

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	MAXQ20S
Core Size	16-Bit
Speed	12MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Infrared, Power-Fail, POR, WDT
Number of I/O	56
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	Die
Supplier Device Package	Diesale
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/maxq622x-0000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-Bit Microcontrollers with Infrared Module and Optional USB

TABLE OF CONTENTS

Absolute Maximum Ratings	4
Recommended Operating Conditions	4
I ² C Electrical Characteristics	8
I ² C Bus Controller Timing	9
Pin Configurations 1	1
Pin Descriptions—TQFN, LQFP 1	3
Pin Descriptions—Bare Die 1	8
Detailed Description	!1
Microprocessor	2
Memory	2
Memory Protection	2
Stack Memory	2
Utility ROM	2
Watchdog Timer	3
IR Carrier Generation and Modulation Timer 2	3
Carrier Generation Module	24
IR Transmission	24
IR Transmit—Independent External Carrier and Modulator Outputs	24
IR Receive	24
Carrier Burst-Count Mode	5
16-Bit Timers/Counters	5
General-Purpose I/O 2	5
Serial Peripherals	5
USART	5
Serial Peripheral Interface (SPI)	6
I ² C Bus	6
USB Controller (MAXQ622 Only)	6
On-Chip Oscillator	6
ROM Loader	27
Loading Flash Memory	27
In-Application Flash Programming	27
In-Circuit Debug and JTAG Interface	27
Operating Modes	8
Power-Supply Selection	8
Stop Mode2	8
Power-Fail Warning	9

16-Bit Microcontrollers with Infrared Module and Optional USB

TABLE OF CONTENTS (continued)

Power-Fail Detection	29
Applications Information	. 33
Grounds and Bypassing	33
Additional Documentation	33
Block Diagram	34
Development and Technical Support	34
Package Information.	34
Ordering Information/Selector Guide	34
Revision History	35

LIST OF FIGURES

Figure 1. Series Resistors (Rs) for Protecting Against High-Voltage Spikes	10
Figure 2. I ² C Bus Controller Timing Diagram	10
Figure 3. On-Chip Oscillator	26
Figure 4. In-Circuit Debugger	28
Figure 5. Power-Fail Detection During Normal Operation	29
Figure 6. Stop Mode Power-Fail Detection States with Power-Fail Monitor Enabled	31
Figure 7. Stop Mode Power-Fail Detection with Power-Fail Monitor Disabled	32

LIST OF TABLES

Table 1. Memory Areas and Associated Maximum Privilege Levels	22
Table 2. Watchdog Interrupt Timeout (Sysclk = 12MHz, CD[1:0] = 00).	23
Table 3. USART Mode Details	25
Table 4. Power-Fail Warning Level Selection	29
Table 5. Power-Fail Detection States During Normal Operation	30
Table 6. Stop Mode Power-Fail Detection States with Power-Fail Monitor Enabled	31
Table 7. Stop Mode Power-Fail Detection States with Power-Fail Monitor Disabled	32

16-Bit Microcontrollers with Infrared Module and Optional USB

RECOMMENDED OPERATING CONDITIONS (continued)

(V_DD = V_RST to 3.6V, T_A = 0°C to +70°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Hysteresis (Schmitt)	VIHYS			300		mV	
Input Low Voltage for HFXIN	VIL_HFXIN	External driven clock and not feedback connected crystal oscillator	Vgnd		0.3 x VDD	V	
Input High Voltage for HFXIN	VIH_HEXIN	External driven clock and not feedback connected crystal oscillator	0.7 x V _{DD}		V _{DD}	V	
IRRX Input Filter Pulse-Width Reject	tirrx_r				50	ns	
IRRX Input Filter Pulse-Width Accept	tirrx_a		300			ns	
Output Low Voltage for IRTX	Vol_irtx	VDD = 3.6V, IOL = 25mA (Note 6) VDD = 2.35V, IOL = 10mA (Note 6) VDD = 1.85V, IOL = 4.5mA			1.0 1.0 1.0	V	
Output Low Voltage for RESET and All Port Pins (Note 12)	Vol	V _{DD} = 3.6V, I _{OL} = 11mA (Note 6) V _{DD} = 2.35V, I _{OL} = 8mA (Note 6) V _{DD} = 1.85V, I _{OL} = 4.5mA		0.4 0.4 0.4	0.5 0.5 0.5	V	
Output High Voltage for IRTX and All Port Pins	VOH	I _{OH} = -2mA V _{DDIO} - 0.5			VDDIO	V	
Input/Output Pin Capacitance for All Port Pins Except DP, DM	CIO	(Note 6)			15	pF	
Input Leakage Current	IL	Internal pullup disabled	-100		+100	nA	
		$V_{DD} = 3V, V_{OL} = V_{DD}/2$ (Note 6)	16	25	39		
Input Pullup Resistor for	R _{PU}	$V_{DD} = 2V, V_{OL} = V_{DD}/2$	17	27	41	kΩ	
RESET, IRTX, IRRX, P0 to P6	I I I I I I I I I I I I I I I I I I I	V _{DD} = 3.0V, V _{OL} = 0.4V (Note 6)	16	28	39		
		$V_{DD} = 2.0V, V_{OL} = 0.4V$ (Note 6)	17	30	41		
GPIO Supply Output High Voltage	VDDIOH	V_{DDIOH} current is the sum of V_{DDIO} current and I_{OH} of all GPIO, I_{OH} = 10mA	V _{DD} - 0.4		V _{DD}	V	
EXTERNAL CRYSTAL/RESON	ATOR	1					
Crystal/Resonator	fHFXIN	(Note 13)	1		12	MHz	
Crystal/Resonator Period	t HFXIN			1/f _{HFXIN}		ns	
Crystal/Resonator Warmup Time	txtal_rdy	From initial oscillation		8192 x ^t HFXIN		ms	
Oscillator Feedback Resistor	Roscf	(Note 6)	0.5	1.0	1.5	MΩ	
Crystal ESR		(Note 6)			60	Ω	
EXTERNAL CLOCK INPUT							
External Clock Frequency	fxclk	(Note 13)	DC		12	MHz	
External Clock Period	txclk			1/fxclk		ns	
External Clock Duty Cycle	txclk_duty		45		55	%	
System Clock Frequency	four			f HFXIN			
System Clock Frequency	fCK	HFXOUT = GND	fxclk		MHz		

