E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, Microwire, SPI, SSI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	70
Program Memory Size	512KB (512K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 8x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA, WLCSP
Supplier Device Package	100-WLCSP (5.07x5.07)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1768ukz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- ◆ Quadrature encoder interface that can monitor one external quadrature encoder.
- One standard PWM/timer block with external count input.
- RTC with a separate power domain and dedicated RTC oscillator. The RTC block includes 20 bytes of battery-powered backup registers.
- WatchDog Timer (WDT). The WDT can be clocked from the internal RC oscillator, the RTC oscillator, or the APB clock.
- Arm Cortex-M3 system tick timer, including an external clock input option.
- ◆ Repetitive interrupt timer provides programmable and repeating timed interrupts.
- Each peripheral has its own clock divider for further power savings.
- Standard JTAG debug interface for compatibility with existing tools. Serial Wire Debug and Serial Wire Trace Port options. Boundary Scan Description Language (BSDL) is not available for this device.
- Emulation trace module enables non-intrusive, high-speed real-time tracing of instruction execution.
- Integrated PMU (Power Management Unit) automatically adjusts internal regulators to minimize power consumption during Sleep, Deep sleep, Power-down, and Deep power-down modes.
- Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down.
- Single 3.3 V power supply (2.4 V to 3.6 V).
- Four external interrupt inputs configurable as edge/level sensitive. All pins on Port 0 and Port 2 can be used as edge sensitive interrupt sources.
- Non-maskable Interrupt (NMI) input.
- Clock output function that can reflect the main oscillator clock, IRC clock, RTC clock, CPU clock, and the USB clock.
- The Wake-up Interrupt Controller (WIC) allows the CPU to automatically wake up from any priority interrupt that can occur while the clocks are stopped in deep sleep, Power-down, and Deep power-down modes.
- Processor wake-up from Power-down mode via any interrupt able to operate during Power-down mode (includes external interrupts, RTC interrupt, USB activity, Ethernet wake-up interrupt, CAN bus activity, Port 0/2 pin interrupt, and NMI).
- Brownout detect with separate threshold for interrupt and forced reset.
- Power-On Reset (POR).
- Crystal oscillator with an operating range of 1 MHz to 25 MHz.
- 4 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used as a system clock.
- PLL allows CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. May be run from the main oscillator, the internal RC oscillator, or the RTC oscillator.
- USB PLL for added flexibility.
- Code Read Protection (CRP) with different security levels.
- Unique device serial number for identification purposes.
- Available as LQFP100 (14 mm × 14 mm × 1.4 mm), TFBGA100¹ (9 mm × 9 mm × 0.7 mm), and WLCSP100 (5.07 × 5.07 × 0.53 mm) package.

^{1.} LPC1768/65 only.

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
9	P2[7]/RD2/RTS1	10	P2[8]/TD2/TXD2	11	-	12	-
Row	/ F						
1	VREFN	2	RTCX1	3	RESET	4	P1[31]/SCK1/ AD0[5]
5	P1[21]/MCABORT/ PWM1[3]/SSEL0	6	P0[18]/DCD1/ MOSI0/MOSI	7	P2[9]/USB_CONNECT/ RXD2	8	P0[16]/RXD1/ SSEL0/SSEL
9	P0[17]/CTS1/ MISO0/MISO	10	P0[15]/TXD1/ SCK0/SCK	11	-	12	-
Row	G						
1	RTCX2	2	VBAT	3	XTAL2	4	P0[30]/USB_D-
5	P1[25]/MCOA1/ MAT1[1]	6	P1[29]/MCOB2/ PCAP1[1]/MAT0[1]	7	V _{SS}	8	P0[21]/RI1/RD1
9	P0[20]/DTR1/SCL1	10	P0[19]/DSR1/SDA1	11	-	12	-
Row	/ H						
1	P1[30]/V _{BUS} / AD0[4]	2	XTAL1	3	P3[25]/MAT0[0]/ PWM1[2]	4	P1[18]/USB_UP_LED/ PWM1[1]/CAP1[0]
5	P1[24]/MCl2/ PWM1[5]/MOSl0	6	V _{DD(REG)(3V3)}	7	P0[10]/TXD2/ SDA2/MAT3[0]	8	P2[11]/EINT1/ I2STX_CLK
9	V _{DD(3V3)}	10	P0[22]/RTS1/TD1	11	-	12	-

