E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, Microwire, SPI, SSI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	70
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1764fbd100-551

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M3 microcontroller

3. Applications

- eMetering
- Lighting
- Industrial networking

- Alarm systems
- White goods
- Motor control

4. Ordering information

Table 1.Ordering information

Type number	Package									
	Name	Description	Version							
LPC1769FBD100	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1							
LPC1768FBD100	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1							
LPC1768FET100	TFBGA100	plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1							
LPC1768UK	WLCSP100	wafer level chip-scale package; 100 balls; 5.07 \times 5.07 \times 0.53 mm	-							
LPC1767FBD100	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1							
LPC1766FBD100	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1							
LPC1765FBD100	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1							
LPC1765FET100	TFBGA100	plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1							
LPC1764FBD100	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1							
LPC1763FBD100	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1							

4.1 Ordering options

Table 2.Ordering options

			S	RAM	in k	В							C
Type number	Device order part number	Flash (kB)	CPU	AHB SRAM0	AHB SRAM1	Total	Ethernet	USB	CAN	I ² S	DAC	GPIO	Maximum CPU operating frequer (MHz)
LPC1769FBD100	LPC1769FBD100,551	512	32	16	16	64	yes	Device/Host/OTG	2	yes	yes	70	120
LPC1768FBD100	LPC1768FBD100/CP32	512	32	16	16	64	yes	Device/Host/OTG	2	yes	yes	70	100
LPC1768FET100	LPC1768FET100Z	512	32	16	16	64	yes	Device/Host/OTG	2	yes	yes	70	100
LPC1768UK	LPC1768UKZ	512	32	16	16	64	yes	Device/Host/OTG	2	yes	yes	70	100
LPC1767FBD100	LPC1767FBD100,551	512	32	16	16	64	yes	no	no	yes	yes	70	100
LPC1766FBD100	LPC1766FBD100,551	256	32	16	16	64	yes	Device/Host/OTG	2	yes	yes	70	100
LPC1765FBD100	LPC1765FBD100/3271	256	32	16	16	64	no	Device/Host/OTG	2	yes	yes	70	100
LPC1765FET100	LPC1765FET100,551	256	32	16	16	64	no	Device/Host/OTG	2	yes	yes	70	100
LPC1764FBD100	LPC1764FBD100,551	128	16	16	-	32	yes	Device only	2	no	no	70	100
LPC1763FBD100	LPC1763FBD100K	256	32	16	16	64	no	no	no	yes	yes	70	100

4 of 93

32-bit ARM Cortex-M3 microcontroller

6. Block diagram

LPC1769_68_67_66_65_64_63

32-bit ARM Cortex-M3 microcontroller

Rev.

T

23 of 93 èe

- Up to four external outputs corresponding to match registers, with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.
- Up to two match registers can be used to generate timed DMA requests.

8.22 Pulse width modulator

The PWM is based on the standard Timer block and inherits all of its features, although only the PWM function is pinned out on the LPC17xx. The Timer is designed to count cycles of the system derived clock and optionally switch pins, generate interrupts or perform other actions when specified timer values occur, based on seven match registers. The PWM function is in addition to these features, and is based on match register events.

The ability to separately control rising and falling edge locations allows the PWM to be used for more applications. For instance, multi-phase motor control typically requires three non-overlapping PWM outputs with individual control of all three pulse widths and positions.

Two match registers can be used to provide a single edge controlled PWM output. One match register (PWMMR0) controls the PWM cycle rate, by resetting the count upon match. The other match register controls the PWM edge position. Additional single edge controlled PWM outputs require only one match register each, since the repetition rate is the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a rising edge at the beginning of each PWM cycle, when an PWMMR0 match occurs.

Three match registers can be used to provide a PWM output with both edges controlled. Again, the PWMMR0 match register controls the PWM cycle rate. The other match registers control the two PWM edge positions. Additional double edge controlled PWM outputs require only two match registers each, since the repetition rate is the same for all PWM outputs.

With double edge controlled PWM outputs, specific match registers control the rising and falling edge of the output. This allows both positive going PWM pulses (when the rising edge occurs prior to the falling edge), and negative going PWM pulses (when the falling edge occurs prior to the rising edge).