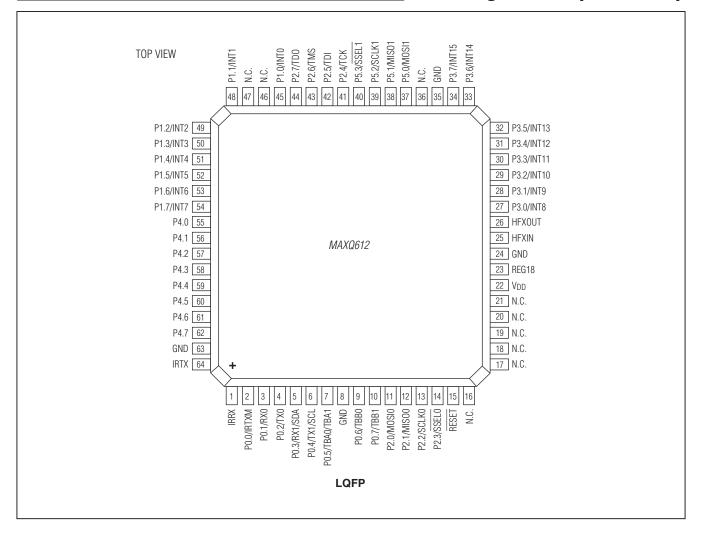
16-Bit Microcontrollers with Infrared Module and Optional USB

RECOMMENDED OPERATING CONDITIONS (continued)

(VDD = VRST to 3.6V, TA = 0°C to +70°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
System Clock Period	tCK			1/fCK		ns
NANOPOWER RING						
		$T_A = +25^{\circ}C$	3	13	20	
Nanopower Ring Frequency	fnano	$T_A = +25^{\circ}C, V_{DD} = POR voltage$ (Note 6)	1.7	2.4		kHz
Nanopower Ring Duty Cycle	t NANO	(Note 6)	40		60	%
Nanopower Ring Current	Inano	Typical at $V_{DD} = 1.64V$, $T_A = +25^{\circ}C$ (Note 6)		40	400	nA
WAKE-UP TIMER						
Wake-Up Timer Interval	t WAKEUP		1/f _{NANO}		65,535/ ^f NANO	S
FLASH MEMORY						
System Clock During Flash Programming/Erase	f FPSYSCLK		1			MHz
Floop France Time	tME	Mass erase	20		40	
Flash Erase Time	t ERASE	Page erase	20		40	– ms
Flash Programming Time per Word	tprog	(Note 14)	20		100	μs
Write/Erase Cycles			20,000			Cycles
Data Retention		$T_A = +25^{\circ}C$	100			Years
USB						
USB Supply Voltage	VBUS	(Note 15)	4.5	5.0	5.5	V
	h se ve	Transmitting on DP and DM at 12Mbps, $C_L = 50pF$ on DP and DM to GND, FRCVDD = 0			13.5	mA
VBUS Supply Current (Note 16)	Ivbus	Transmitting on DP and DM at 12Mbps, $C_L = 50pF$ on DP and DM to GND, FRCVDD = 1			3.5	mA
V _{BUS} Supply Current During Idle (Note 16)	Ivbusid	DP = high, DM = low, FRCVDD = 0 (Note 6)			6	mA
		DP = high, DM = low, FRCVDD = 1			0.2	mA
VBUS Suspend Supply Current	IVBUSSUS				500	μA
Single-Ended Input High Voltage DP, DM	VIHD		2.0			V
Single-Ended Input Low Voltage DP, DM	VILD				0.8	V
Output Low Voltage DP, DM	Vold	$R_L = 1.5 k\Omega$ from DP to 3.6V			0.3	V
Output High Voltage DP, DM	Vohd	$R_L = 15k\Omega$ from DP and DM to GND	2.8			V
Differential Input Sensitivity DP, DM	VDI	DP to DM	0.2			V
Common-Mode Voltage Range	Vcm	Includes V _{DI} range	0.8		2.5	V

16-Bit Microcontrollers with Infrared Module and Optional USB


RECOMMENDED OPERATING CONDITIONS (continued)

(VDD = VRST to 3.6V, TA = 0°C to +70°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Single-Ended Receiver Threshold	VSE		0.8		2.0	V
Single-Ended Receiver Hysteresis	VSEH			200		mV
Differential Output Signal Cross-Point Voltage	VCRS	$C_L = 50 pF$ (Note 6)	1.3		2.0	V
DP, DM Off-State Input Impedance	R _{LZ}		300			kΩ
Driver Output Impedance	Rdrv	Steady-state drive	28		44	Ω
DP Pullup Resistor	Rpu	Idle Receiving	0.9		1.575 3.090	kΩ
USB TIMING			·			
DP, DM Rise Time (Transmit)	t _R	$C_L = 50 pF$	4		20	ns
DP, DM Fall Time (Transmit)	tF	$C_L = 50 pF$	4		20	ns
Rise/Fall Time Matching (Transmit)	t _R /t _F	$C_L = 50 pF$ (Note 6)	90		110	%
IR			1			
Carrier Frequency	fIR				fCK/2	Hz
SPI (Note 6)						
SPI Master Operating Frequency	1/t _{MCK}				f _{CK} /2	MHz
SPI Slave Operating Frequency	1/tsck				f _{CK} /4	MHz
SPI I/O Rise/Fall Time	tSPI_RF	$C_L = 15 pF$, pullup = 560Ω	8		24	ns
SCLK_ Output Pulse-Width High/Low	tMCH, tMCL		t _{MCK} /2 -			ns
MOSI_ Output Hold Time After SCLK_ Sample Edge	tмон		t _{MCK} /2 -			ns
MOSI_ Output Valid to Sample Edge	tMOV		t _{MCK} /2 - tspi_RF			ns
MISO_ Input Valid to SCLK_ Sample Edge Rise/Fall Setup	tMIS		25			ns
MISO_ Input to SCLK_ Sample Edge Rise/Fall Hold	tMIH		0			ns
SCLK_ Inactive to MOSI_ Inactive	tMLH		t _{MCK} /2 - tSPI_RF			ns
SCLK_ Input Pulse-Width High/Low	tSCH, tSCL			tsck/2		ns
SSEL_ Active to First Shift Edge	tsse		tspi_rf			ns

16-Bit Microcontrollers with Infrared Module and Optional USB

Pin Configurations (continued)

