# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

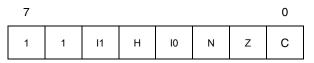
| Product Status             | Obsolete                                                             |
|----------------------------|----------------------------------------------------------------------|
| Core Processor             | ST7                                                                  |
| Core Size                  | 8-Bit                                                                |
| Speed                      | 8MHz                                                                 |
| Connectivity               | I <sup>2</sup> C, SCI, SPI                                           |
| Peripherals                | LVD, POR, PWM, WDT                                                   |
| Number of I/O              | 32                                                                   |
| Program Memory Size        | 60KB (60K x 8)                                                       |
| Program Memory Type        | FLASH                                                                |
| EEPROM Size                | -                                                                    |
| RAM Size                   | 2K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 3.8V ~ 5.5V                                                          |
| Data Converters            | A/D 16x10b                                                           |
| Oscillator Type            | Internal                                                             |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                    |
| Mounting Type              | Surface Mount                                                        |
| Package / Case             | 44-LQFP                                                              |
| Supplier Device Package    | -                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/st72f321j9t6 |
|                            |                                                                      |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## **Table of Contents**

|             | General Description                          |       |
|-------------|----------------------------------------------|-------|
|             | Clock Phase and Clock Polarity               |       |
|             | Error Flags                                  |       |
|             | Interrupts                                   |       |
|             | Register Description                         |       |
|             |                                              |       |
|             | Introduction                                 |       |
|             | Main Features                                |       |
| 10.6.3      | General Description                          | 99    |
| 10.6.4      | Functional Description                       | . 101 |
| 10.6.5      | Low Power Modes                              | . 108 |
|             | Interrupts                                   |       |
|             |                                              |       |
|             | S INTERFACE (I2C)                            |       |
|             |                                              |       |
|             | Main Features                                |       |
|             | General Description                          |       |
|             | Functional Description       Low Power Modes |       |
|             | Interrupts                                   |       |
|             | Register Description                         |       |
|             | A/D CONVERTER (ADC)                          |       |
|             |                                              |       |
|             | Main Features                                |       |
|             | Functional Description                       |       |
| 10.8.4      | Low Power Modes                              | . 129 |
|             | Interrupts                                   |       |
|             | Register Description                         |       |
|             | DN SET                                       |       |
|             | DRESSING MODES                               |       |
|             | Inherent                                     |       |
|             |                                              |       |
|             |                                              |       |
|             | Indexed (No Offset, Short, Long)             |       |
|             | Indirect Indexed (Short, Long)               |       |
|             | Relative mode (Direct, Indirect)             |       |
|             | ICTION GROUPS                                |       |
|             | L CHARACTERISTICS                            |       |
|             | ETER CONDITIONS                              |       |
| 12.1.1      | Minimum and Maximum values                   | . 138 |
|             | Typical values                               |       |
|             | Typical curves                               |       |
| 12.1.4      | Loading capacitor                            | . 138 |
|             | Pin input voltage                            |       |
| 12.2 ABSOLI | UTE MAXIMUM RATINGS                          | . 139 |


| Address                                                                                                                             | Block    | Register<br>Label                                                                                                                                                         | Register Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reset<br>Status                                                                                        | Remarks                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 002Ah                                                                                                                               | WATCHDOG | WDGCR                                                                                                                                                                     | Watchdog Control Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7Fh                                                                                                    | R/W                                                                                                                                                                                                                               |
| 002Bh                                                                                                                               |          | SICSR                                                                                                                                                                     | System Integrity Control/Status Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000x 000x b                                                                                            | R/W                                                                                                                                                                                                                               |
| 002Ch<br>002Dh                                                                                                                      | MCC      | MCCSR<br>MCCBCR                                                                                                                                                           | Main Clock Control / Status Register<br>Main Clock Controller: Beep Control Register                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00h<br>00h                                                                                             | R/W<br>R/W                                                                                                                                                                                                                        |
| 002Eh<br>to<br>0030h                                                                                                                |          |                                                                                                                                                                           | Reserved Area (3 Bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                   |
| 0031h<br>0032h<br>0033h<br>0034h<br>0035h<br>0036h<br>0037h<br>0038h<br>0039h<br>003Ah<br>003Bh<br>003Ch<br>003Ch<br>003Eh<br>003Fh | TIMER A  | TACR2<br>TACR1<br>TACSR<br>TAIC1HR<br>TAIC1LR<br>TAOC1HR<br>TAOC1LR<br>TACHR<br>TACHR<br>TACLR<br>TAACHR<br>TAACLR<br>TAIC2HR<br>TAIC2LR<br>TAIC2LR<br>TAOC2HR<br>TAOC2LR | Timer A Control Register 2<br>Timer A Control Register 1<br>Timer A Control/Status Register<br>Timer A Input Capture 1 High Register<br>Timer A Input Capture 1 Low Register<br>Timer A Output Compare 1 High Register<br>Timer A Output Compare 1 Low Register<br>Timer A Counter High Register<br>Timer A Counter High Register<br>Timer A Alternate Counter High Register<br>Timer A Alternate Counter Low Register<br>Timer A Input Capture 2 High Register<br>Timer A Input Capture 2 Low Register<br>Timer A Output Compare 2 Low Register  | 00h<br>00h<br>xxxx x0xx b<br>xxh<br>80h<br>00h<br>FFh<br>FCh<br>FCh<br>FCh<br>Xxh<br>xxh<br>80h<br>00h | R/W<br>R/W<br>Read Only<br>Read Only<br>R/W<br>Read Only<br>Read Only |
| 0040h                                                                                                                               |          |                                                                                                                                                                           | Reserved Area (1 Byte)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                                                                                                                                                                                                                   |
| 0041h<br>0042h<br>0043h<br>0045h<br>0045h<br>0046h<br>0047h<br>0048h<br>0049h<br>004Ah<br>004Bh<br>004Ch<br>004Ch<br>004Eh<br>004Fh | TIMER B  | TBCR2<br>TBCR1<br>TBCSR<br>TBIC1LR<br>TBIC1LR<br>TBOC1LR<br>TBOC1LR<br>TBCLR<br>TBCLR<br>TBACLR<br>TBIC2LR<br>TBIC2LR<br>TBIC2LR<br>TBIC2LR<br>TBIC2LR                    | Timer B Control Register 2<br>Timer B Control Register 1<br>Timer B Control/Status Register<br>Timer B Input Capture 1 High Register<br>Timer B Input Capture 1 Low Register<br>Timer B Output Compare 1 High Register<br>Timer B Output Compare 1 Low Register<br>Timer B Counter High Register<br>Timer B Counter High Register<br>Timer B Alternate Counter High Register<br>Timer B Alternate Counter High Register<br>Timer B Input Capture 2 High Register<br>Timer B Input Capture 2 Low Register<br>Timer B Output Compare 2 Low Register | 00h<br>00h<br>xxxx x0xx b<br>xxh<br>80h<br>00h<br>FFh<br>FCh<br>FCh<br>FCh<br>xxh<br>80h<br>00h        | R/W<br>R/W<br>Read Only<br>Read Only<br>R/W<br>Read Only<br>Read Only |
| 0050h<br>0051h<br>0052h<br>0053h<br>0054h<br>0055h<br>0056h<br>0057h                                                                | SCI      | SCISR<br>SCIDR<br>SCIBRR<br>SCICR1<br>SCICR2<br>SCIERPR<br>SCIETPR                                                                                                        | SCI Status Register<br>SCI Data Register<br>SCI Baud Rate Register<br>SCI Control Register 1<br>SCI Control Register 2<br>SCI Extended Receive Prescaler Register<br>Reserved area<br>SCI Extended Transmit Prescaler Register                                                                                                                                                                                                                                                                                                                    | C0h<br>xxh<br>00h<br>x000 0000b<br>00h<br>00h<br><br>00h                                               | Read Only<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W                                                                                                                                                                                      |