Table 4. Pin allocation table TFBGA100 ... continued

LPC1769_68_67_66_65_64_63

 Table 5.
 Pin description ...continued

Symbol	Pin/ball				Туре	Description
	LQFP100	TFBGA100	WLCSP100			
P0[23]/AD0[0]/	9	E5	D5	[2]	I/O	P0[23] — General purpose digital input/output pin.
12SRX_CLK/ CAP3[0]					I	AD0[0] — A/D converter 0, input 0.
0, 1, 0[0]					I/O	I2SRX_CLK — Receive Clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the <i>I</i> ² S-bus specification. (LPC1769/68/67/66/65/63 only).
					I	CAP3[0] — Capture input for Timer 3, channel 0.
P0[24]/AD0[1]/	8	D1	B4	[2]	I/O	P0[24] — General purpose digital input/output pin.
CAP3[1]					I	AD0[1] — A/D converter 0, input 1.
					I/O	I2SRX_WS — Receive Word Select. It is driven by the master and received by the slave. Corresponds to the signal WS in the l^2S -bus specification. (LPC1769/68/67/66/65/63 only).
					I	CAP3[1] — Capture input for Timer 3, channel 1.
P0[25]/AD0[2]/	7	D2	A3	[2]	I/O	P0[25] — General purpose digital input/output pin.
I2SRX_SDA/					I	AD0[2] — A/D converter 0, input 2.
					I/O	I2SRX_SDA — Receive data. It is driven by the transmitter and read by the receiver. Corresponds to the signal SD in the <i>I</i> ² <i>S</i> -bus specification. (LPC1769/68/67/66/65/63 only).
					0	TXD3 — Transmitter output for UART3.
P0[26]/AD0[3]/	6	D3	C5	[3]	I/O	P0[26] — General purpose digital input/output pin.
AOUT/RXD3					I	AD0[3] — A/D converter 0, input 3.
					0	AOUT — DAC output (LPC1769/68/67/66/65/63 only).
					I	RXD3 — Receiver input for UART3.
P0[27]/SDA0/ USB_SDA	25	J2	C8	<u>[4]</u>	I/O	P0[27] — General purpose digital input/output pin. Output is open-drain.
					I/O	SDA0 — I ² C0 data input/output. Open-drain output (for I ² C-bus compliance).
					I/O	USB_SDA — USB port I ² C serial data (OTG transceiver, LPC1769/68/66/65 only).
P0[28]/SCL0/ USB_SCL	24	J1	B9	<u>[4]</u>	I/O	P0[28] — General purpose digital input/output pin. Output is open-drain.
					I/O	SCL0 — I^2C0 clock input/output. Open-drain output (for I^2C -bus compliance).
					I/O	USB_SCL — USB port I ² C serial clock (OTG transceiver, LPC1769/68/66/65 only).
P0[29]/USB_D+	29	J3	B10	[5]	I/O	P0[29] — General purpose digital input/output pin.
					I/O	USB_D+ — USB bidirectional D+ line. (LPC1769/68/66/65/64 only).
P0[30]/USB_D-	30	G4	C9	[5]	I/O	P0[30] — General purpose digital input/output pin.
					I/O	USB_D- — USB bidirectional D- line. (LPC1769/68/66/65/64 only).

Table 5.	Pin description	continued
----------	-----------------	-----------

Symbol	Pin/	ball			Туре	Description		
	LQFP100	TFBGA100	WLCSP100					
P1[0] to P1[31]					I/O	Port 1: Port 1 is a 32-bit I/O port with individual direction controls for each bit. The operation of port 1 pins depends upon the pin function selected via the pin connect block. Pins 2, 3, 5, 6, 7, 11, 12, and 13 of this port are not available.		
P1[0]/	95	D5	C1	[1]	I/O	P1[0] — General purpose digital input/output pin.		
ENET_TXD0					0	ENET_TXD0 — Ethernet transmit data 0. (LPC1769/68/67/66/64 only).		
P1[1]/	94	B4	C2	<u>[1]</u>	I/O	P1[1] — General purpose digital input/output pin.		
ENET_TXD1					0	ENET_TXD1 — Ethernet transmit data 1. (LPC1769/68/67/66/64 only).		
P1[4]/	93	A4	D2	<u>[1]</u>	I/O	P1[4] — General purpose digital input/output pin.		
ENET_TX_EN					0	ENET_TX_EN — Ethernet transmit data enable. (LPC1769/68/67/66/64 only).		
P1[8]/	92	C5	D1	[1]	I/O	P1[8] — General purpose digital input/output pin.		
ENET_CRS					I	ENET_CRS — Ethernet carrier sense. (LPC1769/68/67/66/64 only).		
P1[9]/	91	B5	D3	<u>[1]</u>	I/O	P1[9] — General purpose digital input/output pin.		
ENET_RXD0					I	ENET_RXD0 — Ethernet receive data. (LPC1769/68/67/66/64 only).		
P1[10]/	90	A5	E3	<u>[1]</u>	I/O	P1[10] — General purpose digital input/output pin.		
ENET_RXD1					I	ENET_RXD1 — Ethernet receive data. (LPC1769/68/67/66/64 only).		
P1[14]/	89	D6	E2	[1]	I/O	P1[14] — General purpose digital input/output pin.		
ENET_RX_ER					I	ENET_RX_ER — Ethernet receive error. (LPC1769/68/67/66/64 only).		
P1[15]/	88	C6	E1	<u>[1]</u>	I/O	P1[15] — General purpose digital input/output pin.		
ENET_REF_CLK					I	ENET_REF_CLK — Ethernet reference clock. (LPC1769/68/67/66/64 only).		
P1[16]/	87	A6	F3	[1]	I/O	P1[16] — General purpose digital input/output pin.		
ENET_MDC					0	ENET_MDC — Ethernet MIIM clock (LPC1769/68/67/66/64 only).		
P1[17]/	86	B6	F2	[1]	I/O	P1[17] — General purpose digital input/output pin.		
ENET_MDIO					I/O	ENET_MDIO — Ethernet MIIM data input and output. (LPC1769/68/67/66/64 only).		