8.22.1 Features

- One PWM block with Counter or Timer operation (may use the peripheral clock or one of the capture inputs as the clock source).
- Seven match registers allow up to 6 single edge controlled or 3 double edge controlled PWM outputs, or a mix of both types. The match registers also allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.

whenever any of the aforementioned functions are turned off for any reason. Since the oscillator and other functions are turned off during Power-down mode, any wake-up of the processor from Power-down mode makes use of the wake-up timer.

The Wake-up Timer monitors the crystal oscillator to check whether it is safe to begin code execution. When power is applied to the chip, or when some event caused the chip to exit Power-down mode, some time is required for the oscillator to produce a signal of sufficient amplitude to drive the clock logic. The amount of time depends on many factors, including the rate of $V_{DD(3V3)}$ ramp (in the case of power on), the type of crystal and its electrical characteristics (if a quartz crystal is used), as well as any other external circuitry (e.g., capacitors), and the characteristics of the oscillator itself under the existing ambient conditions.

8.29.6 Power control

The LPC17xx support a variety of power control features. There are four special modes of processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode, and Deep power-down mode. The CPU clock rate may also be controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a trade-off of power versus processing speed based on application requirements. In addition, Peripheral Power Control allows shutting down the clocks to individual on-chip peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any peripherals that are not required for the application. Each of the peripherals has its own clock divider which provides even better power control.

Integrated PMU (Power Management Unit) automatically adjust internal regulators to minimize power consumption during Sleep, Deep sleep, Power-down, and Deep power-down modes.

The LPC17xx also implement a separate power domain to allow turning off power to the bulk of the device while maintaining operation of the RTC and a small set of registers for storing data during any of the power-down modes.

8.29.6.1 Sleep mode

When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep mode does not need any special sequence but re-enabling the clock to the Arm core.

In Sleep mode, execution of instructions is suspended until either a Reset or interrupt occurs. Peripheral functions continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses.

8.29.6.2 Deep-sleep mode

In Deep-sleep mode, the oscillator is shut down and the chip receives no internal clocks. The processor state and registers, peripheral registers, and internal SRAM values are preserved throughout Deep-sleep mode and the logic levels of chip pins remain static. The output of the IRC is disabled but the IRC is not powered down for a fast wake-up later. The RTC oscillator is not stopped because the RTC interrupts may be used as the wake-up source. The PLL is automatically turned off and disconnected. The CCLK and USB clock dividers automatically get reset to zero.

8.30.2 Brownout detection

The LPC17xx include 2-stage monitoring of the voltage on the $V_{DD(REG)(3V3)}$ pins. If this voltage falls below 2.2 V, the BOD asserts an interrupt signal to the Vectored Interrupt Controller. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading a dedicated status register.

The second stage of low-voltage detection asserts reset to inactivate the LPC17xx when the voltage on the $V_{DD(REG)(3V3)}$ pins falls below 1.85 V. This reset prevents alteration of the flash as operation of the various elements of the chip would otherwise become unreliable due to low voltage. The BOD circuit maintains this reset down below 1 V, at which point the power-on reset circuitry maintains the overall reset.

Both the 2.2 V and 1.85 V thresholds include some hysteresis. In normal operation, this hysteresis allows the 2.2 V detection to reliably interrupt, or a regularly executed event loop to sense the condition.

8.30.3 Code security (Code Read Protection - CRP)

This feature of the LPC17xx allows user to enable different levels of security in the system so that access to the on-chip flash and use of the JTAG and ISP can be restricted. When needed, CRP is invoked by programming a specific pattern into a dedicated flash location. IAP commands are not affected by the CRP.

There are three levels of the Code Read Protection.

CRP1 disables access to chip via the JTAG and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased.

CRP2 disables access to chip via the JTAG and only allows full flash erase and update using a reduced set of the ISP commands.

Running an application with level CRP3 selected fully disables any access to chip via the JTAG pins and the ISP. This mode effectively disables ISP override using P2[10] pin, too. It is up to the user's application to provide (if needed) flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via UART0.

CAUTION

If level three Code Read Protection (CRP3) is selected, no future factory testing can be performed on the device.

8.30.4 APB interface

The APB peripherals are split into two separate APB buses in order to distribute the bus bandwidth and thereby reducing stalls caused by contention between the CPU and the GPDMA controller.