16-Bit Microcontrollers with Infrared Module and Optional USB

MAXQ612 TQFN-EPMAXQ612 LQFPMAXQ622 LQFPNAMEFUNCTION121515RESET PINS121515RESETDigital, Active-Low, Reset Input/Output. The CPU is held in reset when this pin is low and begins executing from the reset vector when released. The pin is low and begins executing from the reset vector when released. The pin is low and begins executing from the reset vector when released. The pin is low and begins executing from the reset vector when released. The pin is low and begins executing from the reset vector when released. The pin is low and begins executing from the reset vector when released. The pin is low and begins executing from the reset vector when released. The pin is low and begins executing from the reset vector when released. The pin is used to prove and should be driven by an open-drain, external source capable of sinking in excess of 4mA. This pin is driven low as an output when an internal reset condition occurs.162525HFXINT172626HFXOUT172626HFXOUT18WBUSSupply Voltage. Connect VBUS to a positive 5.0V power sup- ply. By ass VBUS to ground with a 1.0µF creamic capacitor as close to the VBUS pin as possible16DPUSB VBUS Supply Voltage. Connect MBUS the connector. This pin is weakly pulled high internally when the USB is disabled18DMUSB De Signal. This bidirectional pin carries the negative differential data or single-ended data. Connect this pin to a USB 'B' connector. This pin is weakly pulled high internally when the USB is disabled20VDDBVDDB		PIN								
12 15 15 RESET Digital, Active-Low, Reset Input/Output. The CPU is held in reset when this pin is fow and begins executing from the reset vector when released. The pin includes pullup current source and should be driven by an open-drain, external source capable of sinking in excess of 4mA. This pin is driven low as an output when an internal reset condition occurs. 16 25 25 HFXIN 17 26 26 HFXOUT 17 26 26 HFXOUT USB FUNCTION FINS — — 19 — — 19 VBUS USB VBUS Supply Voltage. Connect VBUS to a positive 5.0V power supply. Bypass Vaus to ground with a 1.0µF ceramic capacitor as close to the VBUS pin as possible. — — 16 DP USB D-Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB rB' connector. This pin is weakly pulled high internally when the USB is disabled. — — 18 DM — — 18 DM USB D-Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB is disabled. USB D-Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB is disabled. — — 18 DM USB D-Signal. This bidirectional pin carries the positive differential d				NAME	FUNCTION					
121515RESETpin is low and begins executing from the reset vector when released. The pin includes pullup current source and should be driven by an open-drain, external source capable of sinking in excess of 4rmA. This pin is driven low as an output when an internal reset condition occurs.162525HFXINHigh-Frequency Crystal Input. Connect an external crystal or resonator brocker Mem HFXOUT as the high-frequency system clock. Alternatively, HFXIN is the input for an external, high-frequency clock source when HFXOUT is shorted to ground during POR.172626HFXOUTWBUSUSB VBUS Supply Voltage. Connect VBUS to a positive 5.0V power supply. Bypass VBUS to ground with a 1.0µF ceramic capacitor as close to the VBUS pin as possible16DPUSB VBUS Supply Voltage. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled116DPUSB D- Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled118DMUSB D- Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled120VDDBUSB D- Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled18DMUSB D- Signal. This bidirectional pin carries the posetive differential data or sing		1	<u> </u>		RESET PINS					
16 25 25 HFXIN High-Frequency Crystal Input. Connect an external crystal or resonator between HFXIN and HFXOUT as the high-frequency system clock. Alternatively, HFXIN is the input for an external, high-frequency clock source when HFXOUT is shorted to ground during POR. 17 26 26 HFXOUT VBUS VBUS Supply Voltage. Connect VBUS to a positive 5.0V power supply. Bypass VBUS to ground with a 1.0µF ceramic capacitor as close to the VBUS pin as possible. 19 VBUS USB VBUS Supply Voltage. Connect VBUS to a positive 6.0V power supply. Bypass VBUS to ground with a 1.0µF ceramic capacitor as close to the VBUS pin as possible. 16 DP USB D+ Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled. 18 DM USB D- Signal. This bidirectional pin carries the negative differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled. 18 DM USB Transceiver Supply Voltage. This is the power output of the internal voltage regulator that is used for the USB transceiver (3.3V) block. This pin is bypassed to ground with a 1.0µF capacitor as close to this pin as possible. - 21 VDDB Switched 3V Power Supply. This is the power output afte	12	15	15	RESET	pin is low and begins executing from the reset vector when released. The pin includes pullup current source and should be driven by an open-drain, external source capable of sinking in excess of 4mA. This pin is driven low					
10202011 mm Trimmtor between HFXIN and HFXOUT as the high-frequency system clock. Alternatively, HFXIN is the input for an external, high-frequency clock source when HFXOUT is shorted to ground during POR.172626HFXOUTWBUSUSB VBUS Supply Voltage. Connect VBUS to a positive 5.0V power sup- ply. Bypass VBUS to ground with a 1.0µF ceramic capacitor as close to the VBUS pin as possible16DPUSB D+ Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB "B" connector. 					CLOCK PINS					
17 26 26 HEXOUT source when HEXOUT is shorted to ground during POR. Survey and the transmitter of the transter of the transmitter of the transmitter of the trans	16	25	25	HFXIN	tor between HFXIN and HFXOUT as the high-frequency system clock.					
- 19 VBUS USB VBUS Supply Voltage. Connect VBUS to a positive 5.0V power supply. Bypass VBUS to ground with a 1.0µF ceramic capacitor as close to the VBUS pin as possible. - - 16 DP USB D+ Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled. - - 18 DM USB D- Signal. This bidirectional pin carries the negative differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled. - - 18 DM USB D- Signal. This bidirectional pin carries the negative differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled. - - 18 DM USB Transceiver Supply Voltage. This is the power output of the internal voltage regulator that is used for the USB transceiver (3.3V) block. This pin is bypassed to ground with a 1.0µF capacitor as close as possible to the package. No external circuitry should be powered from this pin. - - 21 VDDIO Switched 3V Power Supply. This is the power output after selection between VBUS and VDD. Must be connected to an external ceramic chip capacitor. The capacitor must be placed as close to this pin as possible. No external devices other than the capacitor should be connected to this pin. IF FUNCTION PINS <td>17</td> <td>26</td> <td>26</td> <td>HFXOUT</td> <td></td>	17	26	26	HFXOUT						
- 19 VBUS ply. Bypass VBUS to ground with a 1.0µF ceramic capacitor as close to the VBUS pin as possible. - - 16 DP USB D+ Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled. - - 18 DM USB D- Signal. This bidirectional pin carries the negative differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled. - - 18 DM USB Transceiver Supply Voltage. This is the power output of the internal voltage regulator that is used for the USB transceiver (3.3V) block. This pin is bypassed to ground with a 1.0µF capacitor as close as possible to the package. No external circuitry should be powered from this pin. - - 21 VDDB Switched 3V Power Supply. This is the power output after selection between VBUS and VDD. Must be connected to an external ceramic chip capacitor. The capacitor must be placed as close to this pin as possible. No external devices other than the capacitor should be connected to this pin. 42 64 64 IRTX IRTx masmit Output. Active-low IR transmit pin capable of sinking 25mA. This pin defaults to three-state input with the weak pullup disabled during all forms of reset. Software must configure this pin after release from reset to remove the three-state input condition.	USB FUNCTION PINS									
16DPdata or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled18DMUSB D- Signal. This bidirectional pin carries the negative differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled18DMUSB D- Signal. This bidirectional pin carries the negative differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled20VDDBUSB Transceiver Supply Voltage. This is the power output of the internal voltage regulator that is used for the USB transceiver (3.3V) block. This pin is bypassed to ground with a 1.0µF capacitor as close as possible to the package. No external circuitry should be powered from this pin21VDDBSwitched 3V Power Supply. This is the power output after selection between VBUS and VDD. Must be connected to an external ceramic chip capacitor. The capacitor must be placed as close to this pin as possible. No external devices other than the capacitor should be con- nected to this pin.426464IRTXIR Transmit Output. Active-low IR transmit pin capable of sinking 25mA. This pin defaults to three-state input with the weak pullup disabled dur- ing all forms of reset. Software must configure this pin after release from reset to remove the three-state input condition.	_	_	19	VBUS	ply. Bypass V_BUS to ground with a 1.0 μF ceramic capacitor as close to					
18DMdata or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled20VDDBUSB Transceiver Supply Voltage. This is the power output of the internal voltage regulator that is used for the USB transceiver (3.3V) block. This pin is bypassed to ground with a 1.0µF capacitor as close as possible to the package. No external circuitry should be powered from this pin21VDDBSwitched 3V Power Supply. This is the power output after selection between VBUS and VDD. Must be connected to an external ceramic chip capacitor. The capacitor must be placed as close to this pin as possible. No external devices other than the capacitor should be con- nected to this pin.426464IRTXIR Transmit Output. Active-low IR transmit pin capable of sinking 25mA. This pin defaults to three-state input with the weak pullup disabled dur- ing all forms of reset. Software must configure this pin after release from reset to remove the three-state input condition.	_	_	16	DP	data or single-ended data. Connect this pin to a USB "B" connector.					
- - 20 VDDB voltage regulator that is used for the USB transceiver (3.3V) block. This pin is bypassed to ground with a 1.0µF capacitor as close as possible to the package. No external circuitry should be powered from this pin. - - 21 VDDB Switched 3V Power Supply. This is the power output after selection between VBUS and VDD. Must be connected to an external ceramic chip capacitor. The capacitor must be placed as close to this pin as possible. No external devices other than the capacitor should be connected to this pin. 42 64 64 IRTX IR Transmit Output. Active-low IR transmit pin capable of sinking 25mA. This pin defaults to three-state input with the weak pullup disabled during all forms of reset. Software must configure this pin after release from reset to remove the three-state input condition.	_	_	18	DM	data or single-ended data. Connect this pin to a USB "B" connector.					
21VDIObetween VBUS and VDD. Must be connected to an external ceramic chip capacitor. The capacitor must be placed as close to this pin as possible. No external devices other than the capacitor should be con- nected to this pin.426464IRTXIR Transmit Output. Active-low IR transmit pin capable of sinking 25mA. This pin defaults to three-state input with the weak pullup disabled dur- ing all forms of reset. Software must configure this pin after release from reset to remove the three-state input condition.			20	VDDB	voltage regulator that is used for the USB transceiver (3.3V) block. This pin is bypassed to ground with a 1.0μ F capacitor as close as possible					
426464IRTXIR Transmit Output. Active-low IR transmit pin capable of sinking 25mA. This pin defaults to three-state input with the weak pullup disabled dur- ing all forms of reset. Software must configure this pin after release from reset to remove the three-state input condition.	_		21	Vddio	between V _{BUS} and V _{DD} . Must be connected to an external ceramic chip capacitor. The capacitor must be placed as close to this pin as possible. No external devices other than the capacitor should be con-					
42 64 64 IRTX This pin defaults to three-state input with the weak pullup disabled during all forms of reset. Software must configure this pin after release from reset to remove the three-state input condition.		•			IR FUNCTION PINS					
43 1 1 IRRX IR Receive Input	42	64	64	IRTX	This pin defaults to three-state input with the weak pullup disabled dur- ing all forms of reset. Software must configure this pin after release from					
	43	1	1	IRRX	IR Receive Input					

