

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	TriCore™
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	ASC, CANbus, EBI/EMI, MLI, MSC, SSC
Peripherals	DMA, POR, WDT
Number of I/O	219
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	224K x 8
Voltage - Supply (Vcc/Vdd)	1.42V ~ 1.58V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BBGA
Supplier Device Package	PG-BGA-416-10
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/tc1197256f180eackxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-Bit

TC1197 32-Bit Single-Chip Microcontroller

Data Sheet V1.1 2009-05

Microcontrollers

Table 3	Access Terms
Symbol	Description
U	Access Mode: Access permitted in User Mode 0 or 1.
	Reset Value: Value or bit is not changed by a reset operation.
SV	Access permitted in Supervisor Mode.
R	Read-only register.
32	Only 32-bit word accesses are permitted to this register/address range.
E	Endinit-protected register/address.
PW	Password-protected register/address.
NC	No change, indicated register is not changed.
BE	Indicates that an access to this address range generates a Bus Error.
nBE	Indicates that no Bus Error is generated when accessing this address range, even though it is either an access to an undefined address or the access does not follow the given rules.
nE	Indicates that no Error is generated when accessing this address or address range, even though the access is to an undefined address or address range. True for CPU accesses (MTCR/MFCR) to undefined addresses in the CSFR range.

2.1.5 Abbreviations and Acronyms

The following acronyms and terms are used in this document:

Analog-to-Digital Converter
Address General Purpose Register
Arithmetic and Logic Unit
Asynchronous/Synchronous Serial Controller
Bus Control Unit
Boot ROM & Test ROM
Controller Area Network
PCP Code Memory
Complex Instruction Set Computing
CPU Slave Interface
Central Processing Unit

2.5.6.1 Functionality of GPTA0

The General Purpose Timer Array (GPTA0) provides a set of hardware modules required for high-speed digital signal processing:

- Filter and Prescaler Cells (FPC) support input noise filtering and prescaler operation.
- Phase Discrimination Logic units (PDL) decode the direction information output by a rotation tracking system.
- Duty Cycle Measurement Cells (DCM) provide pulse-width measurement capabilities.
- A Digital Phase Locked Loop unit (PLL) generates a programmable number of GPTA module clock ticks during an input signal's period.
- Global Timer units (GT) driven by various clock sources are implemented to operate as a time base for the associated Global Timer Cells.
- Global Timer Cells (GTC) can be programmed to capture the contents of a Global Timer on an external or internal event. A GTC may also be used to control an external port pin depending on the result of an internal compare operation. GTCs can be logically concatenated to provide a common external port pin with a complex signal waveform.
- Local Timer Cells (LTC) operating in Timer, Capture, or Compare Mode may also be logically tied together to drive a common external port pin with a complex signal waveform. LTCs – enabled in Timer Mode or Capture Mode – can be clocked or triggered by various external or internal events.
- On-chip Trigger and Gating Signals (OTGS) can be configured to provide trigger or gating signals to integrated peripherals.

Input lines can be shared by an LTC and a GTC to trigger their programmed operation simultaneously.

The following list summarizes the specific features of the GPTA units.

Clock Generation Unit

- Filter and Prescaler Cell (FPC)
 - Six independent units
 - Three basic operating modes:
 Prescaler, Delayed Debounce Filter, Immediate Debounce Filter
 - Selectable input sources:
 Port lines, GPTA module clock, FPC output of preceding FPC cell
 - Selectable input clocks: GPTA module clock, prescaled GPTA module clock, DCM clock, compensated or uncompensated PLL clock.
 - $f_{\text{GPTA}}/2$ maximum input signal frequency in Filter Modes
 - Phase Discriminator Logic (PDL)
 - Two independent units
 - Two operating modes (2- and 3- sensor signals)

On-chip Trigger Unit

• 16 on-chip trigger signals

I/O Sharing Unit

 Interconnecting inputs and outputs from internal clocks, FPC, GTC, LTC, ports, and MSC interface

2.5.6.2 Functionality of LTCA2

The Local Timer Cell Array (LTCA2) provides a set of hardware modules required for high-speed digital signal processing:

 Local Timer Cells (LTC) operating in Timer, Capture, or Compare Mode may also be logically tied together to drive a common external port pin with a complex signal waveform. LTCs – enabled in Timer Mode or Capture Mode – can be clocked or triggered by various external or internal events.