32-bit ARM Cortex-M3 microcontroller

9. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).[1]

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DD(3V3)}	supply voltage (3.3 V)	external rail	[2]	-0.5	+4.6	V
V _{DD(REG)(3V3)}	regulator supply voltage (3.3 V)		[2]	-0.5	+4.6	V
V _{DDA}	analog 3.3 V pad supply voltage		[2]	-0.5	+4.6	V
V _{i(VBAT)}	input voltage on pin VBAT	for the RTC	[2]	-0.5	+4.6	V
V _{i(VREFP)}	input voltage on pin VREFP		[2]	-0.5	+4.6	V
V _{IA}	analog input voltage	on ADC related pins	[2][3]	-0.5	+5.1	V
VI	input voltage	5 V tolerant digital I/O pins; $V_{DD} \ge 2.4 \text{ V}$	[2][4]	-0.5	+5.5	VI
		$V_{DD} = 0 V$		-0.5	+3.6	
		5 V tolerant open-drain pins PIO0_27 and PIO0_28	[2][5]	-0.5	+5.5	
I _{DD}	supply current	per supply pin		-	100	mA
I _{SS}	ground current	per ground pin		-	100	mA
I _{latch}	I/O latch-up current	–(0.5V _{DD(3V3)}) < V _I < (1.5V _{DD(3V3)}); T _j < 125 °C		-	100	mA
T _{stg}	storage temperature		[6]	-65	+150	°C
T _{j(max)}	maximum junction temperature				150	°C
P _{tot(pack)}	total power dissipation (per package)	based on package heat transfer, not device power consumption		-	1.5	W
V _{ESD}	electrostatic discharge voltage	human body model; all pins	[7]	-4000	+4000	V

[1] The following applies to the limiting values:

a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.

- b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.
- c) The limiting values are stress ratings only. Operating the part at these values is not recommended, and proper operation is not guaranteed. The conditions for functional operation are specified in <u>Table 8</u>.
- [2] Maximum/minimum voltage above the maximum operating voltage (see <u>Table 8</u>) and below ground that can be applied for a short time (< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.
- [3] See Table 19 for maximum operating voltage.
- [4] Including voltage on outputs in 3-state mode.
- [5] V_{DD} present or not present. Compliant with the I²C-bus standard. 5.5 V can be applied to this pin when V_{DD} is powered down.
- [6] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined based on required shelf lifetime. Please refer to the JEDEC spec (J-STD-033B.1) for further details.
- [7] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kΩ series resistor.

11. Static characteristics

Table 8.Static characteristics

 $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
Supply pins				1			
V _{DD(3V3)}	supply voltage (3.3 V)	external rail	[2]	2.4	3.3	3.6	V
V _{DD(REG)(3V3)}	regulator supply voltage (3.3 V)			2.4	3.3	3.6	V
V _{DDA}	analog 3.3 V pad supply voltage		[3][4]	2.5	3.3	3.6	V
V _{i(VBAT)}	input voltage on pin VBAT		[5]	2.1	3.3	3.6	V
V _{i(VREFP)}	input voltage on pin VREFP		[3]	2.5	3.3	V _{DDA}	V
I _{DD(REG)(3V3)}	regulator supply current	active mode; code					
(3	(3.3 V)	while(1){}					
		executed from flash; all peripherals disabled; PCLK = ^{CCLK} / ₈					
		CCLK = 12 MHz; PLL disabled	[6][7]	-	7	-	mA
		CCLK = 100 MHz; PLL enabled	<u>[6][7]</u>	-	42	-	mA
		CCLK = 100 MHz; PLL enabled (LPC1769)	<u>[6][8]</u>	-	50	-	mA
		CCLK = 120 MHz; PLL enabled (LPC1769)	[6][8]	-	67	-	mA
		sleep mode	[6][9]	-	2	-	mA
		deep sleep mode	[6][10]	-	240	-	μA
		power-down mode	[6][10]	-	31	-	μA
		deep power-down mode; RTC running	[11]	-	630	-	nA
I _{BAT}	battery supply current	deep power-down mode; RTC running					
		V _{DD(REG)(3V3)} present	[12]	-	530	-	nA
		V _{DD(REG)(3V3)} not present	[13]	-	1.1	-	μA
I _{DD(IO)}	I/O supply current	deep sleep mode	[14][15]	-	40	-	nA
		power-down mode	[14][15]	-	40	-	nA
		deep power-down mode	[14]	-	10	-	nA

12.3 Internal oscillators

Table 12. Dynamic characteristic: internal oscillators

```
T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.7 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V}.[1]
```

Symbol	Parameter	Conditions	Min	Typ <u>[2]</u>	Max	Unit
f _{osc(RC)}	internal RC oscillator frequency	-	3.96	4.02	4.04	MHz
f _{i(RTC)}	RTC input frequency	-	-	32.768	-	kHz

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

12.4 I/O pins

Table 13. Dynamic characteristic: I/O pins^[1]

 $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$; $V_{DD(3V3)}$ over specified ranges.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	pin configured as output	3.0	-	5.0	ns
t _f	fall time	pin configured as output	2.5	-	5.0	ns

[1] Applies to standard I/O pins.