## CENTRAL PROCESSING UNIT (Cont'd)

Condition Code Register (CC)

Read/Write

Reset Value: 111x1xxx



The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

## **Arithmetic Management Bits**

Bit  $4 = \mathbf{H}$  Half carry.

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions.

0: No half carry has occurred.

1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

## Bit 2 = N Negative.

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It's a copy of the result  $7^{th}$  bit.

0: The result of the last operation is positive or null.

1: The result of the last operation is negative (that is, the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

## Bit 1 = **Z** Zero.

This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

0: The result of the last operation is different from zero.

1: The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test instructions.

## Bit 0 = C Carry/borrow.

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation.

0: No overflow or underflow has occurred.

1: An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions.

## **Interrupt Management Bits**

#### Bit 5,3 = 11, 10 Interrupt

The combination of the I1 and I0 bits gives the current interrupt software priority.

| Interrupt Software Priority   | 1 | 10 |
|-------------------------------|---|----|
| Level 0 (main)                | 1 | 0  |
| Level 1                       | 0 | 1  |
| Level 2                       | 0 | 0  |
| Level 3 (= interrupt disable) | 1 | 1  |

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.

See the interrupt management chapter for more details.



## SYSTEM INTEGRITY MANAGEMENT (Cont'd)

## 6.4.4 Register Description

## SYSTEM INTEGRITY (SI) CONTROL/STATUS REGISTER (SICSR)

#### Read/Write

Reset Value: 000x 000x (00h)

| 7   |     |     |     |   |   |   | 0   |
|-----|-----|-----|-----|---|---|---|-----|
| AVD | AVD | AVD | LVD | 0 | 0 | 0 | WDG |
| S   | IE  | F   | RF  | 0 | 0 | 0 | RF  |

## Bit 7 = **AVDS** Voltage Detection selection

This bit is set and cleared by software. Voltage Detection is available only if the LVD is enabled by option byte.

0: Voltage detection on V<sub>DD</sub> supply

1: Voltage detection on EVD pin

Bit 6 = **AVDIE** Voltage Detector interrupt enable

This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag changes (toggles). The pending interrupt information is automatically cleared when software enters the AVD interrupt routine.

0: AVD interrupt disabled

1: AVD interrupt enabled

## Bit 5 = AVDF Voltage Detector flag

This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit changes value. Refer to Figure 16 and to Section 6.4.2.1 for additional details.

0: V<sub>DD</sub> or V<sub>EVD</sub> over V<sub>IT+(AVD)</sub> threshold 1: V<sub>DD</sub> or V<sub>EVD</sub> under V<sub>IT-(AVD)</sub> threshold

#### Bit 4 = LVDRF LVD reset flag

This bit indicates that the last Reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared by software (writing zero). See WDGRF flag description for more details. When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined.

Bits 31 = Reserved, must be kept cleared.

## Bit 0 = **WDGRF** *Watchdog reset flag*

This bit indicates that the last Reset was generated by the Watchdog peripheral. It is set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts).

Combined with the LVDRF flag information, the flag description is given by the following table.

| <b>RESET Sources</b> | LVDRF | WDGRF |
|----------------------|-------|-------|
| External RESET pin   | 0     | 0     |
| Watchdog             | 0     | 1     |
| LVD                  | 1     | Х     |

## Application notes

The LVDRF flag is not cleared when another RE-SET type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the original failure.

In this case, a watchdog reset can be detected by software while an external reset can not.

**CAUTION:** When the LVD is not activated with the associated option byte, the WDGRF flag can not be used in the application.

## INTERRUPTS (Cont'd)

| Instruction | New Description Function/Example |                       |    | Н | 10 | Ν | Z | С |
|-------------|----------------------------------|-----------------------|----|---|----|---|---|---|
| HALT        | Entering Halt mode               |                       | 1  |   | 0  |   |   |   |
| IRET        | Interrupt routine return         | Pop CC, A, X, PC      | 11 | Н | 10 | Ν | Z | С |
| JRM         | Jump if I1:0=11 (level 3)        | 11:0=11 ?             |    |   |    |   |   |   |
| JRNM        | Jump if I1:0<>11                 | 1:0<>11 ?             |    |   |    |   |   |   |
| POP CC      | Pop CC from the Stack            | Mem => CC             | 11 | Н | 10 | Ν | Z | С |
| RIM         | Enable interrupt (level 0 set)   | Load 10 in I1:0 of CC | 1  |   | 0  |   |   |   |
| SIM         | Disable interrupt (level 3 set)  | Load 11 in I1:0 of CC | 1  |   | 1  |   |   |   |
| TRAP        | Software trap                    | Software NMI          | 1  |   | 1  |   |   |   |
| WFI         | Wait for interrupt               |                       | 1  |   | 0  |   |   |   |

## Table 7. Dedicated Interrupt Instruction Set

Note: During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI instructions change the current software priority up to the next IRET instruction or one of the previously mentioned instructions.