The following list summarizes the specific features of the LTCA unit.

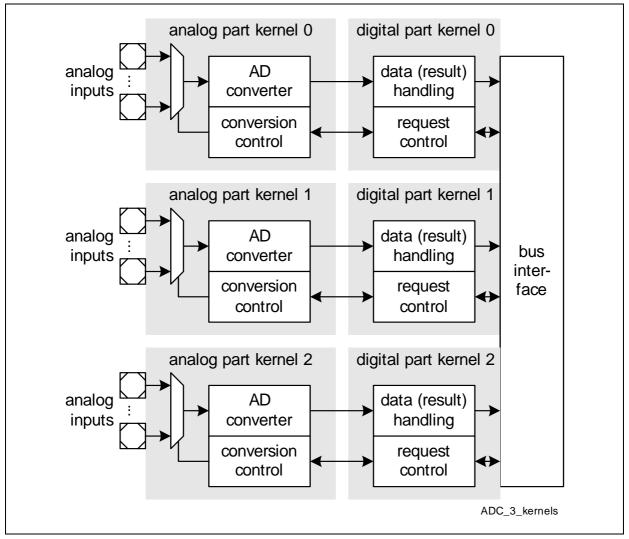
The Local Timer Arrays (LTCA2) provides a set of hardware modules required for highspeed digital signal processing:

Signal Generation Unit

- Local Timer Cell (LTC)
 - 32 independent units
 - Three basic operating modes (Timer, Capture and Compare) for 63 units
 - Special compare modes for one unit
 - 16-bit data width
 - $-f_{\rm GPTA}$ maximum resolution
 - $f_{GPTA}/2$ maximum input signal frequency

I/O Sharing Unit

• Interconnecting inputs and outputs from internal clocks, LTC, ports, and MSC interface



2.5.7 Analog-to-Digital Converters

The TC1197 includes three Analog to Digital Converter modules (ADC0, ADC1, ADC2) and one Fast Analog to Digital Converter (FADC).

2.5.7.1 ADC Block Diagram

The analog to digital converter module (ADC) allows the conversion of analog input values into discrete digital values based on the successive approximation method. This module contains 3 independent kernels (ADC0, ADC1, ADC2) that can operate autonomously or can be synchronized to each other. An ADC kernel is a unit used to convert an analog input signal (done by an analog part) and provides means for triggering conversions, data handling and storage (done by a digital part).

Features of the analog part of each ADC kernel:

2.5.8 External Bus Interface

The External Bus Unit (EBU) of the TC1197 controls the accesses from peripheral units to external memories.

Features:

- 64-bit internal LMB interface
- 32-bit demultiplexed / 16-bit multiplexed external bus interface (3.3V, 2.5V)
 - Support for Intel-style and Motorola-style interface signals
 - Support for Burst Flash memory devices
 - Flexibly programmable access parameters
 - Programmable chip select lines
 - Little-endian support
- Examples for memories that has to be supported
 - Burst Flash:
 - Spansion: S29CD016, S29CD032
 - Spansion: S29CL032J1RFAM010 @3,3V
 - ST: M58BW016, M58BW032
 - ST: M58BW032GB B45ZA3T @3,3V
 - Flash (for 16 bit muxed mode):
 - http://www.spansion.com/products/Am29LV160B.html
 - SRAM (for 16 bit muxed mode):
 - http://www.idt.com/products/files/10372/71V016saautomotive.pdf
 - http://213.174.55.51/zmd.biz/pdf/ UL62H1616A.pdf
 - IDT 71V416YS15BEI
- Scalable external bus frequency
 - Derived from LMB frequency (f_{CPU}) divided by 1, 2, 3, or 4
 - Maximum 75 MHz¹⁾
- Data buffering supported
 - Code prefetch buffer
 - Read/write buffer

2.6 On-Chip Debug Support (OCDS)

The TC1197 contains resources for different kinds of "debugging", covering needs from software development to real-time-tuning. These resources are either embedded in specific modules (e.g. breakpoint logic of the TriCore) or part of a central peripheral (known as CERBERUS).

¹⁾ Maximum frequency of today available automotive Burst Flash devices.