16-Bit Microcontrollers with Infrared Module and Optional USB

	PIN										
MAXQ612 TQFN-EP	MAXQ612 LQFP	MAXQ622 LQFP	NAME			FUNCTION	FUNCTION				
		GENE	RAL-PURPOS	E I/O AND SPE	CIAL FUNCT	ION PINS					
					O pins. All por	rt pins default	to three-st	ort pins function as tate mode after a software.			
			P0.0–P0.7; IRTXM,	MAXQ612 TQFN-EP	MAXQ612 LQFP	MAXQ622 LQFP	PORT	SPECIAL FUNCTION			
			RX0, TX0,	44	2	2	P0.0	IRTXM			
44, 1–7	2–7, 9, 10	2–7, 9, 10	RX1, TX1, SDA, SCL,	1	3	3	P0.1	RX0			
			TBA0.	2	4	4	P0.2	TX0			
			TBA1, TBB0, TBB1	3	5	5	P0.3	RX1/SDA			
				4	6	6	P0.4	TX1/SCL			
				5	7	7	P0.5	TBA0/TBA1			
				6	9	9	P0.6	TBB0			
				7	10	10	P0.7	TBB1			
				Interrupt. Thes	e port pins fur pins default to	nction as bidir three-state m	ectional I/	Edge-Selectable O pins or as inter- a reset. All interrupt			
				MAXQ612 TQFN-EP	MAXQ612 LQFP	MAXQ622 LQFP	PORT	SPECIAL FUNCTION			
22.40			P1.0-P1.7;	33	45	45	P1.0	INTO			
33–40	45, 48–54	45, 48–54	INT0-INT7	34	48	48	P1.1	INT1			
				35	49	49	P1.2	INT2			
				36	50	50	P1.3	INT3			
				37	51	51	P1.4	INT4			
				38	52	52	P1.5	INT5			
				39	53	53	P1.6	INT6			
				40	54	54	P1.7	INT7			