12.5 I²C-bus

Table 14. Dynamic characteristic: I²C-bus pins^[1]

 $T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C.$

Symbol	Parameter		Conditions	Min	Max	Unit
f _{SCL}	SCL clock		Standard-mode	0	100	kHz
t _f fa	frequency		Fast-mode	0	400	kHz
			Fast-mode Plus	0	1	MHz
t _f	fall time	[3][4][5][6]	II61 of both SDA and - 300 SCL signals - <td< td=""><td>300</td><td>ns</td></td<>		300	ns
			ConditionsMinMaxStandard-mode0100Fast-mode0400Fast-mode Plus01of both SDA and SCL signals Standard-mode-300Fast-mode Plus-120Fast-mode Plus-120Fast-mode Plus-120Fast-mode Plus-120Fast-mode Plus-120Standard-mode1.3-Fast-mode Plus0.5-Fast-mode Plus0.6-Fast-mode Plus0.26-Fast-mode Plus0.26-Fast-mode Plus0-Fast-mode Plus50-			
			Fast-mode	$20 + 0.1 \times C_b$	300	ns
			Fast-mode Plus	-	120	ns
t _{LOW}	LOW period of		Standard-mode	4.7	-	μS
4000	the SCL clock		Fast-mode	1.3	-	μS
			Fast-mode Plus	0.5	-	μS
t _{HIGH}	HIGH period of	of	Standard-mode	4.0	-	μS
	the SCL clock		Fast-mode	0.6	-	μS
			Fast-mode Plus	0.26	-	μS
t _{HD;DAT}	data hold time	[3][7][8]	Standard-mode	0	-	μS
			Fast-mode	0	-	μS
			Fast-mode Plus	0	-	μS
t _{SU;DAT}	data set-up	[9][10]	Standard-mode	250	-	ns
	time		Fast-mode	100	-	ns
			Fast-mode Plus	50	-	ns

[1] See the I²C-bus specification UM10204 for details.

- [2] Parameters are valid over operating temperature range unless otherwise specified.
- [3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the V_{IH} (min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- [4] C_b = total capacitance of one bus line in pF.
- [5] The maximum t_f for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t_f is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_f.
- [6] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing.
- [7] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.
- [8] The maximum $t_{HD;DAT}$ could be 3.45 μ s and 0.9 μ s for Standard-mode and Fast-mode but must be less than the maximum of $t_{VD;DAT}$ or $t_{VD;ACK}$ by a transition time (see the I²C-bus specification *UM10204*). This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
- [9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge.
- [10] A Fast-mode l²C-bus device can be used in a Standard-mode l²C-bus system but the requirement $t_{SU;DAT}$ = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{r(max)} + t_{SU;DAT} = 1000 + 250 = 1250$ ns (according to the Standard-mode l²C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.

32-bit ARM Cortex-M3 microcontroller

12.8 USB interface

Remark: The USB controller is available as a device/Host/OTG controller on parts LPC1769/68/66/65 and as device-only controller on part LPC1764.

 Table 17.
 Dynamic characteristics: USB pins (full-speed)

 $C_L = 50 \ pF; R_{pu} = 1.5 \ k\Omega \ on \ D+ to \ V_{DD(3V3)}; \ 3.0 \ V \le V_{DD(3V3)} \le 3.6 \ V.$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _r	rise time	10 % to 90 %		8.5	-	13.8	ns
t _f	fall time	10 % to 90 %		7.7	-	13.7	ns
t _{FRFM}	differential rise and fall time matching	t _r / t _f		-	-	109	%
V _{CRS}	output signal crossover voltage			1.3	-	2.0	V
t _{FEOPT}	source SE0 interval of EOP	see Figure 23		160	-	175	ns
t _{FDEOP}	source jitter for differential transition to SE0 transition	see Figure 23		-2	-	+5	ns
t _{JR1}	receiver jitter to next transition			-18.5	-	+18.5	ns
t _{JR2}	receiver jitter for paired transitions	10 % to 90 %		-9	-	+9	ns
t _{EOPR1}	EOP width at receiver	must reject as EOP; see Figure 23	<u>[1]</u>	40	-	-	ns
t _{EOPR2}	EOP width at receiver	must accept as EOP; see Figure 23	[1]	82	-	-	ns

[1] Characterized but not implemented as production test. Guaranteed by design.