TC1197

Pinning

Pin	Symbol	Ctrl.	Туре	Function
B5	P0.9	I/O0	A1/	Port 0 General Purpose I/O Line 9
	Reserved	I	PU	-
	Reserved	01		-
	Reserved	O2		-
	Reserved	O3	-	-
C6	P0.10	I/O0	A2/	Port 0 General Purpose I/O Line 10
	Reserved	01	PU	-
	Reserved	O2		-
	Reserved	O3	-	-
D6	P0.11	I/O0	A2/	Port 0 General Purpose I/O Line 11
	Reserved	01	PU	-
	Reserved	02		-
	Reserved	O3	_	-
C5	P0.12	I/O0	A2/ PU	Port 0 General Purpose I/O Line 12
	Reserved	01		-
	Reserved	O2		-
	Reserved	O3	_	-
D5	P0.13	I/O0	A1/	Port 0 General Purpose I/O Line 13
	Reserved	I	PU	-
	Reserved	01		-
	Reserved	O2	1	-
	Reserved	O3	1	-
A5	P0.14	I/O0	A2/	Port 0 General Purpose I/O Line 14
	Reserved	01	PU	-
	Reserved	O2	1	-
	Reserved	O3		-

Table 4Pin Definitions and Functions (BGA-416 Package) (cont'd)

Iable			1	Inctions (BGA-416 Package) (cont d)
Pin	Symbol	Ctrl.	Туре	Function
M1	P1.10	I/O0	A1/	Port 1 General Purpose I/O Line 10
	RVALID0A	I	PU	MLI0 Receive Channel valid Input A
	OUT66	01		OUT66 Line of GPTA0
	OUT66	O2		OUT66 Line of GPTA1
	OUT90	O3		OUT90 Line of LTCA2
L4	P1.11	I/O0	A1/	Port 1 General Purpose I/O Line 11
	RData0A	I	PU	MLI0 Receive Channel Data Input A
	OUT67	01		OUT67 Line of GPTA0
	OUT67	02		OUT67 Line of GPTA1
	OUT91	O3		OUT91 Line of LTCA2
P4	P1.12	I/O0	A2/ PU	Port 1 General Purpose I/O Line 12
	EXTCLK0	01		External Clock Output 0
	OUT68	02		OUT68 Line of GPTA0
	OUT68	O3		OUT68 Line of GPTA1
L3	P1.13	I/O0	A1/	Port 1 General Purpose I/O Line 13
	RCLK0B	I	PU	MLI0 Receive Channel Clock Input B
	OUT69	01	-	OUT69 Line of GPTA0
	OUT69	02		OUT69 Line of GPTA1
	OUT93	O3	1	OUT93 Line of LTCA2
L2	P1.14	I/O0	A1/	Port 1 General Purpose I/O Line 14
	RVALID0B	I	PU	MLI0 Receive Channel valid Input B
	OUT70	01	1	OUT70 Line of GPTA0
	OUT70	02	1	OUT70 Line of GPTA1
	OUT94	O3	1	OUT94 Line of LTCA2

Pin	Symbol	Ctrl.	Туре	Function
H1	P8.1	I/O0	A1/	Port 8 General Purpose I/O Line 1
	IN41	1	PU	I/O Line of GPTA0
	IN41	1	-	I/O Line of GPTA1
	TREADY1A	1	_	MLI1 Transmit Channel ready Input A
	OUT41	01		I/O Line of GPTA0
	OUT41	02		I/O Line of GPTA1
	Reserved	O3	-	-
J3	P8.2	I/O0	A2/	Port 8 General Purpose I/O Line 2
	IN42	1	PU	I/O Line of GPTA0
	IN42	1	-	I/O Line of GPTA1
	OUT42	01	-	I/O Line of GPTA0
	OUT42	02	-	I/O Line of GPTA1
	TVALID1A	O3		MLI1 Transmit Channel valid Output A
J2	P8.3	I/O0	A2/ PU	Port 8 General Purpose I/O Line 3
	IN43	I		I/O Line of GPTA0
	IN43	1	-	I/O Line of GPTA1
	OUT43	01		I/O Line of GPTA0
	OUT43	02	-	I/O Line of GPTA1
	TData1	O3	-	MLI1 Transmit Channel Data Output A
J1	P8.4	I/O0	A1/	Port 8 General Purpose I/O Line 4
	IN44	I	PU	I/O Line of GPTA0
	IN44	1	-	I/O Line of GPTA1
	RCLK1A	1	-	MLI1 Receive Channel Clock Input A
	OUT44	01	1	I/O Line of GPTA0
	OUT44	02	-	I/O Line of GPTA1
	Reserved	O3	-	-

