2FE	
	ac	SES6ASE SE16CAC	
	dc	\$8FFD75	
	dc	\$9210A	
	dc	\$A06D7B	
	dc	\$CEA798	
	dc	\$8DFBF1	
	dc	\$A063D6	
	dC dc	\$6C6657 \$C27544	
	de	302A344 \$A3662D	
	dc	\$A4E762	
	dc	\$84F0F3	

Pr Consumption Benchmark

	đa	Ċ742±00	
	de de	\$A45E00	
	ac	\$C2B639	
	ac	\$85A47E	
	dc	ŞABFDDF	
	dc	\$F3A2C	
	dc	\$2D7CF5	
	dc	\$E16A8A	
	dc	\$ECB8FB	
	dc	\$4BED18	
	dc	\$43F371	
	dc	\$83A556	
	dc	SE1E9D7	
	dc	SACA2C4	
	de	\$8135AD	
	dc	\$2CE0E2	
	de	\$2C1012 \$8F2C73	
	de	¢120720	
	de	\$432730 ¢397530	
	dC d	\$A07FA9	
	ac	\$4AZ9ZE	
	dC	SA63CCF	
	dc	\$6BA65C	
	dc	\$E06D65	
	dc	\$1AA3A	
	dc	\$A1B6EB	
	dc	\$48AC48	
	dc	\$EF7AE1	
	dc	\$6E3006	
	dc	\$62F6C7	
	dc	\$6064F4	
	dc	\$87E41D	
	dc	\$CB2692	
	dc	\$2C3863	
	dc	SC6BC60	
	dc	\$43A519	
	dc	\$6139DE	
	dc	SADE7BE	
	de	¢/B3E8C	
	de	\$40300C	
	da	30079D3 ¢e0e5e3	
	de	SEOL SEY	
	ac	\$023UDB	
	ac	\$A3B778	
	ac	\$ZBFE51	
	ac	SEUA6B6	
	dc	\$68FFB7	
	dc	\$28F324	
	dc	\$8F2E8D	
	dc	\$667842	
	dc	\$83E053	
	dc	\$A1FD90	
	dc	\$6B2689	
	dc	\$85B68E	
	dc	\$622EAF	
	dc	\$6162BC	
	dc	\$E4A245	
YDAT_I	END		
·****; '	*******	***********	***************************************
;	EOIN	for DODE (211	I/O registers and ports
;	EQUATES	TOT D2530311	TIO TEATPIETS and boils
;	Toot	Jato, T 11	1005
;	Last upo	ace: June 11	CCCT
;	*******	*****	* * * * * * * * * * * * * * * * * * * *
1			