16-Bit Microcontrollers with Infrared Module and Optional USB

	PIN							
MAXQ612 TQFN-EP	MAXQ612 LQFP	MAXQ622 LQFP	NAME			FUNCTION	I	
			P2.0–P2.7; MOSI0, MISO0,	bidirectional I// reset. All altern the pin's speci The JTAG pins pullups enable the TAP bit in t P2.7 functions	D pins. P2.0 to hate functions al function dis c (P2.4 to P2.7 d after a rese the SC register as the JTAG f weak pullup.	p P2.3 default must be enables ables the gen default to the t. The JTAG fu r. test-data outp The output fu	to three-st bled from s heral-purpo eir JTAG fu unction cau ut on resel nction of th	ort pins function as tate mode after a oftware. Enabling ose I/O on the pin. unction with weak in be disabled using t and defaults to the test data is only
8–11, 29–32	11–14, 41–44	11–14, 41–44	SCLK0, SSEL0,	MAXQ612 TQFN-EP	MAXQ612 LQFP	MAXQ622 LQFP	PORT	SPECIAL FUNCTION
			TCK, TDI, TMS, TDO	8	11	11	P2.0	MOSIO
				9	12	12	P2.1	MISO0
				10	13	13	P2.2	SCLK0
				11	14	14	P2.3	SSELO
				29	41	41	P2.4	TCK
				30	42	42	P2.5	TDI
				31	43	43	P2.6	TMS
				32	44	44	P2.7	TDO
				Interrupt. Thes	e port pins fui pins default to	nction as bidir three-state m	ectional I/0 node after a	Edge-Selectable O pins or as inter- a reset. All interrupt SPECIAL
				TQFN	LQFP	LQFP	PORT	FUNCTION
18–25	27–34	27–34	P3.0-P3.7;	18	27	27	P3.0	INT8
10-23	21-04	21-04	INT8-INT15	19	28	28	P3.1	INT9
				20	29	29	P3.2	INT10
				21	30	30	P3.3	INT11
				22	31	31	P3.4	INT12
				23	32	32	P3.5	INT13
				24	33	33	P3.6	INT14
				25	34	34	P3.7	INT15

16-Bit Microcontrollers with Infrared Module and Optional USB

	PIN								
MAXQ612 TQFN-EP	MAXQ612 LQFP	MAXQ622 LQFP	NAME	FUNCTION					
				1	•			rt pins function as ate mode after a	
				MAXQ612 TQFN-EP	MAXQ612 LQFP	MAXQ622 LQFP	PORT	SPECIAL FUNCTION	
					55	55	P4.0	_	
_	55-62	55–62	P4.0-P4.7	—	56	56	P4.1	_	
				—	57	57	P4.2	—	
					58	58	P4.3	—	
					59	59	P4.4	—	
					60	60	P4.5	—	
							61	61	P4.6
					62	62	P4.7	_	
			P5.0–P5.3;	bidirectional I/ reset. All alterr	O pins. All poi nate functions	t pins default must be enab	to three-sta led from se	rt pins function as ate mode after a oftware. Enabling se I/O on the pin.	
_	37–40	37–40	MOSI1, MISO1, SCLK1,	MAXQ612 TQFN-EP	MAXQ612 LQFP	MAXQ622 LQFP	PORT	SPECIAL FUNCTION	
			SSEL1	—	37	37	P5.0	MOSI1	
					38	38	P5.1	MISO1	
					39	39	P5.2	SCLK1	
					40	40	P5.3	SSEL1	
			NC		I PINS				
26, 27	16–21, 36, 46, 47	36, 46, 47	N.C.	No Connection	n. Reserved fo	r future use. L	eave these	e pins unconnected.	
				EXPOSED PA	D				
			EP	Exposed Pad	(TQFN Only).	Connect EP to	the groun	d plane.	

16-Bit Microcontrollers with Infrared Module and Optional USB

Pin Descriptions—Bare Die

PIN		NAME	FUNCTION
MAXQ612	MAXQ622	NAME	FUNCTION
			POWER PINS
28	28	V _{DD}	Supply Voltage
8, 30, 45, 73	8, 23, 30, 45, 73	GND	Ground
29	29	REG18	Regulator Capacitor. This pin must be connected to ground through a 1.0μ F external ceramic-chip capacitor. The capacitor must be placed as close to this pin as possible. No external devices other than the capacitor should be connected to this pin.
			RESET PINS
21	21	RESET	Digital, Active-Low, Reset Input/Output. The CPU is held in reset when this pin is low and begins executing from the reset vector when released. The pin includes pullup current source and should be driven by an open-drain, external source capable of sinking in excess of 4mA. This pin is driven low as an output when an internal reset condition occurs.
	1		CLOCK PINS
31	31	HFXIN	High-Frequency Crystal Input. Connect an external crystal or resonator between HFXIN and HFXOUT as the high-frequency system clock. Alternatively, HFXIN is
32	32	HFXOUT	the input for an external, high-frequency clock source when HFXOUT is shorted to ground during POR.
			USB FUNCTION PINS
	25	VBUS	USB V _{BUS} Supply Voltage. Connect V _{BUS} to a positive 5.0V power supply. Bypass V _{BUS} to ground with a 1.0 μ F ceramic capacitor as close to the V _{BUS} pin as possible.
_	22	DP	USB D+ Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled.
_	24	DM	USB D- Signal. This bidirectional pin carries the negative differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled.
_	26	Vddb	USB Transceiver Supply Voltage. This is the power output of the internal voltage regulator that is used for the USB transceiver (3.3V) block. This pin is bypassed to ground with a 1.0μ F capacitor as close as possible to the package. No external circuitry should be powered from this pin.
	27	Vddio	Switched 3V Power Supply. This is the power output after selection between V_{BUS} and V_{DD} . Must be connected to an external ceramic chip capacitor. The capacitor must be placed as close to this pin as possible. No external devices other than the capacitor should be connected to this pin.

16-Bit Microcontrollers with Infrared Module and Optional USB

Pin Descriptions—Bare Die (continued)

Р	IN							
MAXQ612	MAXQ622	NAME	FUNCTION					
			IR FUNCTIO	N PINS				
74	74	IRTX	IR Transmit Output. Active-low IR transmit pin capable of sinking 25mA. This pin defaults to three-state input with the weak pullup disabled during all forms of reset. Software must configure this pin after release from reset to remove the three-state input condition.					
75	75	IRRX	IR Receive Input					
		GENERAL-	PURPOSE I/O AND	SPECIAL FUNCTION	I PINS			
			tional I/O pins. All p		ee-state mode	pins function as bidirec- after a reset. All alternate		
		P0.0–P0.7;	MAXQ612	MAXQ622	PORT	SPECIAL FUNCTION		
	1, 2, 3, 5, 6, 7, 9, 10	IRTXM, RX0, TX0, RX1, TX1, SDA, SCL, TBA0, TBA1, TBB0, TBB1	1	1	P0.0	IRTXM		
1, 2, 3, 5, 6,			2	2	P0.1	RX0		
7, 9, 10			3	3	P0.2	TXO		
			5	5	P0.3	RX1/SDA		
			6	6	P0.4	TX1/SCL		
			7	7	P0.5	TBA0/TBA1		
			9	9	P0.6	TBB0		
			10	10	P0.7	TBB1		
			These port pins fund	ction as bidirectional	I/O pins or as	ge-Selectable Interrupt. interrupts. All port pins nctions must be enabled		
			MAXQ612	MAXQ622	PORT	SPECIAL FUNCTION		
		P1.0–P1.7;	55	55	P1.0	INTO		
55, 56, 58–63	55, 56, 58–63	INT0-INT7	56	56	P1.1	INT1		
			58	58	P1.2	INT2		
			59	59	P1.3	INT3		
			60	60	P1.4	INT4		
			61	61	P1.5	INT5		
			62	62	P1.6	INT6		
			63	63	P1.7	INT7		

16-Bit Microcontrollers with Infrared Module and Optional USB

stop-mode current increases battery life over competing microcontrollers. An integrated POR circuit with brownout support resets the device to a known condition following a power-up cycle or brownout condition. Additionally, a power-fail warning flag is set, and a power-fail interrupt can be generated when the system voltage falls below the power-fail warning voltage, VPFW. The power-fail warning feature allows the application to notify the user that the system supply is low and appropriate action should be taken.