Table 4 Pin Definitions and Functions (BGA-416 Package) (cont'd)

Pin	Symbol	Ctrl.	Туре	Function
A19	P9.0	I/O0	A2/	Port 9 General Purpose I/O Line 0
	IN48	1	PU	I/O Line of GPTA0
	IN48		-	I/O Line of GPTA1
	OUT48	01	-	I/O Line of GPTA0
	OUT48	O2	-	I/O Line of GPTA1
	EN12	O3	-	MSC1 Device Select Output 2
B19	P9.1	I/O0	A2/	Port 9 General Purpose I/O Line 1
	IN49	I	PU	I/O Line of GPTA0
	IN49	I		I/O Line of GPTA1
	OUT49	01		I/O Line of GPTA0
	OUT49	02		I/O Line of GPTA1
	EN11	O3		MSC1 Device Select Output 1
B20	P9.2	I/O0	A2/	Port 9 General Purpose I/O Line 2
	IN50	I	PU	I/O Line of GPTA0
	IN50	I		I/O Line of GPTA1
	OUT50	01		I/O Line of GPTA0
	OUT50	02		I/O Line of GPTA1
	SOP1B	O3		MSC1 serial Data Output
A20	P9.3	I/O0	A2/	Port 9 General Purpose I/O Line 3
	IN51	I	PU	I/O Line of GPTA0
	IN51	I		I/O Line of GPTA1
	OUT51	01		I/O Line of GPTA0
	OUT51	02		I/O Line of GPTA1
	FCLP1B	O3	1	MSC1 Clock Output

Table 4Pin Definitions and Functions (BGA-416 Package) (cont'd)

Pin	Symbol	Ctrl.	Туре	Function
U24	P13.9	I/O0	B1/	Port 13 General Purpose I/O Line 9
	AD9		PU	EBU Address/Data Bus Line 9
	OUT97	01		OUT97 Line of GPTA0
	OUT97	02		OUT97 Line of GPTA1
	OUT89	O3		OUT89 Line of LTCA2
	AD9	0		EBU Address/Data Bus Line 9
	P13.10	I/O0	B1/	Port 13 General Purpose I/O Line 10
	AD10	1	PU	EBU Address/Data Bus Line 10
	OUT98	01		OUT98 Line of GPTA0
	OUT98	O2		OUT98 Line of GPTA1
	OUT90	O3		OUT90 Line of LTCA2
	AD10	0		EBU Address/Data Bus Line 10
AA26	P13.11	I/O0	B1/ PU	Port 13 General Purpose I/O Line 11
	AD11	I		EBU Address/Data Bus Line 11
	OUT99	01		OUT99 Line of GPTA0
	OUT99	O2		OUT99 Line of GPTA1
	OUT91	O3		OUT91 Line of LTCA2
	AD11	0		EBU Address/Data Bus Line 11
W25	P13.12	I/O0	B1/	Port 13 General Purpose I/O Line 12
	AD12	Ι	PU	EBU Address/Data Bus Line 12
	OUT100	01	-	OUT100 Line of GPTA0
	OUT100	O2		OUT100 Line of GPTA1
	OUT92	O3	-	OUT92 Line of LTCA2
	AD12	0	1	EBU Address/Data Bus Line 12

Table 4Pin Definitions and Functions (BGA-416 Package) (cont'd)