The MPU allows separating processing tasks by disallowing access to each other's data, disabling access to memory regions, allowing memory regions to be defined as read-only and detecting unexpected memory accesses that could potentially break the system.

The MPU separates the memory into distinct regions and implements protection by preventing disallowed accesses. The MPU supports up to 8 regions each of which can be divided into 8 subregions. Accesses to memory locations that are not defined in the MPU regions, or not permitted by the region setting, will cause the Memory Management Fault exception to take place.

8.6 Memory map

The LPC17xx incorporates several distinct memory regions, shown in the following figures. <u>Figure 5</u> shows the overall map of the entire address space from the user program viewpoint following reset. The interrupt vector area supports address remapping.

The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals. The APB peripheral area is 1 MB in size and is divided to allow for up to 64 peripherals. Each peripheral of either type is allocated 16 kB of space. This allows simplifying the address decoding for each peripheral.

LPC1769_68_67_66_65_64_63

32-bit ARM Cortex-M3 microcontroller

Rev.

Т

23 of 93 èe

8.7 Nested Vectored Interrupt Controller (NVIC)

The NVIC is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.

8.7.1 Features

- Controls system exceptions and peripheral interrupts
- In the LPC17xx, the NVIC supports 33 vectored interrupts
- 32 programmable interrupt priority levels, with hardware priority level masking
- Relocatable vector table
- Non-Maskable Interrupt (NMI)
- Software interrupt generation

8.7.2 Interrupt sources

Each peripheral device has one interrupt line connected to the NVIC but may have several interrupt flags. Individual interrupt flags may also represent more than one interrupt source.

Any pin on Port 0 and Port 2 (total of 42 pins) regardless of the selected function, can be programmed to generate an interrupt on a rising edge, a falling edge, or both.

8.8 Pin connect block

The pin connect block allows selected pins of the microcontroller to have more than one function. Configuration registers control the multiplexers to allow connection between the pin and the on-chip peripherals.

Peripherals should be connected to the appropriate pins prior to being activated and prior to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is not mapped to a related pin should be considered undefined.

Most pins can also be configured as open-drain outputs or to have a pull-up, pull-down, or no resistor enabled.

8.9 General purpose DMA controller

The GPDMA is an AMBA AHB compliant peripheral allowing selected peripherals to have DMA support.

The GPDMA enables peripheral-to-memory, memory-to-peripheral, peripheral-to-peripheral, and memory-to-memory transactions. The source and destination areas can each be either a memory region or a peripheral, and can be accessed through the AHB master. The GPDMA controller allows data transfers between the USB and Ethernet controllers and the various on-chip SRAM areas. The supported APB peripherals are SSP0/1, all UARTs, the I²S-bus interface, the ADC, and the DAC. Two match signals for each timer can be used to trigger DMA transfers.

Remark: The Ethernet controller is available on parts LPC1769/68/67/66/64. The USB controller is available on parts LPC1769/68/66/65/64. The I²S-bus interface is available on parts LPC1769/68/67/66/65. The DAC is available on parts LPC1769/68/67/66/65/63.