Microprocessor

The MAXQ612/MAXQ622 are based on Maxim's MAXQ20 core, which is a low-power implementation of the new 16-bit MAXQ family of RISC cores. The core supports the Harvard memory architecture with separate internal 16-bit program and data address buses. A fixed 16-bit instruction word is standard, but data can be arranged in 8 or 16 bits. The MAXQ core is a pipelined processor with performance approaching 1MIPS per MHz. The 16-bit data path is implemented around register modules, and each register module contributes specific functions to the core. The accumulator module consists of sixteen 16-bit registers and is tightly coupled with the arithmetic logic unit (ALU). Program flow is supported by a configurable soft stack.

Execution of instructions is triggered by data transfer between functional register modules or between a functional register module and memory. Because data movement involves only source and destination modules, circuit switching activities are limited to active modules only. For power-conscious applications, this approach localizes power dissipation and minimizes switching noise. The modular architecture also provides a maximum of flexibility and reusability that are important for a microprocessor used in embedded applications.

The MAXQ instruction set is highly orthogonal. All arithmetical and logical operations can use any register in conjunction with the accumulator. Data movement is supported from any register to any other register. Memory is accessed through specific data-pointer registers with autoincrement/decrement support.

Memory

The microcontroller incorporates several memory types:

- 128KB program flash memory
- 6KB SRAM data memory
- 6KB utility ROM
- Soft stack

Memory Protection

The optional memory-protection feature separates code memory into three areas: system, user loader, and user application. Code in the system area can be kept confidential. Code in the user areas can be prevented from reading and writing system code. The user loader can also be protected from user application code.

Memory protection is implemented using privilege levels for code. Each area has an associated privilege level. RAM/ROM are assigned privilege levels as well. Refer to the *MAXQ622 User's Guide* for a more thorough explanation of the topic.

Stack Memory

A 16-bit-wide internal stack provides storage for program return addresses and can also be used for generalpurpose data storage. The stack is used automatically by the processor when the CALL, RET, and RETI instructions are executed and when an interrupt is serviced. An application can also store values in the stack explicitly by using the PUSH, POP, and POPI instructions.

On reset, the stack pointer, SP, initializes to the top of the stack (BF0h). The CALL, PUSH, and interrupt-vectoring operations decrement SP, then store a value at the location pointed to by SP. The RET, RETI, POP, and POPI operations retrieve the value at SP and then increment SP.

Utility ROM

The utility ROM is a 6KB block of internal ROM memory that defaults to a starting address of 8000h. The utility

Table 1	. Memory	Areas and	Associated	Maximum	Privilege	Levels
---------	----------	-----------	------------	---------	-----------	--------

AREA	PAGE ADDRESS	MAXIMUM PRIVILEGE LEVEL
System	0 to ULDR-1	High
User Loader	ULDR to UAPP-1	Medium
User Application	UAPP to top	Low
Utility ROM	N/A	High
Other (RAM)	N/A	Low

16-Bit Microcontrollers with Infrared Module and Optional USB

- 2) Transfers its current IRV value to the IRMT.
- 3) Resets IRV content to 0000h (if IRXRL = 1).
- 4) Continues counting again until the next qualified event.

If the IR timer value rolls over from 0FFFFh to 0000h before a qualified event happens, the IR timer overflow (IROV) flag is set to 1 and an interrupt is generated, if enabled. The IR module continues to operate in receive mode until it is stopped by switching into transmit mode or clearing IREN = 0.

Carrier Burst-Count Mode

A special mode reduces the CPU processing burden when performing IR learning functions. Typically, when operating in an IR learning capacity, some number of carrier cycles are examined for frequency determination. Once the frequency has been determined, the IR receive function can be reduced to counting the number of carrier pulses in the burst and the duration of the combined mark-space time within the burst. To simplify this process, the receive burst-count mode can be used. When RXBCNT = 0, the standard IR receive capture functionality is in place. When RXBCNT = 1, the IRV capture operation is disabled and the interrupt flag associated with the capture no longer denotes a capture. In the carrier burst-count mode, the IRMT register only counts gualified edges. The IRIF interrupt flag now sets if two IRCA cycles elapse without getting a qualified edge. The IRIF interrupt flag thus denotes absence of the carrier and the beginning of a space in the receive signal. The IRCFME bit is still used to define whether the IRV register is counting system IRCLK clocks or IRCA-defined carrier cycles. The IRXRL bit defines whether the IRV register is reloaded with 0000h on detection of a qualified edge (per the IRXSEL[1:0] bits).

16-Bit Timers/Counters

The microcontroller provides two general-purpose timers/counters that support the following functions:

- 16-bit timer/counter
- 16-bit up/down autoreload
- Counter function of external pulse

- 16-bit timer with capture
- 16-bit timer with compare
- Input/output enhancements for pulse-width modulation
- Set/reset/toggle output state on comparator match
- Prescaler with 2n divider (for n = 0, 2, 4, 6, 8, 10)

General-Purpose I/O

The microcontroller provides port pins for general-purpose I/O that have the following features:

- CMOS output drivers
- Schmitt trigger inputs
- Optional weak pullup to V_{DD} when operating in input mode

While the microcontroller is in a reset state, all port pins become three-state with both weak pullups and input buffers disabled, unless otherwise noted.

From a software perspective, each port appears as a group of peripheral registers with unique addresses. Special function pins can also be used as general-purpose I/O pins when the special functions are disabled. For a detailed description of the special functions available for each pin, refer to the IC-specific user's guide, e.g., the *MAXQ622 User's Guide* describes all special functions available on the MAXQ612/MAXQ622.

Serial Peripherals

The microcontroller supports two independent USARTs, two SPI master/slave communications ports, and an $\rm I^2C$ bus.

USART

The USART units are implemented with the following characteristics:

- 2-wire interface
- Full-duplex operation for asynchronous data transfers
- Half-duplex operation for synchronous data transfers
- Programmable interrupt for receive and transmit
- Independent baud-rate generator

Table 3. USART Mode Details

MODE	ТҮРЕ	START BITS	DATA BITS	STOP BITS
Mode 0	Synchronous	N/A	8	N/A
Mode 1	Asynchronous	1	8	1
Mode 2	Asynchronous	1	8 + 1	1
Mode 3	Asynchronous	1	8 + 1	1

16-Bit Microcontrollers with Infrared Module and Optional USB

pin to GND. The clock source should be driven through a CMOS driver. If the clock driver is a TTL gate, its output must be connected to VDD through a pullup resistor to ensure a satisfactory logic level for active clock pulses. To minimize system noise on the clock circuitry, the external clock source must meet the maximum rise and fall times and the minimum high and low times specified for the clock source. The external noise can affect the clock generation circuit if these parameters do not meet the specification.