## POWER SAVING MODES (Cont'd)

## 8.4 ACTIVE-HALT AND HALT MODES

ACTIVE-HALT and HALT modes are the two lowest power consumption modes of the MCU. They are both entered by executing the 'HALT' instruction. The decision to enter either in ACTIVE-HALT or HALT mode is given by the MCC/RTC interrupt enable flag (OIE bit in MCCSR register).

| MCCSR<br>OIE bit | Power Saving Mode entered when HALT<br>instruction is executed |
|------------------|----------------------------------------------------------------|
| 0                | HALT mode                                                      |
| 1                | ACTIVE-HALT mode                                               |

## 8.4.1 ACTIVE-HALT MODE

ACTIVE-HALT mode is the lowest power consumption mode of the MCU with a real time clock available. It is entered by executing the 'HALT' instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is set (see section 10.2 on page 57 for more details on the MCCSR register).

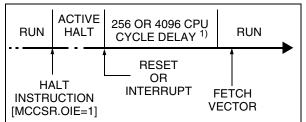
The MCU can exit ACTIVE-HALT mode on reception of an MCC/RTC interrupt or a RESET. When exiting ACTIVE-HALT mode by means of an interrupt, no 256 or 4096 CPU cycle delay occurs. The CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 27).

When entering ACTIVE-HALT mode, the I[1:0] bits in the CC register are forced to '10b' to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.

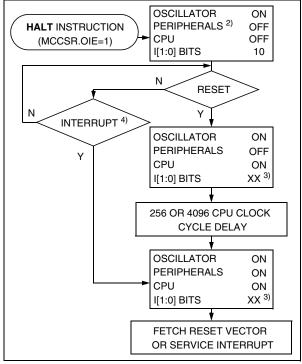
In ACTIVE-HALT mode, only the main oscillator and its associated counter (MCC/RTC) are running to keep a wake-up time base. All other peripherals are not clocked except those which get their clock supply from another clock generator (such as external or auxiliary oscillator).

The safeguard against staying locked in ACTIVE-HALT mode is provided by the oscillator interrupt.

**Note:** As soon as the interrupt capability of one of the oscillators is selected (MCCSR.OIE bit set), entering ACTIVE-HALT mode while the Watchdog is active does not generate a RESET.


This means that the device cannot spend more than a defined delay in this power saving mode.

**CAUTION:** When exiting ACTIVE-HALT mode following an MCC/RTC interrupt, OIE bit of MCCSR register must not be cleared before  $t_{DELAY}$  after the interrupt occurs ( $t_{DELAY}$  = 256 or 4096  $t_{CPU}$  de-


57

lay depending on option byte). Otherwise, the ST7 enters HALT mode for the remaining  $t_{\mbox{\scriptsize DELAY}}$  period.

#### Figure 26. ACTIVE-HALT Timing Overview



#### Figure 27. ACTIVE-HALT Mode Flow-chart



## Notes:

1. This delay occurs only if the MCU exits ACTIVE-HALT mode by means of a RESET.

2. Peripheral clocked with an external clock source can still be active.

3. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and restored when the CC register is popped.

4. Only the MCC/RTC interrupt can exit the MCU from ACTIVE-HALT mode.

## WATCHDOG TIMER (Cont'd)

**\$7** 

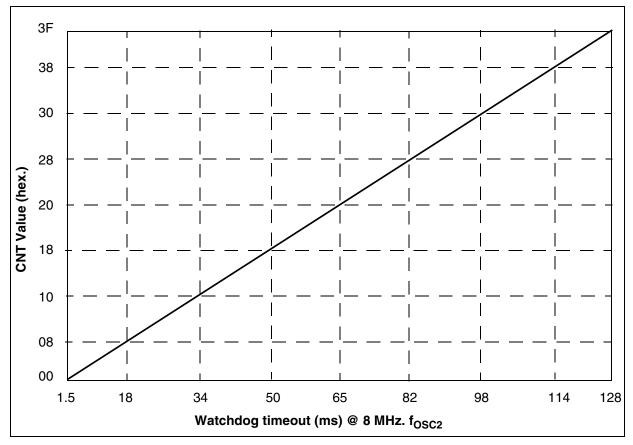

## 10.1.4 How to Program the Watchdog Timeout

Figure 2 shows the linear relationship between the 6-bit value to be loaded in the Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be used for a quick calculation without taking the timing variations into account. If

Figure 33. Approximate Timeout Duration

more precision is needed, use the formulae in Figure 3.

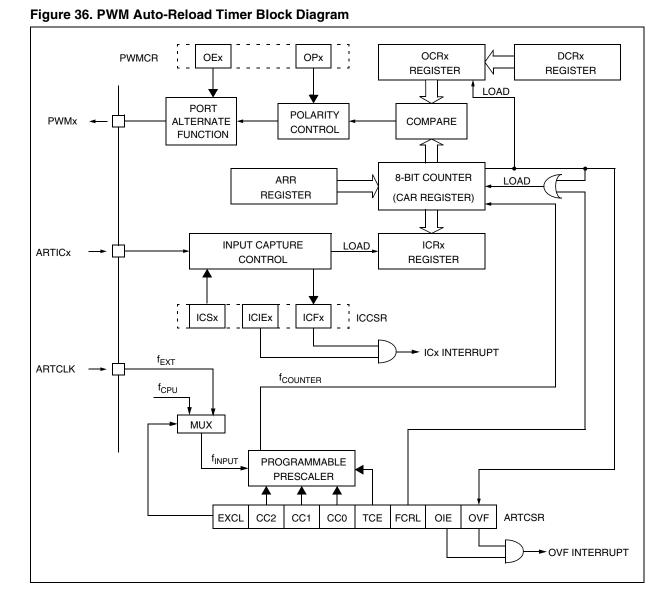
**Caution:** When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an immediate reset.



## **10.3 PWM AUTO-RELOAD TIMER (ART)**

## 10.3.1 Introduction

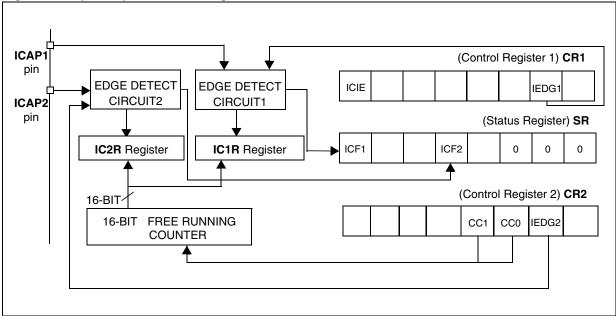
The Pulse Width Modulated Auto-Reload Timer on-chip peripheral consists of an 8-bit auto reload counter with compare/capture capabilities and of a 7-bit prescaler clock source.