Pin	Symbol	Ctrl.	Туре	Function
AA25	P14.1	I/O0	B1/	Port 14 General Purpose I/O Line 1
	AD17	1	PU	EBU Address/Data Bus Line 17
	OUT97	01	-	OUT97 Line of GPTA0
	OUT97	02	-	OUT97 Line of GPTA1
	OUT97	O3		OUT97 Line of LTCA2
	AD17	0		EBU Address/Data Bus Line 17
Y24	P14.2	I/O0	B1/	Port 14 General Purpose I/O Line 2
	AD18	I	PU	EBU Address/Data Bus Line 18
	OUT98	01	1	OUT98 Line of GPTA0
	OUT98	02		OUT98 Line of GPTA1
	OUT98	O3		OUT98 Line of LTCA2
	AD18	0		EBU Address/Data Bus Line 18
AA23	P14.3	I/O0	B1/ PU	Port 14 General Purpose I/O Line 3
	AD19	I		EBU Address/Data Bus Line 19
	OUT99	01		OUT99 Line of GPTA0
	OUT99	O2		OUT99 Line of GPTA1
	OUT99	O3		OUT99 Line of LTCA2
	AD19	0		EBU Address/Data Bus Line 19
AB25	P14.4	I/O0	B1/	Port 14 General Purpose I/O Line 4
	AD20	I	PU	EBU Address/Data Bus Line 20
	OUT100	01		OUT100 Line of GPTA0
	OUT100	O2		OUT100 Line of GPTA1
	OUT100	O3		OUT100 Line of LTCA2
	AD20	0	1	EBU Address/Data Bus Line 20

Table 4Pin Definitions and Functions (BGA-416 Package) (cont'd)

Pin	Symbol	Ctrl.	Туре	Function
AE20	P15.11	I/O0	B1/	Port 15 General Purpose I/O Line 11
	WAIT	I	PU	Wait Input for inserting Wait-States
	Reserved	01	-	-
	Reserved	02	-	•
	Reserved	O3	-	•
AF19	P15.12	I/O0	B1/	Port 15 General Purpose I/O Line 12
	Reserved	01	PU	•
	Reserved	02	-	•
	Reserved	O3	-	•
	MR/W	0	-	Motorola-style Read/Write Control Signal
AF23	P15.13	I/O0	B1/	Port 15 General Purpose I/O Line 13
	Reserved	01	PU	•
	Reserved	02	-	•
	Reserved	O3	-	•
	BAA	0	-	Burst Address Advance Output
AF24	P15.14	I/O0	B1/	Port 15 General Purpose I/O Line 14
	BFCLKI	1	PU	Burst FLASH Clock Input (Clock Feedback).
	Reserved	01		•
	Reserved	02	-	•
	Reserved	O3	-	•
AF25	P15.15	I/O0	B2/	Port 15 General Purpose I/O Line 15
	Reserved	01	PU	-
	Reserved	02	1	-
	Reserved	O3	1	-
	BFCLKO	0	-	Burst Mode Flash Clock Output (Non- Differential)

Table 4Pin Definitions and Functions (BGA-416 Package) (cont'd)

5.1.2 Pad Driver and Pad Classes Summary

This section gives an overview on the different pad driver classes and its basic characteristics. More details (mainly DC parameters) are defined in the Section 5.2.1.

Class	Power Supply	Туре	Sub Class	Speed Grade	Load	Leakage ¹⁾	Termination
A	3.3 V	LVTTL I/O,	A1 (e.g. GPIO)	6 MHz	100 pF	500 nA	No
		LVTTL outputs	A2 (e.g. serial I/Os)	40 MHz	50 pF	6 μΑ	Series termination recommended
В	2.375 - 3.6 V ²⁾	LVTTL I/O	B1 (e.g. Ext. Bus Interface)	40 MHz	50 pF	6 μΑ	No
			B2 (e.g. Bus Clock)	75 MHz	35 pF		Series termination recommended (for $f > 25$ MHz
F	3.3 V	LVDS/ CMOS	-	50 MHz	_	_	Parallel termination ³⁾ , 100 $\Omega \pm 10\%$
DE	5 V	ADC	-	-	_	_	see Table 11

 Table 6
 Pad Driver and Pad Classes Overview

1) Values are for $T_{\text{Jmax}} = 150 \text{ °C}$.

2) AC characteristics for EBU pins are valid for 2.5 V \pm 5% and 3.3 V \pm 5%.

3) In applications where the LVDS pins are not used (disabled), these pins must be either left unconnected, or properly terminated with the differential parallel termination of $100 \Omega \pm 10\%$.

3) The I_{DD} decreases by typically 70 mA if the f_{CPU} is decreased by 50 MHz, at constant T_{J} = 150°C, for the Realistic Pattern.