Pr Consumption Benchmark

M 7 EOU 2 :	
<u></u>	Zero
M_N EQU 3 ;	Negative
M_U EQU 4 ;	Unnormalized
M_E EQU 5 ;	Extension
M_L EQU 6 ;	Limit
M_S EQU 7 ;	Scaling Bit
M_I0 EQU 8 ;	Interupt Mask Bit 0
M_I1 EQU 9 ;	Interupt Mask Bit 1
M_S0 EQU 10 ;	Scaling Mode Bit 0
M_S1 EQU 11 ;	Scaling Mode Bit 1
M_SC EQU 13 ;	Sixteen_Bit Compatibility
M_DM EQU 14 ;	Double Precision Multiply
M_LF EQU 15 ;	DO-Loop Flag
M_FV EQU 16 ;	DO-Forever Flag
M_SA EQU 17 ;	Sixteen-Bit Arithmetic
M_CE EQU 19 ;	Instruction Cache Enable
M_SM EQU 20 ;	Arithmetic Saturation
M_RM EQU 21 ;	Rounding Mode
M_CP0 EQU 22 ;	bit 0 of priority bits in SR
M_CP1 EQU 23 ;	bit 1 of priority bits in SR
; control and status bits in OMI	2
M CDP EOU \$300 ;	mack for COPE-DMA priority bits in OMP
	MASK IOI CONL-DHA PIIOIICY DICS III OMA
M_MA equ0 ;	Operating Mode A
M_MA equ0 ; M_MB equ1 ;	Operating Mode A Operating Mode B
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ;	Operating Mode A Operating Mode B Operating Mode C
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ3 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ3 ; M_EBD EQU 4 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ3 ; M_EBD EQU4 ; M_SD EQU6 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ3 ; M_EBD EQU 4 ; M_SD EQU 6 ; M_MS EQU 7 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay Memory Switch bit in OMR
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ3 ; M_EBD EQU 4 ; M_SD EQU 6 ; M_MS EQU 7 ; M_CDP0 EQU 8 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay Memory Switch bit in OMR bit 0 of priority bits in OMR
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ3 ; M_EBD EQU 4 ; M_SD EQU 6 ; M_MS EQU 7 ; M_CDP0 EQU 8 ; M_CDP1 EQU 9 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay Memory Switch bit in OMR bit 0 of priority bits in OMR bit 1 of priority bits in OMR
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ3 ; M_EBD EQU 4 ; M_SD EQU 6 ; M_MS EQU 7 ; M_CDP0 EQU 8 ; M_CDP1 EQU 9 ; M_BEN EQU 10 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay Memory Switch bit in OMR bit 0 of priority bits in OMR bit 1 of priority bits in OMR Burst Enable
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ3 ; M_EBD EQU 4 ; M_SD EQU 6 ; M_MS EQU 7 ; M_CDP0 EQU 8 ; M_CDP1 EQU 9 ; M_BEN EQU 10 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay Memory Switch bit in OMR bit 0 of priority bits in OMR bit 1 of priority bits in OMR Burst Enable TA Synchronize Select
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ3 ; M_EBD EQU 4 ; M_SD EQU 6 ; M_MS EQU 7 ; M_CDP0 EQU 8 ; M_CDP1 EQU 9 ; M_BEN EQU 10 ; M_TAS EQU 11 ; M_BRT EQU 12 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay Memory Switch bit in OMR bit 0 of priority bits in OMR bit 1 of priority bits in OMR Burst Enable TA Synchronize Select Bus Release Timing
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ2 ; M_MD equ3 ; M_EBD EQU 4 ; M_SD EQU 4 ; M_SD EQU 6 ; M_MS EQU 7 ; M_CDP0 EQU 8 ; M_CDP1 EQU 9 ; M_BEN EQU 10 ; M_TAS EQU 11 ; M_ATE EQU 12 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay Memory Switch bit in OMR bit 0 of priority bits in OMR bit 1 of priority bits in OMR Burst Enable TA Synchronize Select Bus Release Timing Address Tracing Enable bit in OMR.
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ2 ; M_MD equ3 ; M_EBD EQU 4 ; M_SD EQU 4 ; M_SD EQU 6 ; M_MS EQU 7 ; M_CDP0 EQU 8 ; M_CDP1 EQU 9 ; M_BEN EQU 10 ; M_BRT EQU 12 ; M_ATE EQU 15 ; M_XYS EQU 16 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay Memory Switch bit in OMR bit 0 of priority bits in OMR bit 1 of priority bits in OMR Burst Enable TA Synchronize Select Bus Release Timing Address Tracing Enable bit in OMR. Stack Extension space select bit in OMR.
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ2 ; M_MD equ3 ; M_EBD EQU 4 ; M_SD EQU 4 ; M_SD EQU 6 ; M_MS EQU 7 ; M_CDP0 EQU 8 ; M_CDP1 EQU 9 ; M_BEN EQU 10 ; M_BRT EQU 12 ; M_ATE EQU 12 ; M_ATE EQU 15 ; M_EUN EQU 16 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay Memory Switch bit in OMR bit 0 of priority bits in OMR bit 1 of priority bits in OMR Burst Enable TA Synchronize Select Bus Release Timing Address Tracing Enable bit in OMR. Stack Extension space select bit in OMR.
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ2 ; M_MD equ3 ; M_EBD EQU 4 ; M_SD EQU 4 ; M_SD EQU 4 ; M_SD EQU 4 ; M_SD EQU 4 ; M_MS EQU 7 ; M_CDP0 EQU 8 ; M_CDP1 EQU 9 ; M_BEN EQU 10 ; M_BRT EQU 10 ; M_ATE EQU 12 ; M_ATE EQU 15 ; M_EUN EQU 16 ; M_EOV EQU 17 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay Memory Switch bit in OMR bit 0 of priority bits in OMR bit 1 of priority bits in OMR Burst Enable TA Synchronize Select Bus Release Timing Address Tracing Enable bit in OMR. Stack Extension space select bit in OMR. Extensed stack UNderflow flag in OMR.
M_MA equ0 ; M_MB equ1 ; M_MC equ2 ; M_MD equ2 ; M_MD equ3 ; M_MD equ3 ; M_SD EQU 4 ; M_SD EQU 4 ; M_SD EQU 4 ; M_SD EQU 4 ; M_MS EQU 7 ; M_CDP0 EQU 8 ; M_CDP1 EQU 9 ; M_CDP1 EQU 9 ; M_BEN EQU 10 ; M_BRT EQU 11 ; M_ATE EQU 12 ; M_ATE EQU 15 ; M_EUN EQU 17 ; M_EOV EQU 18 ; M_WRP EQU 19 ;	Operating Mode A Operating Mode B Operating Mode C Operating Mode D External Bus Disable bit in OMR Stop Delay Memory Switch bit in OMR bit 0 of priority bits in OMR bit 1 of priority bits in OMR Burst Enable TA Synchronize Select Bus Release Timing Address Tracing Enable bit in OMR. Stack Extension space select bit in OMR. Extensed stack UNderflow flag in OMR. Extended stack OVerflow flag in OMR.

```
;
  EQUATES for DSP56311 interrupts
;
;
  Last update: June 11 1995
;
;
page 132,55,0,0,0
   opt
       mex
intequ ident 1,0
   if
       @DEF(I_VEC)
                  ;leave user definition as is.
   else
```