8.9.1 Features

- Eight DMA channels. Each channel can support an unidirectional transfer.
- 16 DMA request lines.
- Single DMA and burst DMA request signals. Each peripheral connected to the DMA Controller can assert either a burst DMA request or a single DMA request. The DMA burst size is set by programming the DMA Controller.
- Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-peripheral transfers are supported.
- Scatter or gather DMA is supported through the use of linked lists. This means that the source and destination areas do not have to occupy contiguous areas of memory.
- Hardware DMA channel priority.
- AHB slave DMA programming interface. The DMA Controller is programmed by writing to the DMA control registers over the AHB slave interface.
- One AHB bus master for transferring data. The interface transfers data when a DMA request goes active.
- 32-bit AHB master bus width.
- Incrementing or non-incrementing addressing for source and destination.
- Programmable DMA burst size. The DMA burst size can be programmed to more efficiently transfer data.
- Internal four-word FIFO per channel.
- Supports 8, 16, and 32-bit wide transactions.
- Big-endian and little-endian support. The DMA Controller defaults to little-endian mode on reset.
- An interrupt to the processor can be generated on a DMA completion or when a DMA error has occurred.
- Raw interrupt status. The DMA error and DMA count raw interrupt status can be read prior to masking.

8.10 Fast general purpose parallel I/O

Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate registers allow setting or clearing any number of outputs simultaneously. The value of the output register may be read back as well as the current state of the port pins.

LPC17xx use accelerated GPIO functions:

- GPIO registers are accessed through the AHB multilayer bus so that the fastest possible I/O timing can be achieved.
- Mask registers allow treating sets of port bits as a group, leaving other bits unchanged.
- All GPIO registers are byte and half-word addressable.
- Entire port value can be written in one instruction.
- Support for Cortex-M3 bit banding.
- Support for use with the GPDMA controller.

- Enhanced Ethernet features:
 - Receive filtering.
 - Multicast and broadcast frame support for both transmit and receive.
 - Optional automatic Frame Check Sequence (FCS) insertion with Cyclic Redundancy Check (CRC) for transmit.
 - Selectable automatic transmit frame padding.
 - Over-length frame support for both transmit and receive allows any length frames.
 - Promiscuous receive mode.
 - Automatic collision back-off and frame retransmission.
 - Includes power management by clock switching.
 - Wake-on-LAN power management support allows system wake-up: using the receive filters or a magic frame detection filter.
- Physical interface:
 - Attachment of external PHY chip through standard RMII interface.
 - PHY register access is available via the MIIM interface.

8.12 USB interface

Remark: The USB controller is available as device/Host/OTG controller on parts LPC1769/68/66/65 and as device-only controller on part LPC1764.

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a host and one or more (up to 127) peripherals. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot plugging and dynamic configuration of the devices. All transactions are initiated by the host controller.

The USB interface includes a device, Host, and OTG controller with on-chip PHY for device and Host functions. The OTG switching protocol is supported through the use of an external controller. Details on typical USB interfacing solutions can be found in <u>Section 15.1</u>.

8.12.1 USB device controller

The device controller enables 12 Mbit/s data exchange with a USB Host controller. It consists of a register interface, serial interface engine, endpoint buffer memory, and a DMA controller. The serial interface engine decodes the USB data stream and writes data to the appropriate endpoint buffer. The status of a completed USB transfer or error condition is indicated via status registers. An interrupt is also generated if enabled. When enabled, the DMA controller transfers data between the endpoint buffer and the on-chip SRAM.

8.12.1.1 Features

- Fully compliant with USB 2.0 specification (full speed).
- Supports 32 physical (16 logical) endpoints with a 4 kB endpoint buffer RAM.
- Supports Control, Bulk, Interrupt and Isochronous endpoints.

All information provided in this document is subject to legal disclaimers.

• Scalable realization of endpoints at run time.

- Supports single edge controlled and/or double edge controlled PWM outputs. Single edge controlled PWM outputs all go high at the beginning of each cycle unless the output is a constant low. Double edge controlled PWM outputs can have either edge occur at any position within a cycle. This allows for both positive going and negative going pulses.
- Pulse period and width can be any number of timer counts. This allows complete flexibility in the trade-off between resolution and repetition rate. All PWM outputs will occur at the same repetition rate.
- Double edge controlled PWM outputs can be programmed to be either positive going or negative going pulses.
- Match register updates are synchronized with pulse outputs to prevent generation of erroneous pulses. Software must 'release' new match values before they can become effective.
- May be used as a standard 32-bit timer/counter with a programmable 32-bit prescaler if the PWM mode is not enabled.