The dependency in this range is, at constant junction temperature, linear.

- 4) Not tested in production separately, verified by design / characterization.
- 5) This value assumes worst case of reading flash line with all cells erased. In case of 50% cells written with "1" and 50% cells written with "0", the maximum current drops down to 95 mA.
- Relevant for the power supply dimensioning, not for thermal considerations. In case of erase of Data Flash, internal flash array loading effects may generate transient current spikes of up to 15 mA for maximum 5 ms.
- 7) No GPIO and EBU activity, LVDS off
- 8) This value is relevant for the power supply dimensioning. The currents caused by the GPIO and EBU activity depend on the particular application and should be added separately. If two Flash modules are programmed in parallel, the current increase is 2 × 24 mA.

5.3.2 **Output Rise/Fall Times**

Table 17 **Output Rise/Fall Times** (Operating Conditions apply) **Parameter** Unit Note / Test Condition Symbol Values Typ. | Max. Min. Class A1 Pads Rise/fall times¹⁾ 50 Regular (medium) driver, 50 pF ns t_{RA1}, t_{FA1} 140 Regular (medium) driver, 150 pF 18000 Regular (medium) driver, 20 nF Weak driver, 20 pF 150 550 Weak driver, 150 pF 65000 Weak driver, 20 000 pF **Class A2 Pads** Rise/fall times 3.7 Strong driver, sharp edge, 50 pF ns t_{RA2}, t_{FA2} 1) 7.5 Strong driver, sharp edge, 100pF 7 Strong driver, med. edge, 50 pF 18 Strong driver, soft edge, 50 pF 50 Medium driver, 50 pF 140 Medium driver, 150 pF 18000 Medium driver, 20 000 pF 150 Weak driver, 20 pF Weak driver, 150 pF 550 65000 Weak driver, 20 000 pF Class B Pads 3.3V ± 5% **Rise/fall times** 3.0 35 pF $t_{\mathsf{RB}}, t_{\mathsf{FB}}$ ns 1)2) 3.7 50 pF 7.5 100 pF Class B Pads 2.5V ± 5% **Rise/fall times** 3.7 35 pF ns $t_{\rm RB}, t_{\rm FB}$ 1)3) 4.6 50 pF 9.0 100 pF Class F Pads **Rise/fall times** 2 LVDS Mode ns $t_{\rm RF1}, t_{\rm RF1}$ **Rise/fall times** 60 CMOS Mode, 50 pF ns $t_{\rm RF2}, t_{\rm RF2}$ 1) Not all parameters are subject to production test, but verified by design/characterization and test correlation.

2) Parameter test correlation for $V_{\text{DDEBU}} = 2.5 \text{ V} \pm 5\%$

3) Parameter test correlation for $V_{\text{DDEBU}} = 2.5 \text{ V} \pm 5\%$

5.3.6 BFCLKO Output Clock Timing

 $V_{SS} = 0 \text{ V}; V_{DD} = 1.5 \text{ V} \pm 5\%; V_{DDEBU} = 2.5 \text{ V} \pm 5\%$ and 3.3 V $\pm 5\%$,; $T_{A} = -40 \text{ °C to } +125 \text{ °C}; C_{L} = 35 \text{ pF}$

Table 20 DFGLRU Output Glock Tilling Parameters	Table 20	BFCLK0 Output Clock Timing Parameters ¹⁾
---	----------	---

Parameter	Sym	Symbol		Values	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition
BFCLKO clock period	t _{BFCL}	_{ко} СС	13.33 ²⁾	-	—	ns	_
BFCLKO high time	<i>t</i> ₅	CC	3	-	—	ns	_
BFCLKO low time	<i>t</i> ₆	CC	3	_	—	ns	_
BFCLKO rise time	<i>t</i> ₇	CC	_	-	3	ns	_
BFCLKO fall time	<i>t</i> ₈	СС	_	-	3	ns	-
BFCLKO duty cycle $t_5/(t_5 + t_6)^{3)}$	DC		45	50	55	%	_

1) Not subject to production test, verified by design/characterization.

2) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter parameters.

3) The PLL jitter is not included in this parameter. If the BFCLKO frequency is equal to f_{CPU} , the K divider has to be regarded.