I_VEC EQU \$0 endif

•_____ ; Non-Maskable interrupts I_RESET EQU I_VEC+\$00 ; Hardware RESET I_STACK EQU I_VEC+\$02 ; Stack Error I_ILL EQU I_VEC+\$04 ; Illegal Instruction I_DBG EQU I_VEC+\$06 ; Debug Request I TRAP EOU I VEC+\$08 ; Trap I NMI EOU I VEC+\$0A ; Non Maskable Interrupt :-----; Interrupt Request Pins ;------I_IRQA EQU I_VEC+\$10 ; IRQA ; IRQB I_IRQB EQU I_VEC+\$12 I_IRQC EQU I_VEC+\$14 ; IRQC I_IRQD EQU I_VEC+\$16 ; IRQD ; DMA Interrupts ;------I_DMA0 EQU I_VEC+\$18 ; DMA Channel 0 ; DMA Channel 1 I_DMA1 EQU I_VEC+\$1A I_DMA2 EQU I_VEC+\$1C ; DMA Channel 2 I_DMA3 EQU I_VEC+\$1E I_DMA4 EQU I_VEC+\$20 ; DMA Channel 3 ; DMA Channel 4 ; DMA Channel 5 I_DMA5 EQU I_VEC+\$22 ;------; Timer Interrupts ;------I_TIMOC EQU I_VEC+\$24 ; TIMER 0 compare __ I_TIM0OF EQU I_VEC+\$26 ; TIMER 0 overflow I_TIM1C EQU I_VEC+\$28 ; TIMER 1 compare I_TIM1OF EQU I_VEC+\$2A ; TIMER 1 overflow I_TIM2C EQU I_VEC+\$2C ; TIMER 2 compare I_TIM2OF EQU I_VEC+\$2E ; TIMER 2 overflow ;-----; ESSI Interrupts ;-----; ESSIO Receive Data ; ESSIO Receive Data w/ exception Status ; ESSIO Receive last slot I_SIORD EQU I_VEC+\$30 I_SIORDE EQU I_VEC+\$32 I_SIORLS EQU I_VEC+\$34 I_SIOTD EQU I_VEC+\$36 ; ESSIO Transmit data ; ESSIO Transmit Data w/ exception Status ; ESSIO Transmit last slot I_SIOTDE EQU I_VEC+\$38 I_SIOTLS EQU I_VEC+\$3A ; ESSI1 Receive Data I_SI1RD EQU I_VEC+\$40 ; ESSI1 Receive Data w/ exception Status I_SI1RDE EQU I_VEC+\$42 I_SI1RLS EQU I_VEC+\$44 ; ESSI1 Receive last slot I_SI1TD EQU I_VEC+\$46 ; ESSI1 Transmit data ; ESSI1 Transmit Data w/ exception Status I_SI1TDE EQU I_VEC+\$48 ; ESSI1 Transmit last slot I_SI1TLS EQU I_VEC+\$4A :-----; SCI Interrupts I_SCIRD EQU I_VEC+\$50 ; SCI Receive Data I_SCIRDE EQU I_VEC+\$52 ; SCI Receive Data With Exception Status I_SCITD EQU I_VEC+\$54 ; SCI Receive Data With Exception Status ; SCI Transmit Data I_SCITD EQU I_VEC+\$54

Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Solder Spheres	Order Number
DSP56311	1.8 V core	Molded Array Process-Ball Grid	196	150	Lead-free	DSP56311VL150
	3.3 V I/O	Array (MAP-BGA)			Lead-bearing	DSP56311VF150

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations not listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GMBH Technical Information Center Schatzbogen 7 81829 München, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T. Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Order No.: DSP56311 Rev. 8 2/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 1999, 2005.