8.23 Motor control PWM

The motor control PWM is a specialized PWM supporting 3-phase motors and other combinations. Feedback inputs are provided to automatically sense rotor position and use that information to ramp speed up or down. An abort input is also provided that causes the PWM to immediately release all motor drive outputs. At the same time, the motor control PWM is highly configurable for other generalized timing, counting, capture, and compare applications.

8.24 Quadrature Encoder Interface (QEI)

A quadrature encoder, also known as a 2-channel incremental encoder, converts angular displacement into two pulse signals. By monitoring both the number of pulses and the relative phase of the two signals, the user can track the position, direction of rotation, and velocity. In addition, a third channel, or index signal, can be used to reset the position counter. The quadrature encoder interface decodes the digital pulses from a quadrature encoder wheel to integrate position over time and determine direction of rotation. In addition, the QEI can capture the velocity of the encoder wheel.

8.24.1 Features

- Tracks encoder position.
- Increments/decrements depending on direction.
- Programmable for 2× or 4× position counting.
- Velocity capture using built-in timer.
- Velocity compare function with "less than" interrupt.
- Uses 32-bit registers for position and velocity.
- Three position compare registers with interrupts.
- Index counter for revolution counting.
- Index compare register with interrupts.
- Can combine index and position interrupts to produce an interrupt for whole and partial revolution displacement.

whenever any of the aforementioned functions are turned off for any reason. Since the oscillator and other functions are turned off during Power-down mode, any wake-up of the processor from Power-down mode makes use of the wake-up timer.

The Wake-up Timer monitors the crystal oscillator to check whether it is safe to begin code execution. When power is applied to the chip, or when some event caused the chip to exit Power-down mode, some time is required for the oscillator to produce a signal of sufficient amplitude to drive the clock logic. The amount of time depends on many factors, including the rate of $V_{DD(3V3)}$ ramp (in the case of power on), the type of crystal and its electrical characteristics (if a quartz crystal is used), as well as any other external circuitry (e.g., capacitors), and the characteristics of the oscillator itself under the existing ambient conditions.

8.29.6 Power control

The LPC17xx support a variety of power control features. There are four special modes of processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode, and Deep power-down mode. The CPU clock rate may also be controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a trade-off of power versus processing speed based on application requirements. In addition, Peripheral Power Control allows shutting down the clocks to individual on-chip peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any peripherals that are not required for the application. Each of the peripherals has its own clock divider which provides even better power control.

Integrated PMU (Power Management Unit) automatically adjust internal regulators to minimize power consumption during Sleep, Deep sleep, Power-down, and Deep power-down modes.

The LPC17xx also implement a separate power domain to allow turning off power to the bulk of the device while maintaining operation of the RTC and a small set of registers for storing data during any of the power-down modes.

8.29.6.1 Sleep mode

When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep mode does not need any special sequence but re-enabling the clock to the Arm core.

In Sleep mode, execution of instructions is suspended until either a Reset or interrupt occurs. Peripheral functions continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses.

8.29.6.2 Deep-sleep mode

In Deep-sleep mode, the oscillator is shut down and the chip receives no internal clocks. The processor state and registers, peripheral registers, and internal SRAM values are preserved throughout Deep-sleep mode and the logic levels of chip pins remain static. The output of the IRC is disabled but the IRC is not powered down for a fast wake-up later. The RTC oscillator is not stopped because the RTC interrupts may be used as the wake-up source. The PLL is automatically turned off and disconnected. The CCLK and USB clock dividers automatically get reset to zero.

The Deep-sleep mode can be terminated and normal operation resumed by either a Reset or certain specific interrupts that are able to function without clocks. Since all dynamic operation of the chip is suspended, Deep-sleep mode reduces chip power consumption to a very low value. Power to the flash memory is left on in Deep-sleep mode, allowing a very quick wake-up.

On wake-up from Deep-sleep mode, the code execution and peripherals activities will resume after 4 cycles expire if the IRC was used before entering Deep-sleep mode. If the main external oscillator was used, the code execution will resume when 4096 cycles expire. PLL and clock dividers need to be reconfigured accordingly.

8.29.6.3 Power-down mode

Power-down mode does everything that Deep-sleep mode does, but also turns off the power to the IRC oscillator and the flash memory. This saves more power but requires waiting for resumption of flash operation before execution of code or data access in the flash memory can be accomplished.

On the wake-up of Power-down mode, if the IRC was used before entering Power-down mode, it will take IRC 60 μ s to start-up. After this 4 IRC cycles will expire before the code execution can then be resumed if the code was running from SRAM. In the meantime, the flash wake-up timer then counts 4 MHz IRC clock cycles to make the 100 μ s flash start-up time. When it times out, access to the flash will be allowed. Users need to reconfigure the PLL and clock dividers accordingly.