These resources allow five possible operating modes:

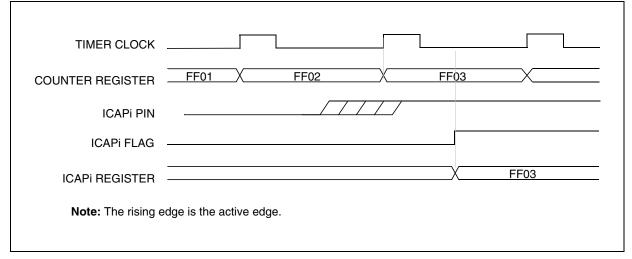
- Generation of up to 4 independent PWM signals
- Output compare and Time base interrupt

- Up to two input capture functions
- External event detector
- Up to two external interrupt sources

The three first modes can be used together with a single counter frequency.


The timer can be used to wake up the MCU from WAIT and HALT modes.




60/193

## 16-BIT TIMER (Cont'd)





## Figure 47. Input Capture Timing Diagram



## SERIAL COMMUNICATIONS INTERFACE (Cont'd) DATA REGISTER (SCIDR)

#### Read/Write

#### Reset Value: Undefined

Contains the Received or Transmitted data character, depending on whether it is read from or written to.

| 7   |     |     |     |     |     |     | 0   |
|-----|-----|-----|-----|-----|-----|-----|-----|
| DR7 | DR6 | DR5 | DR4 | DR3 | DR2 | DR1 | DR0 |

The Data register performs a double function (read and write) since it is composed of two registers, one for transmission (TDR) and one for reception (RDR).

The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 1.).

The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure 1.).

## **BAUD RATE REGISTER (SCIBRR)**

Read/Write

Reset Value: 0000 0000 (00h)

 7
 0

 SCP1
 SCP0
 SCT2
 SCT1
 SCT0
 SCR2
 SCR1
 SCR0

## Bits 7:6 = SCP[1:0] First SCI Prescaler

These 2 prescaling bits allow several standard clock division ranges:

| PR Prescaling factor | SCP1 | SCP0 |
|----------------------|------|------|
| 1                    | 0    | 0    |
| 3                    | 0    | 1    |
| 4                    | 1    | 0    |
| 13                   | 1    | 1    |

Bits 5:3 = **SCT[2:0]** *SCI Transmitter rate divisor* These 3 bits, in conjunction with the SCP1 & SCP0 bits define the total division applied to the bus clock to yield the transmit rate clock in conventional Baud Rate Generator mode.

| TR dividing factor | SCT2 | SCT1 | SCT0 |
|--------------------|------|------|------|
| 1                  | 0    | 0    | 0    |
| 2                  | 0    | 0    | 1    |
| 4                  | 0    | 1    | 0    |
| 8                  | 0    | 1    | 1    |
| 16                 | 1    | 0    | 0    |
| 32                 | 1    | 0    | 1    |
| 64                 | 1    | 1    | 0    |
| 128                | 1    | 1    | 1    |

Bits 2:0 = **SCR[2:0]** *SCI Receiver rate divisor.* These 3 bits, in conjunction with the SCP[1:0] bits define the total division applied to the bus clock to yield the receive rate clock in conventional Baud Rate Generator mode.

| RR Dividing factor | SCR2 | SCR1 | SCR0 |
|--------------------|------|------|------|
| 1                  | 0    | 0    | 0    |
| 2                  | 0    | 0    | 1    |
| 4                  | 0    | 1    | 0    |
| 8                  | 0    | 1    | 1    |
| 16                 | 1    | 0    | 0    |
| 32                 | 1    | 0    | 1    |
| 64                 | 1    | 1    | 0    |
| 128                | 1    | 1    | 1    |

## 10-BIT A/D CONVERTER (ADC) (Cont'd)

## **10.8.3 Functional Description**

The conversion is monotonic, meaning that the result never decreases if the analog input does not and never increases if the analog input does not.

If the input voltage ( $V_{AIN}$ ) is greater than  $V_{AREF}$  (high-level voltage reference) then the conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without overflow indication).

If the input voltage ( $V_{AIN}$ ) is lower than  $V_{SSA}$  (low-level voltage reference) then the conversion result in the ADCDRH and ADCDRL registers is 00 00h.

The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH and AD-CDRL registers. The accuracy of the conversion is described in the Electrical Characteristics Section.

 $R_{AIN}$  is the maximum recommended impedance for an analog input signal. If the impedance is too high, this will result in a loss of accuracy due to leakage and sampling not being completed in the alloted time.

## 10.8.3.1 A/D Converter Configuration

The analog input ports must be configured as input, no pull-up, no interrupt. Refer to the «I/O ports» chapter. Using these pins as analog inputs does not affect the ability of the port to be read as a logic input.

In the ADCCSR register:

- Select the CS[3:0] bits to assign the analog channel to convert.

## 10.8.3.2 Starting the Conversion

In the ADCCSR register:

 Set the ADON bit to enable the A/D converter and to start the conversion. From this time on, the ADC performs a continuous conversion of the selected channel.

When a conversion is complete:

- The EOC bit is set by hardware.
- The result is in the ADCDR registers.

A read to the ADCDRH or a write to any bit of the ADCCSR register resets the EOC bit.

To read the 10 bits, perform the following steps:

- 1. Poll the EOC bit
- 2. Read the ADCDRL register
- 3. Read the ADCDRH register. This clears EOC automatically.

**Note:** The data is not latched, so both the low and the high data register must be read before the next conversion is complete, so it is recommended to disable interrupts while reading the conversion result.

To read only 8 bits, perform the following steps:

- 1. Poll the EOC bit
- 2. Read the ADCDRH register. This clears EOC automatically.

#### 10.8.3.3 Changing the conversion channel

The application can change channels during conversion. When software modifies the CH[3:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is cleared, and the A/D converter starts converting the newly selected channel.

#### 10.8.4 Low Power Modes

**Note:** The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced power consumption when no conversion is needed and between single shot conversions.

| Mode | Description                                                                                                                                                                               |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WAIT | No effect on A/D Converter                                                                                                                                                                |
|      | A/D Converter disabled.                                                                                                                                                                   |
| HALT | After wakeup from Halt mode, the A/D<br>Converter requires a stabilization time<br>t <sub>STAB</sub> (see Electrical Characteristics)<br>before accurate conversions can be<br>performed. |

#### 10.8.5 Interrupts

None.