12.9 SPI

Table 18. Dynamic characteristics of SPI pins

 $T_{amb} = -40$ °C to +85 °C.

Symbol	Parameter		Min	Тур	Мах	Unit
T _{cy(PCLK)}	PCLK cycle time		10	-	-	ns
T _{SPICYC}	SPI cycle time	[1]	79.6	-	-	ns
t _{SPICLKH}	SPICLK HIGH time		$0.485 \times T_{SPICYC}$	-	-	ns
t _{SPICLKL}	SPICLK LOW time			-	$0.515 \times T_{SPICYC}$	ns
SPI master						
t _{SPIDSU}	SPI data set-up time	[2]	0	-	-	ns
t _{SPIDH}	SPI data hold time	[2]	$2\times T_{cy(PCLK)}-5$	-	-	ns
t _{SPIQV}	SPI data output valid time	[2]	$2 \times T_{cy(PCLK)}$ + 30	-	-	ns
t _{SPIOH}	SPI output data hold time	[2]	$2 \times T_{cy(PCLK)}$ + 5	-	-	ns
SPI slave						
t _{SPIDSU}	SPI data set-up time	[2]	0	-	-	ns
t _{SPIDH}	SPI data hold time	[2]	$2 \times T_{cy(PCLK)}$ + 5	-	-	ns
t _{SPIQV}	SPI data output valid time	[2]	$2 \times T_{cy(PCLK)}$ + 35	-	-	ns
t _{SPIOH}	SPI output data hold time	[2]	$2 \times T_{cy(PCLK)}$ + 15	-	-	ns

[1] $T_{SPICYC} = (T_{cy(PCLK)} \times n) \pm 0.5$ %, n is the SPI clock divider value (n \ge 8); PCLK is derived from the processor clock CCLK.

[2] Timing parameters are measured with respect to the 50 % edge of the clock SCK and the 10 % (90 %) edge of the data signal (MOSI or MISO).

32-bit ARM Cortex-M3 microcontroller

LPC1769_68_67_66_65_64_63

32-bit ARM Cortex-M3 microcontroller

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
E _D	differential linearity error		[2][3]	-	±1	-	LSB
E _{L(adj)}	integral non-linearity		[4]	-	±1.5	-	LSB
Eo	offset error		[5]	-	±2	-	LSB
E _G	gain error		[6]	-	±2	-	LSB
f _{clk(ADC)}	ADC clock frequency	$3.0~V \leq V_{DDA} \leq 3.6~V$		-	-	33	MHz
		$2.7~\text{V} \leq \text{V}_{\text{DDA}} < 3.0~\text{V}$		-	-	25	MHz
f _{c(ADC)}	ADC conversion frequency	$3~V \leq V_{DDA} \leq 3.6~V$	[7]	-	-	500	kHz
		$2.7~V \leq V_{DDA} < 3.0~V$	[7]	-	-	400	kHz

Table 20. ADC characteristics (lower resolution)

 $T_{amb} = -40 \degree C$ to +85 $\degree C$ unless otherwise specified; 12-bit ADC used as 10-bit resolution ADC.[1]

[1] V_{DDA} and VREFP should be tied to $V_{DD(3V3)}$ if the ADC and DAC are not used.

[2] The ADC is monotonic, there are no missing codes.

[3] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 28.

[4] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See <u>Figure 28</u>.

[5] The offset error (E_O) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See <u>Figure 28</u>.

[6] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 28</u>.

[7] The conversion frequency corresponds to the number of samples per second.

LPC1769_68_67_66_65_64_63

32-bit ARM Cortex-M3 microcontroller

 Table 21.
 ADC interface components

Component	Range	Description
R _{i1}	2 kΩ to 5.2 kΩ	Switch-on resistance for channel selection switch. Varies with temperature, input voltage, and process.
R _{i2}	100 Ω to 600 Ω	Switch-on resistance for the comparator input switch. Varies with temperature, input voltage, and process.
C1	750 fF	Parasitic capacitance from the ADC block level.
C2	65 fF	Parasitic capacitance from the ADC block level.
C3	2.2 pF	Sampling capacitor.

14. DAC electrical characteristics

Remark: The DAC is available on parts LPC1769/68/67/66/65/63. See Table 2.

Table 22. DAC electrical characteristics

 $V_{DDA} = 2.7$ V to 3.6 V; $T_{amb} = -40$ °C to +85 °C unless otherwise specified

DBN	, unio					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
E _D	differential linearity error		-	±1	-	LSB
E _{L(adj)}	integral non-linearity		-	±1.5	-	LSB
E _O	offset error		-	0.6	-	%
E _G	gain error		-	0.6	-	%
CL	load capacitance		-	200	-	pF
RL	load resistance		1	-	-	kΩ

32-bit ARM Cortex-M3 microcontroller

Table 23.	Recommended values for C_{X1}/C_{X2} in oscillation mode (crystal and external
	components parameters): low frequency mode

Fundamental oscillation frequency F _{OSC}	Crystal load capacitance C _L	Maximum crystal series resistance R _S	External load capacitors C _{X1} /C _{X2}
1 MHz to 5 MHz	10 pF	< 300 Ω	18 pF, 18 pF
	20 pF	< 300 Ω	39 pF, 39 pF
	30 pF	< 300 Ω	57 pF, 57 pF
5 MHz to 10 MHz	10 pF	< 300 Ω	18 pF, 18 pF
	20 pF	< 200 Ω	39 pF, 39 pF
	30 pF	< 100 Ω	57 pF, 57 pF
10 MHz to 15 MHz	10 pF	< 160 Ω	18 pF, 18 pF
	20 pF	< 60 Ω	39 pF, 39 pF
15 MHz to 20 MHz	10 pF	< 80 Ω	18 pF, 18 pF

Table 24. Recommended values for C_{X1}/C_{X2} in oscillation mode (crystal and external components parameters): high frequency mode

Fundamental oscillation frequency F _{OSC}	Crystal load capacitance C _L	Maximum crystal series resistance R _S	External load capacitors C _{X1} , C _{X2}
15 MHz to 20 MHz	10 pF	< 180 Ω	18 pF, 18 pF
	20 pF	< 100 Ω	39 pF, 39 pF
20 MHz to 25 MHz	10 pF	< 160 Ω	18 pF, 18 pF
	20 pF	< 80 Ω	39 pF, 39 pF

15.3 XTAL and RTCX Printed Circuit Board (PCB) layout guidelines

The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors C_{x1} , C_{x2} , and C_{x3} in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

18. Abbreviations

Table 26. Abbreviations		
Acronym	Description	
ADC	Analog-to-Digital Converter	
AHB	Advanced High-performance Bus	
AMBA	Advanced Microcontroller Bus Architecture	
APB	Advanced Peripheral Bus	
BOD	BrownOut Detection	
CAN	Controller Area Network	
DAC	Digital-to-Analog Converter	
DMA	Direct Memory Access	
EOP	End Of Packet	
GPIO	General Purpose Input/Output	
IRC	Internal RC	
IrDA	Infrared Data Association	
JTAG	Joint Test Action Group	
MAC	Media Access Control	
MIIM	Media Independent Interface Management	
OHCI	Open Host Controller Interface	
OTG	On-The-Go	
PHY	Physical Layer	
PLL	Phase-Locked Loop	
PWM	Pulse Width Modulator	
RIT	Repetitive Interrupt Timer	
RMII	Reduced Media Independent Interface	
SE0	Single Ended Zero	
SPI	Serial Peripheral Interface	
SSI	Serial Synchronous Interface	
SSP	Synchronous Serial Port	
ТСМ	Tightly Coupled Memory	
TTL	Transistor-Transistor Logic	
UART	Universal Asynchronous Receiver/Transmitter	
USB	Universal Serial Bus	

19. References

- [1] LPC176x/5x User manual UM10360: http://www.nxp.com/documents/user_manual/UM10360.pdf
- [2] LPC176x Errata sheet: http://www.nxp.com/documents/errata_sheet/ES_LPC176X.pdf
- [3] Technical note ADC design guidelines: http://www.nxp.com/documents/technical_note/TN00009.pdf

LPC1769_68_67_66_65_64_63

Product data sheet

© NXP Semiconductors N.V. 2018. All rights reserved.