8.29.6.4 Deep power-down mode

The Deep power-down mode can only be entered from the RTC block. In Deep power-down mode, power is shut off to the entire chip with the exception of the RTC module and the RESET pin.

The LPC17xx can wake up from Deep power-down mode via the RESET pin or an alarm match event of the RTC.

8.29.6.5 Wake-up interrupt controller

The Wake-up Interrupt Controller (WIC) allows the CPU to automatically wake up from any enabled priority interrupt that can occur while the clocks are stopped in Deep sleep, Power-down, and Deep power-down modes.

The WIC works in connection with the Nested Vectored Interrupt Controller (NVIC). When the CPU enters Deep sleep, Power-down, or Deep power-down mode, the NVIC sends a mask of the current interrupt situation to the WIC. This mask includes all of the interrupts that are both enabled and of sufficient priority to be serviced immediately. With this information, the WIC simply notices when one of the interrupts has occurred and then it wakes up the CPU.

The WIC eliminates the need to periodically wake up the CPU and poll the interrupts resulting in additional power savings.

8.29.7 Peripheral power control

A Power Control for Peripherals feature allows individual peripherals to be turned off if they are not needed in the application, resulting in additional power savings.

32-bit ARM Cortex-M3 microcontroller

- [5] The RTC typically fails when V_{i(VBAT)} drops below 1.6 V.
- [6] V_{DD(REG)(3V3)} = 3.3 V; T_{amb} = 25 °C for all power consumption measurements.
- [7] Applies to LPC1768/67/66/65/64/63.
- [8] Applies to LPC1769 only.
- [9] IRC running at 4 MHz; main oscillator and PLL disabled; PCLK = CCLK/8.
- [10] BOD disabled.
- [11] On pin V_{DD(REG)(3V3)}. I_{BAT} = 530 nA. V_{DD(REG)(3V3)} = 3.0 V; V_{BAT} = 3.0 V; T_{amb} = 25 °C.
- [12] On pin VBAT; I_{DD(REG)(3V3)} = 630 nA; V_{DD(REG)(3V3)} = 3.0 V; V_{BAT} = 3.0 V; T_{amb} = 25 °C.
- [13] On pin VBAT; V_{BAT} = 3.0 V; T_{amb} = 25 °C.
- [14] All internal pull-ups disabled. All pins configured as output and driven LOW. V_{DD(3V3)} = 3.3 V; T_{amb} = 25 °C.
- [15] TCK/SWDCLK pin needs to be externally pulled LOW.
- [16] On pin V_{DDA}; V_{DDA} = 3.3 V; T_{amb} = 25 °C. The ADC is powered if the PDN bit in the AD0CR register is set to 1 and in Power-down mode of the PDN bit is set to 0.
- [17] The ADC is powered if the PDN bit in the AD0CR register is set to 1. See LPC17xx user manual UM10360_1.
- [18] The ADC is in Power-down mode if the PDN bit in the AD0CR register is set to 0. See LPC17xx user manual UM10360_1.
- [19] $V_{i(VREFP)} = 3.3 V$; $T_{amb} = 25 °C$.
- [20] Including voltage on outputs in 3-state mode.
- [21] V_{DD(3V3)} supply voltages must be present.
- [22] 3-state outputs go into 3-state mode in Deep power-down mode.
- [23] Allowed as long as the current limit does not exceed the maximum current allowed by the device.
- [24] To $V_{\text{SS}}.$
- [25] Includes external resistors of 33 $\Omega\pm$ 1 % on D+ and D–.

11.1 Power consumption

32-bit ARM Cortex-M3 microcontroller

12.6 I²S-bus interface

Remark: The I²S-bus interface is available on parts LPC1769/68/67/66/65/63. See <u>Table 2</u>.

 $T_{amb} = -40 \degree C$ to +85 $\degree C$.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
common	to input and output			÷			
t _r	rise time		<u>[1]</u>	-	-	35	ns
t _f	fall time		<u>[1]</u>	-	-	35	ns
t _{WH}	pulse width HIGH	on pins I2STX_CLK and I2SRX_CLK	[1]	$0.495 \times T_{cy(clk)}$	-	-	-
t _{WL}	pulse width LOW	on pins I2STX_CLK and I2SRX_CLK		-	-	$0.505 \times T_{cy(clk)}$	ns
output							
t _{v(Q)}	data output valid time	on pin I2STX_SDA	[1]	-	-	30	ns
		on pin I2STX_WS	[1]	-	-	30	ns
input							
t _{su(D)}	data input set-up time	nput set-up time on pin I2SRX_SDA		3.5	-	-	ns
t _{h(D)}	data input hold time	ta input hold time on pin I2SRX_SDA		4.0	-	-	ns

[1] CCLK = 20 MHz; peripheral clock to the I²S-bus interface PCLK = ^{CCLK}/₄; I²S clock cycle time T_{cy(clk)} = 1600 ns, corresponds to the SCK signal in the I²S-bus specification.