Noise at HFXIN and HFXOUT can adversely affect onchip clock timing. It is good design practice to place the crystal and capacitors as near the oscillator circuitry as possible with a direct short trace. The typical values of external capacitors vary with the type of crystal to be used.

ROM Loader

The ROM loader loads program memory and configures loader-specific configuration features. To increase the security of the system, the loader denies access to the system, user loader, or user-application memories unless an area-specific password is provided.

Loading Flash Memory

An internal bootstrap loader allows reloading over a simple JTAG interface. As a result, software can be upgraded in-system, eliminating the need for a costly hardware retrofit when updates are required. Remote software uploads are possible that enable physically inaccessible applications to be frequently updated. The interface hardware can be a JTAG connection to another microcontroller, or a connection to a PC serial port using a USB-to-JTAG converter such as the MAXQUSBJTAG-KIT#, available from Maxim. If in-system programmability is not required, a commercial gang programmer can be used for mass programming. Activating the JTAG interface and loading the test access port (TAP) with the system programming instruction invokes the bootstrap loader. Setting the SPE bit to one during reset through the JTAG interface executes the bootstrap-loader mode program that resides in the utility ROM. When programming is complete, the bootstrap loader can clear the SPE bit and reset the device, allowing the device to bypass the utility ROM and begin execution of the application software.

In addition, the ROM loader also enforces the memoryprotection policies. Passwords that are 16 words are required to access the ROM loader interface.

_In-Application Flash Programming

From user-application code, flash memory can be programmed using the ROM utility functions from either C or assembly language. The function declarations below show examples of some of the ROM utility functions provided for in-application flash memory programming:

/* Write one 16-bit word to code address 'dest'.

- * Dest must be aligned to 16 bits.
- * Returns 0 = failure, 1 = OK.
- */

int flash_write (uint16_t dest, uint16_t data);
To erase, the following function would be used:

/* Erase the given Flash page

* addr: Flash offset (anywhere within page)
*/

int flash_erasepage(uint16_t addr);

The in-application flash memory programming must call ROM utility functions to erase and program any of the flash memory. Memory protection is enforced by the ROM utility functions.

In-Circuit Debug and JTAG Interface

Embedded debug hardware and software are developed and integrated to provide full in-circuit debugging capability in a user-application environment. These hardware and software features include the following:

- Debug engine
- Set of registers providing the ability to set breakpoints on register, code, or data using debug service routines stored in ROM

Collectively, these hardware and software features support two modes of in-circuit debug functionality:

• Background mode:

CPU is executing the normal user program

Allows the host to configure and set up the in-circuit debugger

• Debug mode:

Debugger takes over the control of the CPU

Read/write accesses to internal registers and memory

Single-step of the CPU for trace operation

The interface to the debug engine is the TAP controller. The interface allows for communication with a bus

16-Bit Microcontrollers with Infrared Module and Optional USB

Table 4. Power-Fail Warning Level Selection

PWCN.PFWARNCN[1:0]	PFW THRESHOLD (V)
00	1.8
01	1.9
10	2.55
11	2.75

mode to minimize power consumption. This feature is enabled using the power-fail monitor disable (PFD) bit in the PWCN register. The reset default state for the PFD bit is 1, which disables the power-fail monitor function during stop mode. If power-fail monitoring is disabled (PFD = 1) during stop mode, the circuitry responsible for generating a power-fail warning or reset is shut down and neither condition is detected. Thus, the VDD < VRST condition does not invoke a reset state. However, in the event that VDD falls below the POR level, a POR is generated. The power-fail monitor is enabled prior to stop mode exit and before code execution begins. If a powerfail warning condition (VDD < VPFW) is then detected, the power-fail interrupt flag is set on stop mode exit. If a power-fail reset condition is detected (VDD < VRST), the CPU goes into reset.

Power-Fail Warning

The power-fail monitor can assert an interrupt if the voltage falls below a configurable threshold between the operating voltage and the reset voltage. This, if enabled, can allow the firmware to perform housekeeping tasks if the voltage level decays below the warning threshold. The power-fail threshold value should only be changed when the power-fail warning interrupt is disabled (CKCN. PFIE = 0) to prevent unintended triggering of the powerfail warning condition.

The power-fail warning threshold is reset to 1.8V by a POR and is not affected by other resets. See Table 4.

Power-Fail Detection

Figures 5, 6, and 7 show the power-fail detection and response during normal and stop-mode operation.

If a reset is caused by a power-fail, the power-fail monitor can be set to one of the following intervals:

- Always on-continuous monitoring
- 2¹¹ nanopower ring oscillator clocks (~256ms)
- 2¹² nanopower ring oscillator clocks (~512ms)
- 2¹³ nanopower ring oscillator clocks (~1.024s)

In the case where the power-fail circuitry is periodically turned on, the power-fail detection is turned on for two