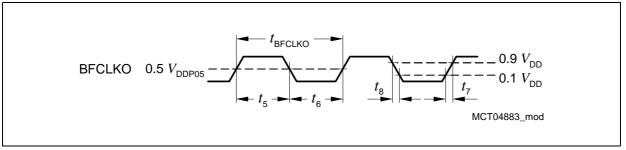


Figure 27 BFCLKO Output Clock Timing

5.3.7 JTAG Interface Timing

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Parameter	Symbol	Values			Unit	Note /	
		Min. Typ.		Max.		Test Condition	
TCK clock period	t ₁ SR	25	-	-	ns	_	
TCK high time	t_2 SR	12	-	-	ns	-	
TCK low time	t ₃ SR	10	_	_	ns	_	
TCK clock rise time	t ₄ SR	-	_	4	ns	_	
TCK clock fall time	t ₅ SR	-	_	4	ns	_	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	-	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	-	
TDO valid after TCK falling edge ¹⁾ (propagation delay)	t ₈ CC	-	_	13	ns	C _L = 50 pF	
	t ₈ CC	-	_	3	ns	C _L = 20 pF	
TDO hold after TCK falling edge ¹⁾	<i>t</i> ₁₈ CC	2	-	-	ns		
TDO high imped. to valid from TCK falling edge ¹⁾²⁾	t ₉ CC	-	-	14	ns	C _L = 50 pF	
TDO valid to high imped. from TCK falling edge ¹⁾	<i>t</i> ₁₀ CC	-	-	13.5	ns	C _L = 50 pF	

Table 21JTAG Interface Timing Parameters
(Operating Conditions apply)

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.

5.3.10.3 SSC Master/Slave Mode Timing

Table 30 SSC Master/Slave Mode Timing

(Operating Conditions apply), $C_L = 50 \text{ pF}$

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Con dition
Master Mode Timing							
SCLK clock period	<i>t</i> ₅₀	CC	$2 \times T_{\rm SSC}$	-	-	ns	1)2)3)
MTSR/SLSOx delay from SCLK rising edge	t ₅₁ (cc	0	-	8	ns	_
MRST setup to SCLK falling edge	t ₅₂	SR	13	-	-	ns	3)
MRST hold from SCLK falling edge	<i>t</i> ₅₃	SR	0	-	-	ns	3)
Slave Mode Timing						•	
SCLK clock period	<i>t</i> ₅₄	SR	$4 \times T_{\rm SSC}$	-	-	ns	1)3)
SCLK duty cycle	t_{55}/t_{54}	SR	45	-	55	%	-
MTSR setup to SCLK latching edge	t ₅₆	SR	$T_{\rm SSC}$ + 5	-	_	ns	3)4)
MTSR hold from SCLK latching edge	t ₅₇	SR	$T_{\rm SSC}$ + 5	-	-	ns	3)4)
SLSI setup to first SCLK shift edge	t ₅₈	SR	$T_{\rm SSC}$ + 5	-	-	ns	3)
SLSI hold from last SCLK latching edge	t ₅₉	SR	7	-	-	ns	-
MRST delay from SCLK shift edge	<i>t</i> ₆₀	СС	0	-	15	ns	-
SLSI to valid data on MRST	<i>t</i> ₆₁	CC	-	-	12	ns	 _

1) SCLK signal rise/fall times are the same as the A2 Pads rise/fall times.

2) SCLK signal high and low times can be minimum 1 \times $T_{\rm SSC}$.

3) $T_{\text{SSCmin}} = T_{\text{SYS}} = 1/f_{\text{SYS}}$. When $f_{\text{SYS}} = 90$ MHz, $t_{50} = 22.2$ ns.

4) Fractional divider switched off, SSC internal baud rate generation used.

5.4 Package and Reliability

5.4.1 Package Parameters

Table 31Thermal Characteristics of the Package

Device	Package	R _O JCT ¹⁾	R _O JCB ¹⁾	Unit	Note
TC1197	PG-BGA-416-10	4	6	K/W	

1) The top and bottom thermal resistances between the case and the ambient (R_{TCAT} , R_{TCAB}) are to be combined with the thermal resistances between the junction and the case given above (R_{TJCT} , R_{TJCB}), in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}). The thermal resistances between the case and the ambient (R_{TCAT} , R_{TCAB}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances.