

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, Microwire, SPI, SSI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I2S, Motor Control PWM, POR, PWM, WDT
Number of I/O	70
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 8x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1768fet100y

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol				
Row	Row J										
1	P0[28]/SCL0/ USB_SCL	2	P0[27]/SDA0/ USB_SDA	3	P0[29]/USB_D+	4	P1[19]/MCOA0/ USB_PPWR/ CAP1[1]				
5	P1[22]/MCOB0/ USB_PWRD/ MAT1[0]	6	V _{SS}	7	P1[28]/MCOA2/ PCAP1[0]/ MAT0[0]	8	P0[1]/TD1/RXD3/SCL1				
9	P2[13]/EINT3/ I2STX_SDA	10	P2[10]/EINT0/NMI	11	-	12	-				
Row	νK										
1	P3[26]/STCLK/ MAT0[1]/PWM1[3]	2	V _{DD(3V3)}	3	V _{SS}	4	P1[20]/MCI0/ PWM1[2]/SCK0				
5	P1[23]/MCI1/ PWM1[4]/MISO0	6	P1[26]/MCOB1/ PWM1[6]/CAP0[0]	7	P1[27]/CLKOUT /USB_OVRCR/ CAP0[1]	8	P0[0]/RD1/TXD3/SDA1				
9	P0[11]/RXD2/ SCL2/MAT3[1]	10	P2[12]/EINT2/ I2STX_WS	11	-	12	-				

Table 4. Pin allocation table TFBGA100 ... continued

7.2 Pin description

Table 5.Pin description

Symbol	Pin/	ball			Туре	Description
	LQFP100	TFBGA100	WLCSP100			
P0[0] to P0[31]					I/O	Port 0: Port 0 is a 32-bit I/O port with individual direction controls for each bit. The operation of port 0 pins depends upon the pin function selected via the pin connect block. Pins 12, 13, 14, and 31 of this port are not available.
P0[0]/RD1/TXD3/	46	K8	H10	[1]	I/O	P0[0] — General purpose digital input/output pin.
SDA1					I	RD1 — CAN1 receiver input. (LPC1769/68/66/65/64 only).
					0	TXD3 — Transmitter output for UART3.
					I/O	SDA1 — I ² C1 data input/output. (This is not an I ² C-bus compliant open-drain pin).
P0[1]/TD1/RXD3/	47	J8	H9	[1]	I/O	P0[1] — General purpose digital input/output pin.
SCL1					0	TD1 — CAN1 transmitter output. (LPC1769/68/66/65/64 only).
					I	RXD3 — Receiver input for UART3.
					I/O	SCL1 — I ² C1 clock input/output. (This is not an I ² C-bus compliant open-drain pin).
P0[2]/TXD0/AD0[7]	98	C4	B1	[2]	I/O	P0[2] — General purpose digital input/output pin.
					0	TXD0 — Transmitter output for UART0.
					I	AD0[7] — A/D converter 0, input 7.
P0[3]/RXD0/AD0[6]	99	A2	C3	[2]	I/O	P0[3] — General purpose digital input/output pin.
					I	RXD0 — Receiver input for UART0.
					I	AD0[6] — A/D converter 0, input 6.

LPC1769_68_67_66_65_64_63

Table 5.	Pin description	continued
----------	-----------------	-----------

Symbol	Pin/	ball	all		Туре	Description				
	LQFP100	TFBGA100	WLCSP100							
P2[11]/EINT1/	52	H8	J8	<u>[6]</u>	I/O	P2[11] — General purpose digital input/output pin.				
I2STX_CLK					I	EINT1 — External interrupt 1 input.				
					I/O	I2STX_CLK — Transmit Clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the <i>I</i> ² S-bus specification. (LPC1769/68/67/66/65/63 only).				
P2[12]/EINT2/	51	K10	K10	<u>[6]</u>	I/O	P2[12] — General purpose digital input/output pin.				
I2STX_WS					I	EINT2 — External interrupt 2 input.				
					I/O	I2STX_WS — Transmit Word Select. It is driven by the master and received by the slave. Corresponds to the signal WS in the l^2S -bus specification. (LPC1769/68/67/66/65/63 only).				
P2[13]/EINT3/	50	J9	J9	[6]	I/O	P2[13] — General purpose digital input/output pin.				
I2STX_SDA					I	EINT3 — External interrupt 3 input.				
					I/O	I2STX_SDA — Transmit data. It is driven by the transmitter and read by the receiver. Corresponds to the signal SD in the PS -bus specification. (LPC1769/68/67/66/65/63 only).				
P3[0] to P3[31]					I/O	Port 3: Port 3 is a 32-bit I/O port with individual direction controls for each bit. The operation of port 3 pins depends upon the pin function selected via the pin connect block. Pins 0 through 24, and 27 through 31 of this port are not available.				
P3[25]/MAT0[0]/	27	H3	D8	[1]	I/O	P3[25] — General purpose digital input/output pin.				
PWM1[2]					0	MAT0[0] — Match output for Timer 0, channel 0.				
					0	PWM1[2] — Pulse Width Modulator 1, output 2.				
P3[26]/STCLK/	26	K1	A10	<u>[1]</u>	I/O	P3[26] — General purpose digital input/output pin.				
MAT0[1]/PWM1[3]					I	STCLK — System tick timer clock input. The maximum STCLK frequency is 1/4 of the Arm processor clock frequency CCLK.				
					0	MAT0[1] — Match output for Timer 0, channel 1.				
					0	PWM1[3] — Pulse Width Modulator 1, output 3.				
P4[0] to P4[31]					I/O	Port 4: Port 4 is a 32-bit I/O port with individual direction controls for each bit. The operation of port 4 pins depends upon the pin function selected via the pin connect block. Pins 0 through 27, 30, and 31 of this port are not available.				
P4[28]/RX_MCLK/	82	C7	G1	[1]	I/O	P4[28] — General purpose digital input/output pin.				
MAT2[0]/TXD3					0	RX_MCLK — I ² S receive master clock. (LPC1769/68/67/66/65 only).				
					0	MAT2[0] — Match output for Timer 2, channel 0.				
					0	TXD3 — Transmitter output for UART3.				
P4[29]/TX_MCLK/	85	E6	F1	<u>[1]</u>	I/O	P4[29] — General purpose digital input/output pin.				
MAT2[1]/RXD3					0	TX_MCLK — I ² S transmit master clock. (LPC1769/68/67/66/65 only).				
					0	MAT2[1] — Match output for Timer 2, channel 1.				
					1	RXD3 — Receiver input for UART3.				

LPC1769_68_67_66_65_64_63

All information provided in this document is subject to legal disclaimers.

The MPU allows separating processing tasks by disallowing access to each other's data, disabling access to memory regions, allowing memory regions to be defined as read-only and detecting unexpected memory accesses that could potentially break the system.

The MPU separates the memory into distinct regions and implements protection by preventing disallowed accesses. The MPU supports up to 8 regions each of which can be divided into 8 subregions. Accesses to memory locations that are not defined in the MPU regions, or not permitted by the region setting, will cause the Memory Management Fault exception to take place.

8.6 Memory map

The LPC17xx incorporates several distinct memory regions, shown in the following figures. <u>Figure 5</u> shows the overall map of the entire address space from the user program viewpoint following reset. The interrupt vector area supports address remapping.

The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals. The APB peripheral area is 1 MB in size and is divided to allow for up to 64 peripherals. Each peripheral of either type is allocated 16 kB of space. This allows simplifying the address decoding for each peripheral.

LPC1769_68_67_66_65_64_63

- Enhanced Ethernet features:
 - Receive filtering.
 - Multicast and broadcast frame support for both transmit and receive.
 - Optional automatic Frame Check Sequence (FCS) insertion with Cyclic Redundancy Check (CRC) for transmit.
 - Selectable automatic transmit frame padding.
 - Over-length frame support for both transmit and receive allows any length frames.
 - Promiscuous receive mode.
 - Automatic collision back-off and frame retransmission.
 - Includes power management by clock switching.
 - Wake-on-LAN power management support allows system wake-up: using the receive filters or a magic frame detection filter.
- Physical interface:
 - Attachment of external PHY chip through standard RMII interface.
 - PHY register access is available via the MIIM interface.

8.12 USB interface

Remark: The USB controller is available as device/Host/OTG controller on parts LPC1769/68/66/65 and as device-only controller on part LPC1764.

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a host and one or more (up to 127) peripherals. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot plugging and dynamic configuration of the devices. All transactions are initiated by the host controller.

The USB interface includes a device, Host, and OTG controller with on-chip PHY for device and Host functions. The OTG switching protocol is supported through the use of an external controller. Details on typical USB interfacing solutions can be found in <u>Section 15.1</u>.

8.12.1 USB device controller

The device controller enables 12 Mbit/s data exchange with a USB Host controller. It consists of a register interface, serial interface engine, endpoint buffer memory, and a DMA controller. The serial interface engine decodes the USB data stream and writes data to the appropriate endpoint buffer. The status of a completed USB transfer or error condition is indicated via status registers. An interrupt is also generated if enabled. When enabled, the DMA controller transfers data between the endpoint buffer and the on-chip SRAM.

8.12.1.1 Features

- Fully compliant with USB 2.0 specification (full speed).
- Supports 32 physical (16 logical) endpoints with a 4 kB endpoint buffer RAM.
- Supports Control, Bulk, Interrupt and Isochronous endpoints.

All information provided in this document is subject to legal disclaimers.

• Scalable realization of endpoints at run time.

- Up to four external outputs corresponding to match registers, with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.
- Up to two match registers can be used to generate timed DMA requests.

8.22 Pulse width modulator

The PWM is based on the standard Timer block and inherits all of its features, although only the PWM function is pinned out on the LPC17xx. The Timer is designed to count cycles of the system derived clock and optionally switch pins, generate interrupts or perform other actions when specified timer values occur, based on seven match registers. The PWM function is in addition to these features, and is based on match register events.

The ability to separately control rising and falling edge locations allows the PWM to be used for more applications. For instance, multi-phase motor control typically requires three non-overlapping PWM outputs with individual control of all three pulse widths and positions.

Two match registers can be used to provide a single edge controlled PWM output. One match register (PWMMR0) controls the PWM cycle rate, by resetting the count upon match. The other match register controls the PWM edge position. Additional single edge controlled PWM outputs require only one match register each, since the repetition rate is the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a rising edge at the beginning of each PWM cycle, when an PWMMR0 match occurs.

Three match registers can be used to provide a PWM output with both edges controlled. Again, the PWMMR0 match register controls the PWM cycle rate. The other match registers control the two PWM edge positions. Additional double edge controlled PWM outputs require only two match registers each, since the repetition rate is the same for all PWM outputs.

With double edge controlled PWM outputs, specific match registers control the rising and falling edge of the output. This allows both positive going PWM pulses (when the rising edge occurs prior to the falling edge), and negative going PWM pulses (when the falling edge occurs prior to the rising edge).

8.22.1 Features

- One PWM block with Counter or Timer operation (may use the peripheral clock or one of the capture inputs as the clock source).
- Seven match registers allow up to 6 single edge controlled or 3 double edge controlled PWM outputs, or a mix of both types. The match registers also allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.

8.29.2 Main PLL (PLL0)

The PLL0 accepts an input clock frequency in the range of 32 kHz to 25 MHz. The input frequency is multiplied up to a high frequency, then divided down to provide the actual clock used by the CPU and/or the USB block.

The PLL0 input, in the range of 32 kHz to 25 MHz, may initially be divided down by a value 'N', which may be in the range of 1 to 256. This input division provides a wide range of output frequencies from the same input frequency.

Following the PLL0 input divider is the PLL0 multiplier. This can multiply the input divider output through the use of a Current Controlled Oscillator (CCO) by a value 'M', in the range of 1 through 32768. The resulting frequency must be in the range of 275 MHz to 550 MHz. The multiplier works by dividing the CCO output by the value of M, then using a phase-frequency detector to compare the divided CCO output to the multiplier input. The error value is used to adjust the CCO frequency.

The PLL0 is turned off and bypassed following a chip Reset and by entering Power-down mode. PLL0 is enabled by software only. The program must configure and activate the PLL0, wait for the PLL0 to lock, and then connect to the PLL0 as a clock source.

8.29.3 USB PLL (PLL1)

The LPC17xx contain a second, dedicated USB PLL1 to provide clocking for the USB interface.

The PLL1 receives its clock input from the main oscillator only and provides a fixed 48 MHz clock to the USB block only. The PLL1 is disabled and powered off on reset. If the PLL1 is left disabled, the USB clock will be supplied by the 48 MHz clock from the main PLL0.

The PLL1 accepts an input clock frequency in the range of 10 MHz to 25 MHz only. The input frequency is multiplied up the range of 48 MHz for the USB clock using a Current Controlled Oscillators (CCO). It is insured that the PLL1 output has a 50 % duty cycle.

8.29.4 RTC clock output

The LPC17xx feature a clock output function intended for synchronizing with external devices and for use during system development to allow checking the internal clocks CCLK, IRC clock, main crystal, RTC clock, and USB clock in the outside world. The RTC clock output allows tuning the RTC frequency without probing the pin, which would distort the results.

8.29.5 Wake-up timer

The LPC17xx begin operation at power-up and when awakened from Power-down mode by using the 4 MHz IRC oscillator as the clock source. This allows chip operation to resume quickly. If the main oscillator or the PLL is needed by the application, software will need to enable these features and wait for them to stabilize before they are used as a clock source.

When the main oscillator is initially activated, the wake-up timer allows software to ensure that the main oscillator is fully functional before the processor uses it as a clock source and starts to execute instructions. This is important at power on, all types of Reset, and

8.30.5 AHB multilayer matrix

The LPC17xx use an AHB multilayer matrix. This matrix connects the instruction (I-code) and data (D-code) CPU buses of the Arm Cortex-M3 to the flash memory, the main (32 kB) static RAM, and the Boot ROM. The GPDMA can also access all of these memories. The peripheral DMA controllers, Ethernet, and USB can access all SRAM blocks. Additionally, the matrix connects the CPU system bus and all of the DMA controllers to the various peripheral functions.

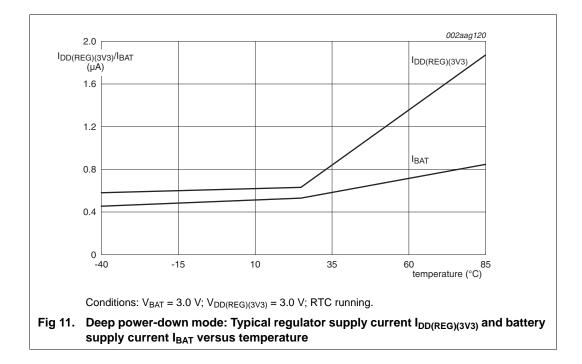
8.30.6 External interrupt inputs

The LPC17xx include up to 46 edge sensitive interrupt inputs combined with up to four level sensitive external interrupt inputs as selectable pin functions. The external interrupt inputs can optionally be used to wake up the processor from Power-down mode.

8.30.7 Memory mapping control

The Cortex-M3 incorporates a mechanism that allows remapping the interrupt vector table to alternate locations in the memory map. This is controlled via the Vector Table Offset Register contained in the NVIC.

The vector table may be located anywhere within the bottom 1 GB of Cortex-M3 address space. The vector table must be located on a 128 word (512 byte) boundary because the NVIC on the LPC17xx is configured for 128 total interrupts.


8.31 Emulation and debugging

Debug and trace functions are integrated into the Arm Cortex-M3. Serial wire debug and trace functions are supported in addition to a standard JTAG debug and parallel trace functions. The Arm Cortex-M3 is configured to support up to eight breakpoints and four watch points.

Table 8. Static characteristics ...continued

 $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
I _{DD(ADC)}	ADC supply current	active mode;	[16][17]	-	1.95	-	mA
		ADC powered					
		ADC in Power-down mode	[16][18]	-	<0.2	-	μA
		deep sleep mode	[16]	-	38	-	nA
		power-down mode	[16]	-	38	-	nA
		deep power-down mode	[16]	-	24	-	nA
I _{I(ADC)}	ADC input current	on pin VREFP					
		deep sleep mode	[19]	-	100	-	nA
		power-down mode	[19]	-	100	-	nA
		deep power-down mode	[19]	-	100	-	nA
Standard po	rt pins, RESET, RTCK			1	1	I	
IIL	LOW-level input current	$V_I = 0 V$; on-chip pull-up resistor disabled		-	0.5	10	nA
I _{IH}	HIGH-level input current	$V_I = V_{DD(3V3)}$; on-chip pull-down resistor disabled		-	0.5	10	nA
I _{OZ}	OFF-state output current	$V_O = 0 V$; $V_O = V_{DD(3V3)}$; on-chip pull-up/down resistors disabled		-	0.5	10	nA
VI	input voltage	pin configured to provide a digital function	[20][21] [22]	0	-	5.0	V
Vo	output voltage	output active		0	-	V _{DD(3V3)}	V
V _{IH}	HIGH-level input voltage			0.7V _{DD(3V3)}	-	-	V
V _{IL}	LOW-level input voltage			-	-	0.3V _{DD(3V3)}	V
V _{hys}	hysteresis voltage			0.4	-	-	V
V _{OH}	HIGH-level output voltage	$I_{OH} = -4 \text{ mA}$		V _{DD(3V3)} - 0.4	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 4 mA		-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD(3V3)} - 0.4 V$		-4	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		4	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	V _{OH} = 0 V	[23]	-	-	-45	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD(3V3)}$	[23]	-	-	50	mA
I _{pd}	pull-down current	V _I = 5 V		10	50	150	μA
I _{pu}	pull-up current	$V_{I} = 0 V$		-15	-50	-85	μA
		V _{DD(3V3)} < V _I < 5 V		0	0	0	μA

LPC1769_68_67_66_65_64_63

32-bit ARM Cortex-M3 microcontroller

12. Dynamic characteristics

12.1 Flash memory

Table 10. Flash characteristics

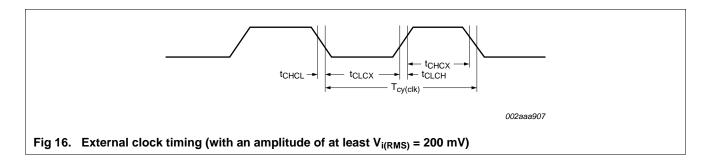
 $T_{amb} = -40$ °C to +85 °C, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
N _{endu}	endurance		[1]	10000	100000	-	cycles
t _{ret}	retention time	powered		10	-	-	years
		unpowered		20	-	-	years
t _{er}	erase time	sector or multiple consecutive sectors		95	100	105	ms
t _{prog}	programming time		[2]	0.95	1	1.05	ms

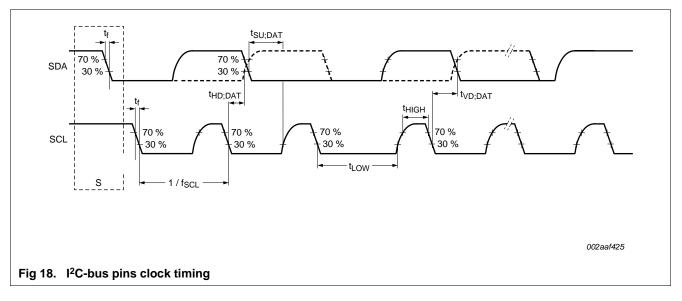
[1] Number of program/erase cycles.