## INSTRUCTION SET OVERVIEW (Cont'd)

## **11.2 INSTRUCTION GROUPS**

The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions may

be subdivided into 13 main groups as illustrated in the following table:

| Load and Transfer                | LD   | CLR  |      |      |      |       |     |     |
|----------------------------------|------|------|------|------|------|-------|-----|-----|
| Stack operation                  | PUSH | POP  | RSP  |      |      |       |     |     |
| Increment/Decrement              | INC  | DEC  |      |      |      |       |     |     |
| Compare and Tests                | СР   | TNZ  | BCP  |      |      |       |     |     |
| Logical operations               | AND  | OR   | XOR  | CPL  | NEG  |       |     |     |
| Bit Operation                    | BSET | BRES |      |      |      |       |     |     |
| Conditional Bit Test and Branch  | BTJT | BTJF |      |      |      |       |     |     |
| Arithmetic operations            | ADC  | ADD  | SUB  | SBC  | MUL  |       |     |     |
| Shift and Rotates                | SLL  | SRL  | SRA  | RLC  | RRC  | SWAP  | SLA |     |
| Unconditional Jump or Call       | JRA  | JRT  | JRF  | JP   | CALL | CALLR | NOP | RET |
| Conditional Branch               | JRxx |      |      |      |      |       |     |     |
| Interruption management          | TRAP | WFI  | HALT | IRET |      |       |     |     |
| Condition Code Flag modification | SIM  | RIM  | SCF  | RCF  |      |       |     |     |

#### Using a prebyte

The instructions are described with one to four opcodes.

In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede.

The whole instruction becomes:

- PC-2 End of previous instruction
- PC-1 Prebyte
- PC Opcode

57

PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address

These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are:

PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one.

PIX 92 Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruction using the corresponding indirect addressing mode.

It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode.

PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one.

## SUPPLY CURRENT CHARACTERISTICS (Cont'd)

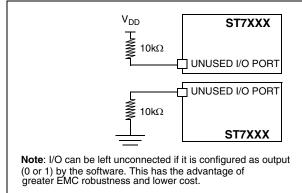
## 12.4.3 On-Chip Peripherals

Measured on LQFP64 generic board  $T_A = 25^{\circ}C f_{CPU} = 4MHz$ .

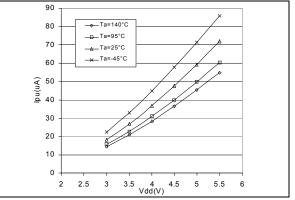
| Symbol               | Parameter                                        | Conditions            | Тур | Unit |
|----------------------|--------------------------------------------------|-----------------------|-----|------|
| I <sub>DD(TIM)</sub> | 16-bit Timer supply current <sup>1)</sup>        | V <sub>DD</sub> =5.0V | 50  | μA   |
| I <sub>DD(ART)</sub> | ART PWM supply current <sup>2)</sup>             | V <sub>DD</sub> =5.0V | 75  | μA   |
| I <sub>DD(SPI)</sub> | SPI supply current <sup>3)</sup>                 | V <sub>DD</sub> =5.0V | 400 | μA   |
| I <sub>DD(SCI)</sub> | SCI supply current <sup>4)</sup>                 | V <sub>DD</sub> =5.0V | 400 | μA   |
| I <sub>DD(I2C)</sub> | I2C supply current <sup>5)</sup>                 | V <sub>DD</sub> =5.0V | 175 | μA   |
| I <sub>DD(ADC)</sub> | ADC supply current when converting <sup>6)</sup> | V <sub>DD</sub> =5.0V | 400 | μΑ   |

#### Notes:

- Data based on a differential I<sub>DD</sub> measurement between reset configuration (timer counter running at f<sub>CPU</sub>/4) and timer counter stopped (only TIMD bit set). Data valid for one timer.
- 2. Data based on a differential I<sub>DD</sub> measurement between reset configuration (timer stopped) and timer counter enabled (only TCE bit set).
- 3. Data based on a differential I<sub>DD</sub> measurement between reset configuration (SPI disabled) and a permanent SPI master communication at maximum speed (data sent equal to 55h). This measurement includes the pad toggling consumption.
- 4. Data based on a differential I<sub>DD</sub> measurement between SCI low power state (SCID=1) and a permanent SCI data transmit sequence.
- 5. Data based on a differential I<sub>DD</sub> measurement between reset configuration (I2C disabled) and a permanent I2C master communication at 100kHz (data sent equal to 55h). This measurement include the pad toggling consumption (27kOhm external pull-up on clock and data lines).
- 6. Data based on a differential I<sub>DD</sub> measurement between reset configuration and continuous A/D conversions.


## **12.8 I/O PORT PIN CHARACTERISTICS**

## 12.8.1 General Characteristics


Subject to general operating conditions for V<sub>DD</sub>, f<sub>OSC</sub>, and T<sub>A</sub> unless otherwise specified.

| Symbol                              | Parameter                                                | Conditions                                           |                       | Min                             | Тур | Max                             | Unit             |
|-------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------|---------------------------------|-----|---------------------------------|------------------|
| V <sub>IL</sub>                     | Input low level voltage 1)                               |                                                      |                       |                                 |     | $0.3 \mathrm{xV}_{\mathrm{DD}}$ |                  |
| V <sub>IH</sub>                     | Input high level voltage 1)                              | CMOS ports                                           |                       | $0.7 \mathrm{xV}_{\mathrm{DD}}$ |     |                                 | V                |
| V <sub>hys</sub>                    | Schmitt trigger voltage hysteresis 2)                    |                                                      |                       |                                 | 0.7 |                                 |                  |
| I <sub>INJ(PIN)</sub> <sup>3)</sup> | Injected Current on PC6 (Flash de-<br>vices only)        |                                                      |                       | 0                               |     | +4                              |                  |
|                                     | Injected Current on an I/O pin                           | V <sub>DD</sub> =5V                                  |                       |                                 |     | ± 4                             | mA               |
| $\Sigma I_{\rm INJ(PIN)}^{3)}$      | Total injected current (sum of all I/O and control pins) |                                                      |                       |                                 |     | ± 25                            |                  |
| ١L                                  | Input leakage current                                    | $V_{SS} \le V_{IN} \le V_{DD}$                       |                       |                                 |     | ±1                              | ۸                |
| ا <sub>S</sub>                      | Static current consumption                               | Floating inp                                         | ut mode <sup>4)</sup> |                                 | 400 |                                 | μA               |
| R <sub>PU</sub>                     | Weak pull-up equivalent resistor 5)                      | V <sub>IN</sub> =V <sub>SS</sub> V <sub>DD</sub> =5V |                       | 50                              | 120 | 250                             | kΩ               |
| C <sub>IO</sub>                     | I/O pin capacitance                                      |                                                      |                       |                                 | 5   |                                 | pF               |
| t <sub>f(IO)out</sub>               | Output high to low level fall time 1)                    | C <sub>L</sub> =50pF                                 |                       |                                 | 25  |                                 | 20               |
| t <sub>r(IO)out</sub>               | Output low to high level rise time <sup>1)</sup>         | Between 10% and 90%                                  |                       |                                 | 25  |                                 | ns               |
| t <sub>w(IT)in</sub>                | External interrupt pulse time <sup>6)</sup>              |                                                      |                       | 1                               |     |                                 | t <sub>CPU</sub> |

## Figure 81. Unused I/Os configured as input



## Figure 82. Typical I<sub>PU</sub> vs. V<sub>DD</sub> with V<sub>IN</sub>=V<sub>SS</sub>



#### Notes:

1. Data based on characterization results, not tested in production.

2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

3. When the current limitation is not possible, the V<sub>IN</sub> maximum must be respected, otherwise refer to  $I_{INJ(PIN)}$  specification. A positive injection is induced by  $V_{IN}$ >V<sub>DD</sub> while a negative injection is induced by  $V_{IN}$ <V<sub>SS</sub>. Refer to section 12.2.2 on page 139 for more details.

4. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example and leaving the I/O unconnected on the board or an external pull-up or pull-down resistor (see Figure 81). Static peak current value taken at a fixed  $V_{IN}$  value, based on design simulation and technology characteristics, not tested in production. This value depends on  $V_{DD}$  and temperature values.

5. The  $R_{PU}$  pull-up equivalent resistor is based on a resistive transistor (corresponding  $I_{PU}$  current characteristics described in Figure 82).

6. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external interrupt source.



## **12.9 CONTROL PIN CHARACTERISTICS**

## 12.9.1 Asynchronous RESET Pin

Subject to general operating conditions for  $V_{DD}$ ,  $f_{CPU}$ , and  $T_A$  unless otherwise specified.

| Symbol                                     | Parameter                                        | Conditions                                |  | Min | Тур | Max                              | Unit |
|--------------------------------------------|--------------------------------------------------|-------------------------------------------|--|-----|-----|----------------------------------|------|
| V <sub>IL</sub>                            | Input low level voltage 1)                       |                                           |  |     |     | $0.16 \mathrm{xV}_{\mathrm{DD}}$ | V    |
| V <sub>IH</sub>                            | Input high level voltage <sup>1)</sup>           |                                           |  |     |     |                                  | v    |
| V <sub>hys</sub>                           | Schmitt trigger voltage hysteresis <sup>2)</sup> |                                           |  |     | 2.5 |                                  | V    |
| V <sub>OL</sub>                            | Output low level voltage 3)                      | V <sub>DD</sub> =5V I <sub>IO</sub> =+2mA |  |     | 0.2 | 0.5                              | v    |
| I <sub>IO</sub>                            | Input current on RESET pin                       |                                           |  |     | 2   |                                  | mA   |
| R <sub>ON</sub>                            | Weak pull-up equivalent resistor                 |                                           |  | 20  | 30  | 120                              | kΩ   |
| tw(RSTL)out Generated reset pulse duration |                                                  | Stretch ap<br>external p                  |  | 0   |     | 42 <sup>6)</sup>                 | μs   |
| ( - )                                      |                                                  | Internal reset sources                    |  | 20  | 30  | 42 <sup>6)</sup>                 | μs   |
| t <sub>h(RSTL)in</sub>                     | External reset pulse hold time 4)                |                                           |  | 2.5 |     |                                  | μs   |
| t <sub>g(RSTL)in</sub>                     | Filtered glitch duration <sup>5)</sup>           |                                           |  |     | 200 |                                  | ns   |

#### Notes:

57/

1. Data based on characterization results, not tested in production.

2. Hysteresis voltage between Schmitt trigger switching levels.

3. The I<sub>IO</sub> current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of I<sub>IO</sub> (I/O ports and control pins) must not exceed I<sub>VSS</sub>.

4. To guarantee the reset of the device, a minimum pulse has to be applied to the  $\overrightarrow{\text{RESET}}$  pin. All short pulses applied on the RESET pin with a duration below  $t_{h(\text{RSTL})in}$  can be ignored.

5. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in noisy environments.

6. Data guaranteed by design, not tested in production.

## DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont'd)

## Table 30. Suggested List of Socket Types

| Device        | Socket (supplied with ST7MDT20M-<br>EMU3) | Emulator Adapter (supplied with<br>ST7MDT20M-EMU3) |
|---------------|-------------------------------------------|----------------------------------------------------|
| LQFP64 14 x14 | CAB 3303262                               | CAB 3303351                                        |
| LQFP64 10 x10 | YAMAICHI IC149-064-*75-*5                 | YAMAICHI ICP-064-6                                 |
| LQFP44 10 X10 | YAMAICHI IC149-044-*52-*5                 | YAMAICHI ICP-044-5                                 |

## 14.3.4 Socket and Emulator Adapter Information

For information on the type of socket that is supplied with the emulator, refer to the suggested list of sockets in Table 30.

**Note:** Before designing the board layout, it is recommended to check the overall dimensions of the socket as they may be greater than the dimensions of the device.

For footprint and other mechanical information about these sockets and adapters, refer to the manufacturer's datasheet.

#### **Related Documentation**

AN 978: ST7 Visual Develop Software Key Debugging Features

AN 1938: ST7 Visual Develop for ST7 Cosmic C toolset users

AN 1940: ST7 Visual Develop for ST7 Assembler Linker toolset users

## Table 31. ST7 Application Notes

| IDENTIFICATION | DESCRIPTION                                                                 |
|----------------|-----------------------------------------------------------------------------|
| AN1947         | ST7MC PMAC SINE WAVE MOTOR CONTROL SOFTWARE LIBRARY                         |
| GENERAL PURPO  |                                                                             |
| AN1476         | LOW COST POWER SUPPLY FOR HOME APPLIANCES                                   |
| AN1526         | ST7FLITE0 QUICK REFERENCE NOTE                                              |
| AN1709         | EMC DESIGN FOR ST MICROCONTROLLERS                                          |
| AN1752         | ST72324 QUICK REFERENCE NOTE                                                |
| PRODUCT EVALU  | ATION                                                                       |
| AN 910         | PERFORMANCE BENCHMARKING                                                    |
| AN 990         | ST7 BENEFITS VS INDUSTRY STANDARD                                           |
| AN1077         | OVERVIEW OF ENHANCED CAN CONTROLLERS FOR ST7 AND ST9 MCUS                   |
| AN1086         | U435 CAN-DO SOLUTIONS FOR CAR MULTIPLEXING                                  |
| AN1103         | IMPROVED B-EMF DETECTION FOR LOW SPEED, LOW VOLTAGE WITH ST72141            |
| AN1150         | BENCHMARK ST72 VS PC16                                                      |
| AN1151         | PERFORMANCE COMPARISON BETWEEN ST72254 & PC16F876                           |
| AN1278         | LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS                                  |
| PRODUCT MIGRA  | TION                                                                        |
| AN1131         | MIGRATING APPLICATIONS FROM ST72511/311/214/124 TO ST72521/321/324          |
| AN1322         | MIGRATING AN APPLICATION FROM ST7263 REV.B TO ST7263B                       |
| AN1365         | GUIDELINES FOR MIGRATING ST72C254 APPLICATIONS TO ST72F264                  |
| AN1604         | HOW TO USE ST7MDT1-TRAIN WITH ST72F264                                      |
| AN2200         | GUIDELINES FOR MIGRATING ST7LITE1X APPLICATIONS TO ST7FLITE1XB              |
| PRODUCT OPTIM  | ZATION                                                                      |
| AN 982         | USING ST7 WITH CERAMIC RESONATOR                                            |
| AN1014         | HOW TO MINIMIZE THE ST7 POWER CONSUMPTION                                   |
| AN1015         | SOFTWARE TECHNIQUES FOR IMPROVING MICROCONTROLLER EMC PERFORMANCE           |
| AN1040         | MONITORING THE VBUS SIGNAL FOR USB SELF-POWERED DEVICES                     |
| AN1070         | ST7 CHECKSUM SELF-CHECKING CAPABILITY                                       |
| AN1181         | ELECTROSTATIC DISCHARGE SENSITIVE MEASUREMENT                               |
| AN1324         | CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS          |
| AN1502         | EMULATED DATA EEPROM WITH ST7 HDFLASH MEMORY                                |
| AN1529         | EXTENDING THE CURRENT & VOLTAGE CAPABILITY ON THE ST7265 VDDF SUPPLY        |
| AN1530         | ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC OSCILLATOR |
| AN1605         | USING AN ACTIVE RC TO WAKEUP THE ST7LITE0 FROM POWER SAVING MODE            |
| AN1636         | UNDERSTANDING AND MINIMIZING ADC CONVERSION ERRORS                          |
| AN1828         | PIR (PASSIVE INFRARED) DETECTOR USING THE ST7FLITE05/09/SUPERLITE           |
| AN1946         | SENSORLESS BLDC MOTOR CONTROL AND BEMF SAMPLING METHODS WITH ST7MC          |
| AN1953         | PFC FOR ST7MC STARTER KIT                                                   |
| AN1971         | ST7LITE0 MICROCONTROLLED BALLAST                                            |
| PROGRAMMING A  |                                                                             |
| AN 978         | ST7 VISUAL DEVELOP SOFTWARE KEY DEBUGGING FEATURES                          |
| AN 983         | KEY FEATURES OF THE COSMIC ST7 C-COMPILER PACKAGE                           |
| AN 985         | EXECUTING CODE IN ST7 RAM                                                   |
| AN 986         | USING THE INDIRECT ADDRESSING MODE WITH ST7                                 |
| AN 987         | ST7 SERIAL TEST CONTROLLER PROGRAMMING                                      |
| AN 988         | STARTING WITH ST7 ASSEMBLY TOOL CHAIN                                       |
| AN1039         | ST7 MATH UTILITY ROUTINES                                                   |
|                |                                                                             |



| IDENTIFICATION      | DESCRIPTION                                                                          |  |  |
|---------------------|--------------------------------------------------------------------------------------|--|--|
| AN1071              | HALF DUPLEX USB-TO-SERIAL BRIDGE USING THE ST72611 USB MICROCONTROLLER               |  |  |
|                     |                                                                                      |  |  |
| AN1106              | TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7                                           |  |  |
| AN1179              | PROGRAMMING ST7 FLASH MICROCONTROLLERS IN REMOTE ISP MODE (IN-SITU PRO-<br>GRAMMING) |  |  |
| AN1446              | USING THE ST72521 EMULATOR TO DEBUG AN ST72324 TARGET APPLICATION                    |  |  |
| AN1477              | EMULATED DATA EEPROM WITH XFLASH MEMORY                                              |  |  |
| AN1527              | DEVELOPING A USB SMARTCARD READER WITH ST7SCR                                        |  |  |
| AN1575              | ON-BOARD PROGRAMMING METHODS FOR XFLASH AND HDFLASH ST7 MCUS                         |  |  |
| AN1576              | IN-APPLICATION PROGRAMMING (IAP) DRIVERS FOR ST7 HDFLASH OR XFLASH MCUS              |  |  |
| AN1577              | DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION FOR ST7 USB APPLICATIONS                |  |  |
| AN1601              | SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL                                             |  |  |
| AN1603              | USING THE ST7 USB DEVICE FIRMWARE UPGRADE DEVELOPMENT KIT (DFU-DK)                   |  |  |
| AN1635              | ST7 CUSTOMER ROM CODE RELEASE INFORMATION                                            |  |  |
| AN1754              | DATA LOGGING PROGRAM FOR TESTING ST7 APPLICATIONS VIA ICC                            |  |  |
| AN1796              | FIELD UPDATES FOR FLASH BASED ST7 APPLICATIONS USING A PC COMM PORT                  |  |  |
| AN1900              | HARDWARE IMPLEMENTATION FOR ST7DALI-EVAL                                             |  |  |
| AN1904              | ST7MC THREE-PHASE AC INDUCTION MOTOR CONTROL SOFTWARE LIBRARY                        |  |  |
| AN1905              | ST7MC THREE-PHASE BLDC MOTOR CONTROL SOFTWARE LIBRARY                                |  |  |
| SYSTEM OPTIMIZATION |                                                                                      |  |  |
| AN1711              | SOFTWARE TECHNIQUES FOR COMPENSATING ST7 ADC ERRORS                                  |  |  |
| AN1827              | IMPLEMENTATION OF SIGMA-DELTA ADC WITH ST7FLITE05/09                                 |  |  |
| AN2009              | PWM MANAGEMENT FOR 3-PHASE BLDC MOTOR DRIVES USING THE ST7FMC                        |  |  |
| AN2030              | BACK EMF DETECTION DURING PWM ON TIME BY ST7MC                                       |  |  |