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
E _D	differential linearity error		[2][3]	-	±1	-	LSB
E _{L(adj)}	integral non-linearity		[4]	-	±1.5	-	LSB
Eo	offset error		[5]	-	±2	-	LSB
E _G	gain error		[6]	-	±2	-	LSB
f _{clk(ADC)}	ADC clock frequency	$3.0~V \leq V_{DDA} \leq 3.6~V$		-	-	33	MHz
		$2.7~\text{V} \leq \text{V}_{\text{DDA}} < 3.0~\text{V}$		-	-	25	MHz
f _{c(ADC)}	ADC conversion frequency	$3~V \leq V_{DDA} \leq 3.6~V$	[7]	-	-	500	kHz
		$2.7~V \leq V_{DDA} < 3.0~V$	[7]	-	-	400	kHz

Table 20. ADC characteristics (lower resolution)

 $T_{amb} = -40 \degree C$ to +85 $\degree C$ unless otherwise specified; 12-bit ADC used as 10-bit resolution ADC.[1]

[1] V_{DDA} and VREFP should be tied to $V_{DD(3V3)}$ if the ADC and DAC are not used.

[2] The ADC is monotonic, there are no missing codes.

[3] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 28.

[4] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See <u>Figure 28</u>.

[5] The offset error (E_O) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See <u>Figure 28</u>.

[6] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 28</u>.

[7] The conversion frequency corresponds to the number of samples per second.

LPC1769_68_67_66_65_64_63

 Table 21.
 ADC interface components

Component	Range	Description
R _{i1}	2 kΩ to 5.2 kΩ	Switch-on resistance for channel selection switch. Varies with temperature, input voltage, and process.
R _{i2}	100 Ω to 600 Ω	Switch-on resistance for the comparator input switch. Varies with temperature, input voltage, and process.
C1	750 fF	Parasitic capacitance from the ADC block level.
C2	65 fF	Parasitic capacitance from the ADC block level.
C3	2.2 pF	Sampling capacitor.

14. DAC electrical characteristics

Remark: The DAC is available on parts LPC1769/68/67/66/65/63. See Table 2.

Table 22. DAC electrical characteristics

 $V_{DDA} = 2.7$ V to 3.6 V; $T_{amb} = -40$ °C to +85 °C unless otherwise specified

DBN	, unio					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
E _D	differential linearity error		-	±1	-	LSB
E _{L(adj)}	integral non-linearity		-	±1.5	-	LSB
E _O	offset error		-	0.6	-	%
E _G	gain error		-	0.6	-	%
CL	load capacitance		-	200	-	pF
RL	load resistance		1	-	-	kΩ

15. Application information

15.1 Suggested USB interface solutions

Remark: The USB controller is available as a device/Host/OTG controller on parts LPC1769/68/66/65 and as device-only controller on part LPC1764.

If the LPC1769/68/67/66/65/64/63 V_{DD} is always greater than 0 V while $V_{BUS} = 5$ V, the V_{BUS} pin can be connected directly to the V_{BUS} pin on the USB connector.

This applies to bus powered devices where the USB cable supplies the system power. For systems where V_{DD} can be 0 V and V_{BUS} is directly applied to the V_{BUS} pin, precautions must be taken to reduce the voltage to below 3.6 V.

The maximum allowable voltage on the V_{BUS} pin is 3.6 V. One method is to use a voltage divider to connect the V_{BUS} pin to the V_{BUS} on the USB connector.

The voltage divider ratio should be such that the V_{BUS} pin will be greater than $0.7V_{DD}$ to indicate a logic HIGH while below the 3.6 V allowable maximum voltage.

Use the following operating conditions:

 $VBUS_{max} = 5.25 V$

 $V_{DD} = 3.6 V$

The voltage divider would need to provide a reduction of 3.6 V/5.25 V or ~0.686 V.

32-bit ARM Cortex-M3 microcontroller

18. Abbreviations

Table 26. Abl	breviations
Acronym	Description
ADC	Analog-to-Digital Converter
AHB	Advanced High-performance Bus
AMBA	Advanced Microcontroller Bus Architecture
APB	Advanced Peripheral Bus
BOD	BrownOut Detection
CAN	Controller Area Network
DAC	Digital-to-Analog Converter
DMA	Direct Memory Access
EOP	End Of Packet
GPIO	General Purpose Input/Output
IRC	Internal RC
IrDA	Infrared Data Association
JTAG	Joint Test Action Group
MAC	Media Access Control
MIIM	Media Independent Interface Management
OHCI	Open Host Controller Interface
OTG	On-The-Go
PHY	Physical Layer
PLL	Phase-Locked Loop
PWM	Pulse Width Modulator
RIT	Repetitive Interrupt Timer
RMII	Reduced Media Independent Interface
SE0	Single Ended Zero
SPI	Serial Peripheral Interface
SSI	Serial Synchronous Interface
SSP	Synchronous Serial Port
ТСМ	Tightly Coupled Memory
TTL	Transistor-Transistor Logic
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus

19. References

- [1] LPC176x/5x User manual UM10360: http://www.nxp.com/documents/user_manual/UM10360.pdf
- [2] LPC176x Errata sheet: http://www.nxp.com/documents/errata_sheet/ES_LPC176X.pdf
- [3] Technical note ADC design guidelines: http://www.nxp.com/documents/technical_note/TN00009.pdf

LPC1769_68_67_66_65_64_63

Product data sheet

© NXP Semiconductors N.V. 2018. All rights reserved.

20. Revision history

Table 27. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
LPC1769_68_67_66_65_64_63 v.9.8	20180504	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.7				
Modifications:	Added <u>46 "Re</u> <u>"Reflow</u>	 Added Figure 45 "Reflow soldering of the WLCSP100 package (part 1)", Figure 46 "Reflow soldering of the WLCSP100 package (part 2)", and Figure 47 "Reflow soldering of the WLCSP100 package (part 3)". 						
LPC1769_68_67_66_65_64_63 v.9.7	20170501	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.6				
Modifications:	Update x 5.07	ed Table 2 "Ordering of x 0.53mm; was 5.074	ptions": WLCSP x 5.074 x 0.6mr	100 with body size 100 balls, 5.07 n.				
		ed Figure 42 "Package	outline SOT14:	60-2 LPC1768UK (WLCSP100)".				
LPC1769_68_67_66_65_64_63 v.9.6	20150818	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.5				
Modifications:	 Chang 2.5 ns Update 	ed max value of t _{v(Q)} (. See Table 16 "Dynam ed Section 2 "Features	data output valic lic characteristic and benefits": A	I time) in SPI mode to 3*T _{cy(PCLK)} + s: SSP pins in SPI mode".				
	Langu	age (BSDL) is not avai	lable for this de	vice.				
	 Update "reservert 	ed Figure 5 "LPC17xx /ed" and changed it to	memory map": / I2C0.	APB0 slot 7 (0x4001C000) was				
	 Chang description 	ed pins for V _{DD(REG)(3} votion".	_{/3)} from F4 and F	F0 to F4 and F10. See Table 5 "Pin				
	 Removed footnote 1: "5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis. This pin is pulled up to a voltage level of 2.3 V to 2.6 V" from TDO/SWO, TCK/SWDCLK, and RTCK, pins, See Table 5 "Pin description". 							
	 Added options 	a column for GPIO pir s table. See Table 2 "C	ns and device or ordering options'	der part number to the ordering				
LPC1769_68_67_66_65_64_63 v.9.5	<tbd></tbd>	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.4				
Modifications:	 SSP ti added 	ming diagram updated . See Section 12.7 "SS	. SSP timing pa P interface".	rameters $t_{v(Q)},t_{h(Q)},t_{DS},\text{and}t_{DH}$				
	Param	eter T _{j(max)} added in Ta	able 6 "Limiting"	values".				
	 SSP m 	naximum bit rate in ma	ster mode corre	cted to 33 Mbit/s.				
LPC1769_68_67_66_65_64_63 v.9.4	20140404	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.3				
Modifications:	Added	LPC1768UK.						
	 Table store 	5 "Pin description": Cha TPUT.	anged RX_MCL	K and TX_MCLK type from INPUT				
LPC1769_68_67_66_65_64_63 v.9.3	20140108	Product data sheet	-	LPC1769_68_67_66_65_64 v.9.2				
Modifications:	• Table	7 "Thermal resistance	(±15 %)":					
	– Ade	ded TFBGA100.						
	– Ade	ded \pm 15 % to table title						