[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash in blocks of 256 bytes.

12.2 External clock


Table 11. Dynamic characteristic: external clock

 $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$; $V_{DD(3V3)}$ over specified ranges.[1]


Symbol	Parameter	Conditions	Min	Typ <u>[2]</u>	Max	Unit
f _{osc}	oscillator frequency		1	-	25	MHz
T _{cy(clk)}	clock cycle time		40	-	1000	ns
t _{CHCX}	clock HIGH time		$T_{\text{cy(clk)}} \times 0.4$	-	-	ns
t _{CLCX}	clock LOW time		$T_{\text{cy(clk)}} \times 0.4$	-	-	ns
t _{CLCH}	clock rise time		-	-	5	ns
t _{CHCL}	clock fall time		-	-	5	ns

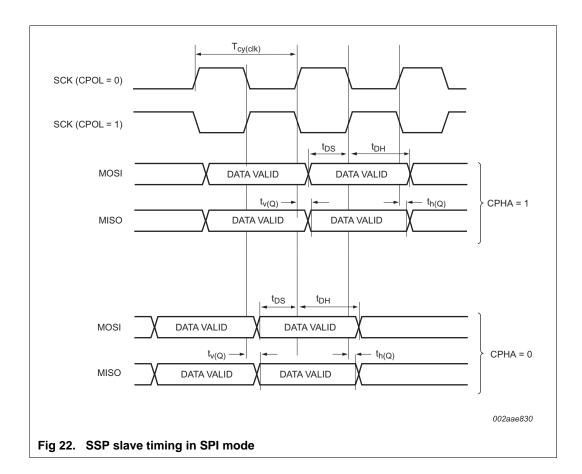
[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

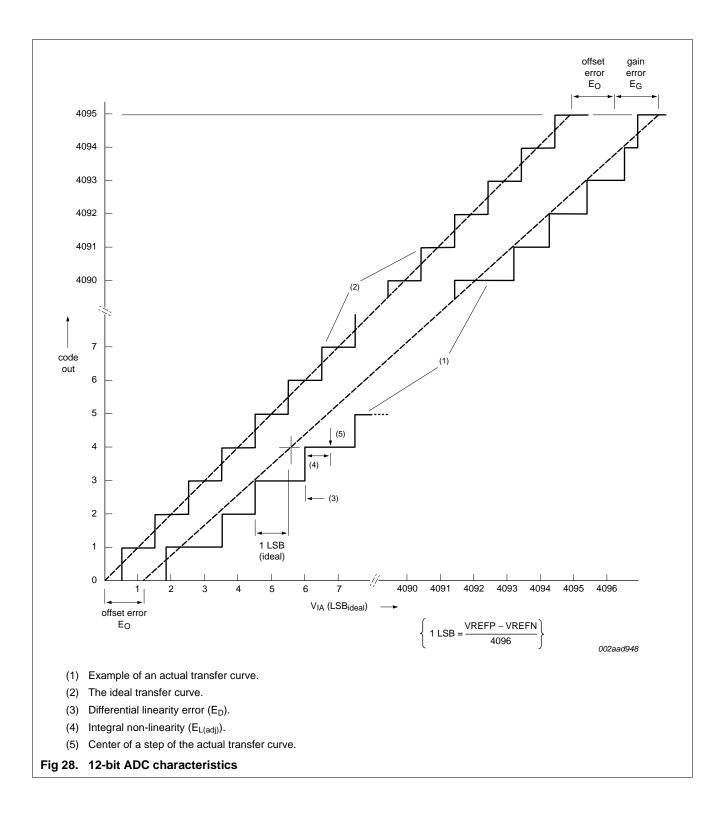
32-bit ARM Cortex-M3 microcontroller

12.6 I²S-bus interface

Remark: The I²S-bus interface is available on parts LPC1769/68/67/66/65/63. See <u>Table 2</u>.