## Table 31. ST7 Application Notes

## TNZ Y

jrne OUT

LD A, sema ; check the semaphore status if edge is detected

CP A,#01

jrne OUT

call call\_routine; call the interrupt routine

OUT:LD A,#00

LD sema,A

.call\_routine ; entry to call\_routine

PUSH A

PUSH X

PUSH CC

.ext1\_rt ; entry to interrupt routine

LD A,#00

LD sema,A

IRET

**Case 2:** Writing to PxOR or PxDDR with Global Interrupts Disabled:

SIM ; set the interrupt mask

LD A,PFDR

AND A,#\$02

LD X,A ; store the level before writing to  $\ensuremath{\mathsf{PxOR/PxDDR}}$ 

LD A,#\$90

LD PFDDR,A; Write into PFDDR

LD A,#\$ff

LD PFOR,A ; Write to PFOR

LD A, PFDR

AND A,#\$02

LD Y,A ; store the level after writing to PxOR/ PxDDR

LD A,X ; check for falling edge

cp A,#\$02

jrne OUT

TNZ Y

irne OUT

LD A,#\$01

LD sema, A  $\,$  ; set the semaphore to '1' if edge is detected

RIM ; reset the interrupt mask

LD A,sema ; check the semaphore status

CP A,#\$01

jrne OUT call call\_routine; call the interrupt routine RIM OUT: RIM JP while\_loop .call\_routine ; entry to call\_routine PUSH A PUSH A PUSH CC .ext1\_rt ; entry to interrupt routine LD A,#\$00 LD sema,A IRET

## 15.1.6 Clearing active interrupts outside interrupt routine

When an active interrupt request occurs at the same time as the related flag is being cleared, an unwanted reset may occur.

**Note:** clearing the related interrupt mask will not generate an unwanted reset

## **Concurrent interrupt context**

The symptom does not occur when the interrupts are handled normally, i.e.

when:

- The interrupt flag is cleared within its own interrupt routine
- The interrupt flag is cleared within any interrupt routine
- The interrupt flag is cleared in any part of the code while this interrupt is disabled

If these conditions are not met, the symptom can be avoided by implementing the following sequence:

Perform SIM and RIM operation before and after resetting an active interrupt request.

Example:

SIM

reset interrupt flag

RIM

## Nested interrupt context:

The symptom does not occur when the interrupts are handled normally, i.e.

when:

 The interrupt flag is cleared within its own interrupt routine

## **16 REVISION HISTORY**

## Table 32. Revision History

| Date        | Revision | Description of Changes                                                                                                                                                                                                                                                                                                  |
|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |          | Added "related documentation" section in specific chapters throughout document                                                                                                                                                                                                                                          |
|             |          | Flash readout protection sentence added section 4.3.1 on page 18                                                                                                                                                                                                                                                        |
|             |          | I <sup>2</sup> C Chapter updated, (Section 10.7)                                                                                                                                                                                                                                                                        |
|             |          | Vt POR max modified in section 12.4 on page 142                                                                                                                                                                                                                                                                         |
|             |          | Added Figure 89 on page 160                                                                                                                                                                                                                                                                                             |
|             |          | Modified description of t <sub>w(RSTL)out</sub> in "Asynchronous RESET Pin" on page 159                                                                                                                                                                                                                                 |
| 18-Oct-2004 | 1.10     | Added Note on PE2 pin in Table 2, "Device Pin Description," on page 10                                                                                                                                                                                                                                                  |
| 10-001-2004 | 1.10     | Modified V <sub>AREF</sub> min in "10-BIT ADC CHARACTERISTICS" on page 167                                                                                                                                                                                                                                              |
|             |          | Modified I <sub>INJ</sub> for PC6 in Section 12.8                                                                                                                                                                                                                                                                       |
|             |          | Updated ADC accuracy data and notes in section 12.12.3 on page 170 and "KNOWN LIM-<br>ITATIONS" on page 186                                                                                                                                                                                                             |
|             |          | Added "Clearing active interrupts outside interrupt routine" on page 187                                                                                                                                                                                                                                                |
|             |          | I2C multimaster bug added in Known Limitations, Section 15.1.10                                                                                                                                                                                                                                                         |
|             |          | Please read carefully the "KNOWN LIMITATIONS" on page 186                                                                                                                                                                                                                                                               |
|             |          | Updated root part numbers and device summary table on coverpage.                                                                                                                                                                                                                                                        |
|             |          | Removed temperature ranges 1, 5, and 7.                                                                                                                                                                                                                                                                                 |
|             |          | Renamed all TQFP packages, LQFP.                                                                                                                                                                                                                                                                                        |
|             |          | Updated note 6 below Table 2, "Device Pin Description," on page 10.                                                                                                                                                                                                                                                     |
|             |          | Updated data retention in "Features" and Section 12.6.2 FLASH Memory.                                                                                                                                                                                                                                                   |
|             |          | Updated Figure 50 "Output Compare Timing Diagram, fTIMER = fCPU/4" .                                                                                                                                                                                                                                                    |
|             |          | Updated Figure 94 "SPI Master Timing Diagram 1)" .                                                                                                                                                                                                                                                                      |
|             |          | Added Section 10.8.3.3 "Changing the conversion channel" on page 129.                                                                                                                                                                                                                                                   |
|             |          | Modified "Absolute Maximum Ratings (Electrical Sensitivity)" on page 155.                                                                                                                                                                                                                                               |
| 13-Mar-2009 | 2        | Update Note 4 in Section 12.8 I/O PORT PIN CHARACTERISTICS "General Characteris-<br>tics" .                                                                                                                                                                                                                             |
|             |          | Updated notes in Section 13.2 THERMAL CHARACTERISTICS.                                                                                                                                                                                                                                                                  |
|             |          | Removed recommended wave soldering profile and recommended reflow soldering oven profile, and added ECOPACK text in "SOLDERING AND GLUEABILITY INFORMATION" on page 174 (Section 13.3).                                                                                                                                 |
|             |          | Removed automotive temperature ranges from Section 12.3.1 General Operating Condi-<br>tions, and from Figure 106 "ROM Factory Coded Device Types" and option list. Modified<br>Section 14.2 "DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER<br>CODE" on page 177: replace list or order codes by ordering scheme. |
|             |          | Added Section 15.1.5 External interrupt missed, and Section 15.2.1 Internal RC Oscillator with LVD inSection 15 KNOWN LIMITATIONS. Modified Section 15.1.9 "TIMD set simultaneously with OC interrupt" on page 189.                                                                                                     |