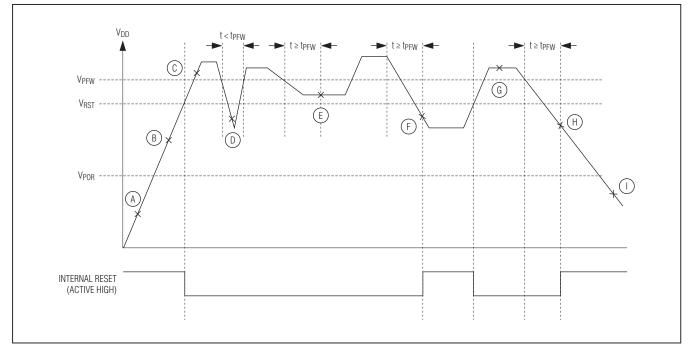


Figure 5. Power-Fail Detection During Normal Operation

16-Bit Microcontrollers with Infrared Module and Optional USB

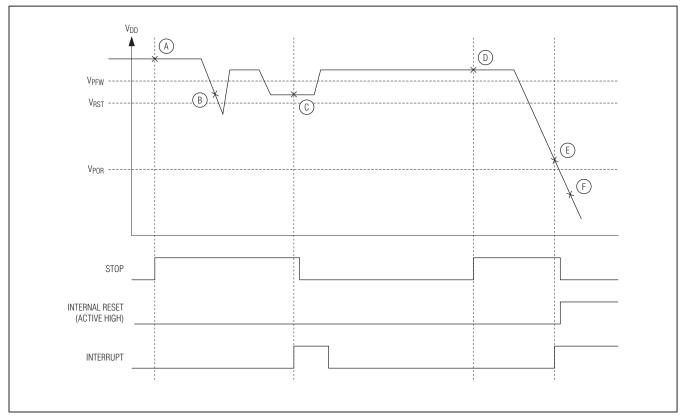


Figure 7. Stop Mode Power-Fail Detection with Power-Fail Monitor Disabled

Table 7. Stop Mode Power-Fail Detection States with Power-Fail Monitor Disabled

STATE	POWER-FAIL	INTERNAL REGULATOR	CRYSTAL OSCILLATOR	SRAM RETENTION	COMMENTS
A	Off	Off	Off	Yes	Application enters stop mode. V _{DD} > V _{RST} . CPU in stop mode.
В	Off	Off	Off	Yes	V _{DD} < V _{PFW} . Power-fail not detected because power-fail monitor is disabled.
С	On	On	On	Yes	V _{RST} < V _{DD} < V _{PFW} . An interrupt occurs that causes the CPU to exit stop mode. Power-fail monitor is turned on, detects a power-fail warning, and sets the power-fail interrupt flag. Turn on regulator and crystal. Crystal warmup time, t _{XTAL_RDY} . On stop mode exit, CPU vectors to the higher priority of power-fail and the inter- rupt that causes stop mode exit.

16-Bit Microcontrollers with Infrared Module and Optional USB

 Table 7. Stop Mode Power-Fail Detection States with Power-Fail Monitor Disabled

 (continued)

STATE	POWER-FAIL	INTERNAL REGULATOR	CRYSTAL OSCILLATOR	SRAM RETENTION	COMMENTS
D	Off	Off	Off	Yes	Application enters stop mode. V _{DD} > V _{RST} . CPU in stop mode.
E	On (Periodically)	Off	Off	Yes	VPOR < VDD < VRST. An interrupt occurs that causes the CPU to exit stop mode. Power-fail monitor is turned on, detects a power-fail, and puts CPU in reset. Power-fail monitor is turned on periodically.
F	Off	Off	Off		VDD < VPOR. Device held in reset. No operation allowed.

Applications Information

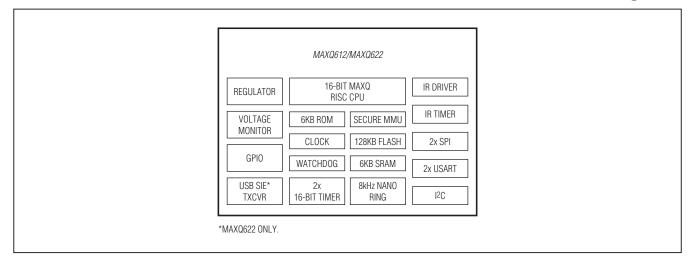
The low-power, high-performance RISC architecture of this device makes it an excellent fit for many portable or battery-powered applications. It is ideally suited for applications such as universal remote controls that require the cost-effective integration of IR transmit/ receive capability.

Grounds and Bypassing

Careful PCB layout significantly minimizes system-level digital noise that could interact with the microcontroller or peripheral components. The use of multilayer boards is essential to allow the use of dedicated power planes. The area under any digital components should be a continuous ground plane if possible. Keep bypass capacitor leads short for best noise rejection and place the capacitors as close to the leads of the devices as possible.

CMOS design guidelines for any semiconductor require that no pin be taken above V_{DD} or below GND. Violation of this guideline can result in a hard failure (damage to the silicon inside the device) or a soft failure (unintentional modification of memory contents). Voltage spikes above or below the device's absolute maximum ratings can potentially cause a devastating IC latchup.

Microcontrollers commonly experience negative voltage spikes through either their power pins or generalpurpose I/O pins. Negative voltage spikes on power pins are especially problematic as they directly couple to the internal power buses. Devices such as keypads can conduct electrostatic discharges directly into the microcontroller and seriously damage the device. System designers must protect components against these transients that can corrupt system memory.


Additional Documentation

Designers must have the following documents to fully use all the features of this device. This data sheet contains pin descriptions, feature overviews, and electrical specifications. Errata sheets contain deviations from published specifications. The user's guides offer detailed information about device features and operation. The following documents can be downloaded from www.maximintegrated.com/microcontrollers.

- This MAXQ612/MAXQ622 data sheet, which contains electrical/timing specifications and pin descriptions.
- The MAXQ612/MAXQ622 revision-specific errata sheet (www.maximintegrated.com/errata).
- The *MAXQ622 User's Guide*, which contains detailed information on features and operation, including programming.

16-Bit Microcontrollers with Infrared Module and Optional USB

Block Diagram

_Development and Technical Support

Maxim and third-party suppliers provide a variety of highly versatile, affordably priced development tools for this microcontroller, including the following:

- Compilers
- In-circuit emulators
- Integrated Development Environments (IDEs)
- JTAG-to-serial converters for programming and debugging

A partial list of development tool vendors can be found at **www.maximintegrated.com/MAXQ_tools**.

For technical support, go to <u>https://support.maximinte-grated.com/micro</u>.

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
64 LQFP	C64+5	<u>21-0083</u>	<u>90-0141</u>
44 TQFN-EP	T4477+2	<u>21-0144</u>	<u>90-0127</u>

Ordering Information/Selector Guide

PART	TEMP RANGE	OPERATING VOLTAGE (V)	PROGRAM MEMORY (KB)	DATA MEMORY (KB)	USB FULL SPEED	PIN-PACKAGE
MAXQ612J-0000+	0°C to +70°C	1.7 to 3.6	128 Flash	6	No	44 TQFN-EP*
MAXQ612G-0000+	0°C to +70°C	1.7 to 3.6	128 Flash	6	No	64 LQFP
MAXQ622G-0000+	0°C to +70°C	1.7 to 3.6	128 Flash	6	Yes	64 LQFP

Note: The 4-digit suffix "-0000" indicates a microcontroller in the default state with the flash memory unprogrammed. Any value other than 0000 indicates a device preprogrammed at Maxim with proprietary customer-supplied software. For more information on factory preprogramming of these devices, contact Maxim at https://support.maximintegrated.com/micro. Information on masked ROM devices and bare die versions for most of these devices are available. Contact the factory for availability.

+Denotes a lead(Pb)-free/RoHS-compliant package.

*EP = Exposed pad.

16-Bit Microcontrollers with Infrared Module and Optional USB

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	2/10	Initial release	—
1	5/10	Changed the VDDIOH spec for IOH from IOH = 20 mA to IOH = 10 mA in the <i>Recommended Operating Conditions</i> table	5
2	5/11	Added the Pin Descriptions—Bare Die table	18–21

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2011 Maxim Integrated Products, Inc.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

35