Table 15.	Dynamic characteristics: I ² S-bus interface pins
-----------	--

 $T_{amb} = -40 \ ^{\circ}C \ to +85 \ ^{\circ}C.$


Symbol	Parameter	Conditions		Min	Тур	Max	Unit
common	to input and output						_
t _r	rise time		[1]	-	-	35	ns
t _f	fall time		<u>[1]</u>	-	-	35	ns
t _{WH}	pulse width HIGH	on pins I2STX_CLK and I2SRX_CLK	<u>[1]</u>	$0.495 \times T_{cy(clk)}$	-	-	-
t _{WL}	pulse width LOW	on pins I2STX_CLK and I2SRX_CLK	<u>[1]</u>	-	-	$0.505 imes T_{cy(clk)}$	ns
output							
t _{v(Q)}	data output valid time	on pin I2STX_SDA	<u>[1]</u>	-	-	30	ns
		on pin I2STX_WS	<u>[1]</u>	-	-	30	ns
input							
t _{su(D)}	data input set-up time	on pin I2SRX_SDA	<u>[1]</u>	3.5	-	-	ns
t _{h(D)}	data input hold time	on pin I2SRX_SDA	[1]	4.0	-	-	ns

[1] CCLK = 20 MHz; peripheral clock to the I²S-bus interface PCLK = ^{CCLK}/₄; I²S clock cycle time T_{cy(clk)} = 1600 ns, corresponds to the SCK signal in the I²S-bus specification.

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

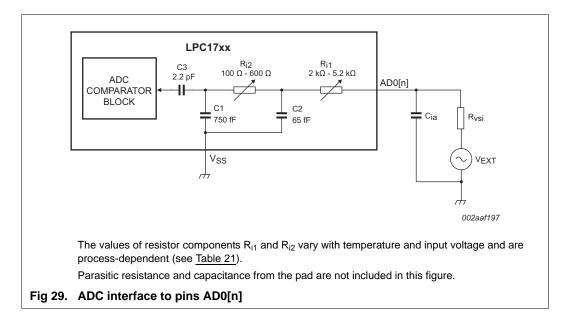


 Table 21.
 ADC interface components

Component	Range	Description
R _{i1}	2 k Ω to 5.2 k Ω	Switch-on resistance for channel selection switch. Varies with temperature, input voltage, and process.
R _{i2}	100 Ω to 600 Ω	Switch-on resistance for the comparator input switch. Varies with temperature, input voltage, and process.
C1	750 fF	Parasitic capacitance from the ADC block level.
C2	65 fF	Parasitic capacitance from the ADC block level.
C3	2.2 pF	Sampling capacitor.

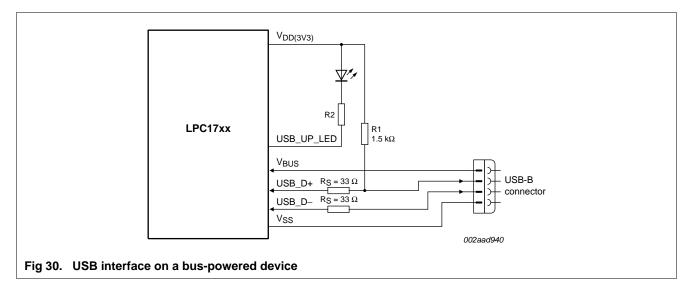
14. DAC electrical characteristics

Remark: The DAC is available on parts LPC1769/68/67/66/65/63. See Table 2.

Table 22. DAC electrical characteristics

 $V_{DDA} = 2.7$ V to 3.6 V; $T_{amb} = -40$ °C to +85 °C unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Unit		
E _D	differential linearity error			-	±1	-	LSB		
E _{L(adj)}	integral non-linearity			-	±1.5	-	LSB		
E _O	offset error			-	0.6	-	%		
E _G	gain error			-	0.6	-	%		
CL	load capacitance			-	200	-	pF		
RL	load resistance			1	-	-	kΩ		


15. Application information

15.1 Suggested USB interface solutions

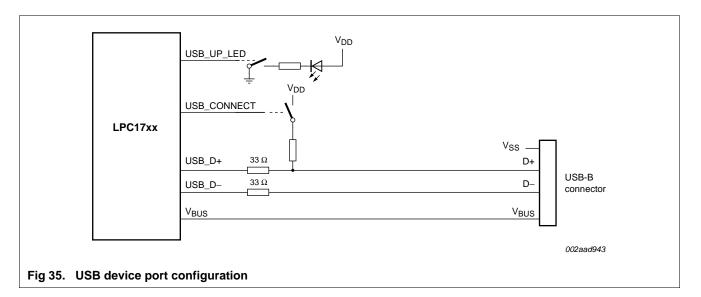
Remark: The USB controller is available as a device/Host/OTG controller on parts LPC1769/68/66/65 and as device-only controller on part LPC1764.

If the LPC1769/68/67/66/65/64/63 V_{DD} is always greater than 0 V while $V_{BUS} = 5$ V, the V_{BUS} pin can be connected directly to the V_{BUS} pin on the USB connector.

This applies to bus powered devices where the USB cable supplies the system power. For systems where V_{DD} can be 0 V and V_{BUS} is directly applied to the V_{BUS} pin, precautions must be taken to reduce the voltage to below 3.6 V.

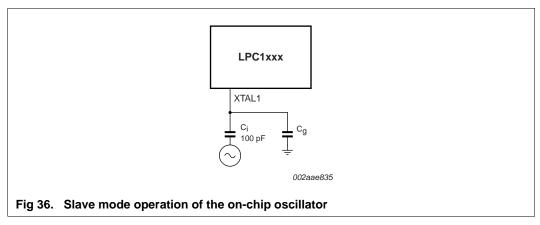
The maximum allowable voltage on the V_{BUS} pin is 3.6 V. One method is to use a voltage divider to connect the V_{BUS} pin to the V_{BUS} on the USB connector.

The voltage divider ratio should be such that the V_{BUS} pin will be greater than $0.7V_{DD}$ to indicate a logic HIGH while below the 3.6 V allowable maximum voltage.


Use the following operating conditions:

 $VBUS_{max} = 5.25 V$

 $V_{DD} = 3.6 V$


The voltage divider would need to provide a reduction of 3.6 V/5.25 V or ~0.686 V.

32-bit ARM Cortex-M3 microcontroller

15.2 Crystal oscillator XTAL input and component selection

The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with $C_i = 100 \text{ pF}$. To limit the input voltage to the specified range, choose an additional capacitor to ground C_g which attenuates the input voltage by a factor $C_i/(C_i + C_g)$. In slave mode, a minimum of 200 mV(RMS) is needed.

In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF (<u>Figure 36</u>), with an amplitude between 200 mV(RMS) and 1000 mV(RMS). This corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V. The XTALOUT pin in this configuration can be left unconnected.

External components and models used in oscillation mode are shown in Figure 37 and in Table 23 and Table 24. Since the feedback resistance is integrated on chip, only a crystal and the capacitances C_{X1} and C_{X2} need to be connected externally in case of fundamental mode oscillation (the fundamental frequency is represented by L, C_L and R_S). Capacitance C_P in Figure 37 represents the parallel package capacitance and should not be larger than 7 pF. Parameters F_{OSC} , C_L , R_S and C_P are supplied by the crystal manufacturer.

32-bit ARM Cortex-M3 microcontroller

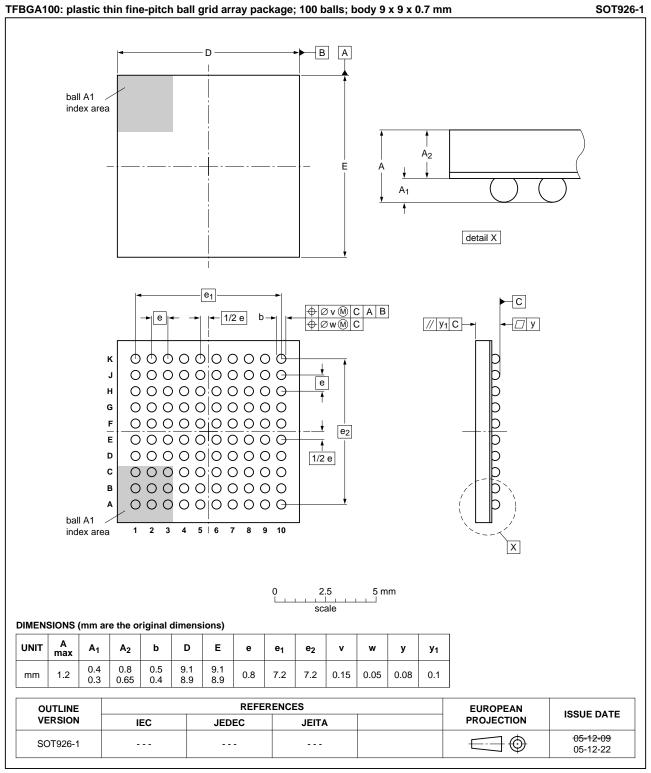
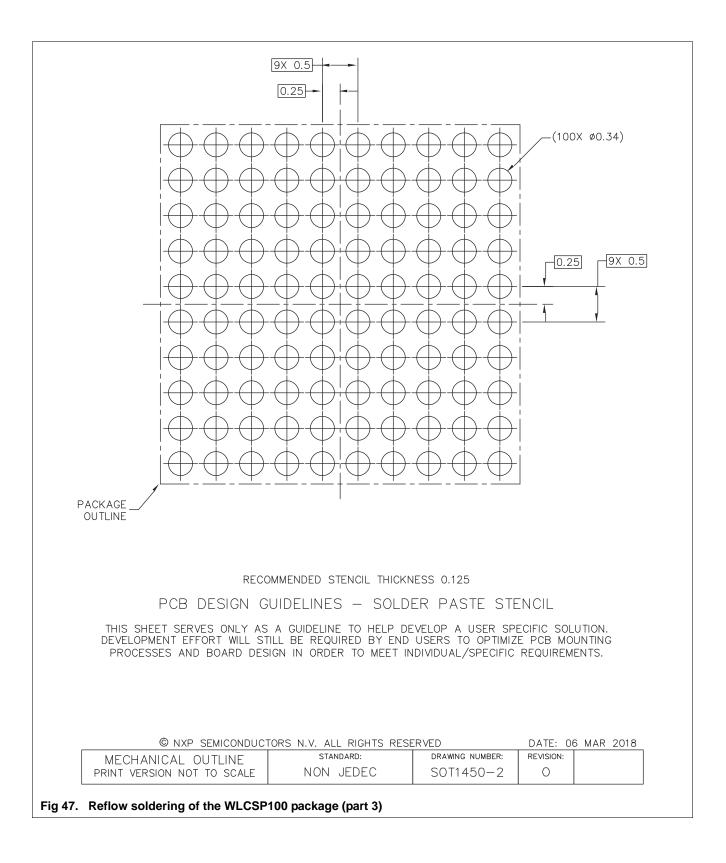



Fig 41. Package outline SOT926-1 (TFBGA100)

32-bit ARM Cortex-M3 microcontroller

20. Revision history

Table 27. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
LPC1769_68_67_66_65_64_63 v.9.8	20180504	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.7	
Modifications:	46 "Re		LCSP100 pack	CSP100 package (part 1)", Figure age (part 2)", and Figure 47 e (part 3)".	
LPC1769_68_67_66_65_64_63 v.9.7	20170501	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.6	
Modifications:	 Updated Table 2 "Ordering options": WLCSP100 with body size 100 balls, 5.07 x 5.07 x 0.53mm; was 5.074 x 5.074 x 0.6mm. Updated Figure 42 "Package outline SOT1450-2 LPC1768UK (WLCSP100)". 				
LPC1769_68_67_66_65_64_63 v.9.6	20150818	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.5	
Modifications:	 Changed max value of t_{v(Q)} (data output valid time) in SPI mode to 3*T_{cy(PCLK)} + 2.5 ns. See Table 16 "Dynamic characteristics: SSP pins in SPI mode". Updated Section 2 "Features and benefits": Added Boundary scan Description Language (BSDL) is not available for this device. 				
	 Updated Figure 5 "LPC17xx memory map": APB0 slot 7 (0x4001C000) was "reserved" and changed it to I2C0. 				
	 Changed pins for V_{DD(REG)(3V3)} from F4 and F0 to F4 and F10. See Table 5 "Pin description". 				
	 Removed footnote 1: "5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis. This pin is pulled up to a voltage level of 2.3 V to 2.6 V" from TDO/SWO, TCK/SWDCLK, and RTCK, pins. See Table 5 "Pin description". 				
	 Added a column for GPIO pins and device order part number to the ordering options table. See Table 2 "Ordering options". 				
LPC1769_68_67_66_65_64_63 v.9.5	<tbd></tbd>	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.4	
Modifications:	 SSP timing diagram updated. SSP timing parameters t_{v(Q)}, t_{h(Q)}, t_{DS}, and t_{DH} added. See Section 12.7 "SSP interface". 				
	 Parameter T_{j(max)} added in Table 6 "Limiting values". 				
	 SSP maximum bit rate in master mode corrected to 33 Mbit/s. 				
LPC1769_68_67_66_65_64_63 v.9.4	20140404	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.3	
Modifications:	Added	LPC1768UK.			
	 Table 5 "Pin description": Changed RX_MCLK and TX_MCLK type from INPUT to OUTPUT. 				
LPC1769_68_67_66_65_64_63 v.9.3	20140108	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.2	
Modifications:	– Ado	7 "Thermal resistance (ded TFBGA100. ded ±15 % to table title	. ,		

11	Static characteristics	47
11.1	Power consumption	50
11.2	Peripheral power consumption	53
11.3	Electrical pin characteristics	54
12	Dynamic characteristics	56
12.1	Flash memory	56
12.2	External clock	56
12.3	Internal oscillators	57
12.4	I/O pins	57
12.5	I ² C-bus	58
12.6	I ² S-bus interface	59
12.7	SSP interface	61
12.8	USB interface	63
12.9	SPI	64
13	ADC electrical characteristics	66
14	DAC electrical characteristics	69
15	Application information	70
15.1	Suggested USB interface solutions	70
15.2	Crystal oscillator XTAL input and component	
	selection	73
15.3	XTAL and RTCX Printed Circuit Board (PCB)	
	layout guidelines	74
15.4	Standard I/O pin configuration	75
15.5	Reset pin configuration	76
15.6	ElectroMagnetic Compatibility (EMC)	77
16	Package outline	78
17	Soldering	81
18	Abbreviations	86
19	References	86
20	Revision history	87
21	Legal information	90
21.1	Data sheet status	90
21.2	Definitions	90
21.3	Disclaimers	90
21.4	Trademarks	91
22	Contact information	91
23	Contents	92

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2018.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 4 May 2018

Document identifier: LPC1769_68_67_66_65_64_63