

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f86j72t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	7
2.0	Guidelines for Getting Started with PIC18FJ Microcontrollers	19
3.0	Oscillator Configurations	
4.0	Power-Managed Modes	
5.0	Reset	
6.0	Memory Organization	51
7.0	Flash Program Memory	
8.0	8 x 8 Hardware Multiplier	83
9.0	Interrupts	85
10.0	I/O Ports	101
11.0	Timer0 Module	120
12.0	Timer1 Module	123
13.0	Timer2 Module	129
14.0	Timer3 Module	131
15.0	Real-Time Clock and Calendar (RTCC)	134
16.0	Capture/Compare/PWM (CCP) Modules	151
17.0	Liquid Crystal Display (LCD) Driver Module	
18.0	Master Synchronous Serial Port (MSSP) Module	187
19.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	231
20.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)	252
21.0	12-Bit Analog-to-Digital Converter (A/D) Module	
22.0	Dual-Channel, 24-Bit Analog Front End (AFE)	275
23.0	Comparator Module	
24.0	Comparator Voltage Reference Module	290
25.0	Charge Time Measurement Unit (CTMU)	293
26.0	Special Features of the CPU	308
27.0	Instruction Set Summary	321
28.0	Development Support	
29.0	Electrical Characteristics	
30.0	Packaging Information	417
Appe	andix A: Revision History	
Appe	endix B: Dual-Channel, 24-Bit AFE Reference	421
The I	Microchip Website	451
Custo	omer Change Notification Service	451
Custo	omer Support	451
Prod	uct Identification System	452

PIC18F86J72

TABLE 1-2: PIC18F8XJ72 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Nome	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF1/AN6/C2OUT/ SEG19 RF1 AN6 C2OUT SEG19	21	I/O I O O	ST Analog — Analog	Digital I/O. Analog Input 6. Comparator 2 output. SEG19 output for LCD.
RF2/AN7/C1OUT/ SEG20 RF2 AN7 C1OUT	18	I/O I O	ST Analog	Digital I/O. Analog Input 7. Comparator 1 output.
SEG20 RF3/AN8/SEG21/	17	0	Analog	SEG20 output for LCD.
C2INB RF3 AN8 SEG21 C2INB		I/O I O I	ST Analog Analog Analog	Digital I/O. Analog Input 8. SEG21 output for LCD. Comparator 2 Input B.
RF4/AN9/SEG22/ C2INA RF4 AN9 SEG22 C2INA	16	I/O 0 	ST Analog Analog Analog	Digital I/O. Analog Input 9. SEG22 output for LCD Comparator 2 Input A.
RF5/AN10/CVREF/ SEG23/C1INB RF5 AN10 CVREF SEG23 C1INB	15	I/O I O I	ST Analog Analog Analog Analog	Digital I/O. Analog Input 10. Comparator reference voltage output. SEG23 output for LCD. Comparator 1 Input B.
RF6/AN11/SEG24/ C1INA RF6 AN11 SEG24 C1INA	14	I/O I O I	ST Analog Analog Analog	Digital I/O. Analog Input 11. SEG24 output for LCD Comparator 1 Input A.
RF7/AN5/SS/SEG25 RF7 AN5 SS SEG25	13	I/O O I O	ST Analog TTL Analog	Digital I/O. Analog Input 5. SPI slave select input. SEG25 output for LCD.
Legend: TTL = TTL ST = Sch I^2C = I^2C , I = Inpu P = Pow	compatible inp mitt Trigger inp /SMBus compa ut ver	out out with tible inp	CMOS le	CMOS = CMOS compatible input or output Analog = Analog input OD = Open-Drain (no P diode to VDD) O = Output

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

5.7 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR} , are set or cleared differently in different Reset situations, as indicated in Table 5-1. These bits are used in software to determine the nature of the Reset.

Table 5-2 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

TABLE 5-1:	STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
	RCON REGISTER

Condition	Program		RC	STKPTR Register				
Condition	Counter ⁽¹⁾	RI	ТО	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	0	0	0	0
RESET Instruction	0000h	0	u	u	u	u	u	u
Brown-out Reset	0000h	1	1	1	u	0	u	u
MCLR during power-managed Run modes	0000h	u	1	u	u	u	u	u
MCLR during power-managed Idle modes and Sleep mode	0000h	u	1	0	u	u	u	u
WDT time-out during full power or power-managed Run modes	0000h	u	0	u	u	u	u	u
MCLR during full power execution	0000h	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u	u	u	u	u	u	1
WDT time-out during power-managed Idle or Sleep modes	PC + 2	u	0	0	u	u	u	u
Interrupt exit from power-managed modes	PC + 2	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

9.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7	GIE/GIEH: Global Interrupt Enable bit
	When IPEN = 0:
	1 = Enables all unmasked interrupts
	0 – Disables all interrupts When IDEN – 1:
	1 = Enables all high-priority interrupts
	0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit
	When IPEN = 0:
	1 = Enables all unmasked peripheral interrupts
	0 = Disables all peripheral interrupts
	$\frac{\text{VIIIIII} \text{IPEN} = 1}{1 = \text{Frables all low-priority peripheral interrupts}}$
	0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 overflow interrupt
	0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit
	1 = Enables the INTO external interrupt
L:1 0	0 = Disables the INTO external Interrupt
DIT 3	RBIE: RB Port Change Interrupt Enable bit
	0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	1 = TMR0 register has overflowed (must be cleared in software)
	0 = TMR0 register did not overflow
bit 1	INT0IF: INT0 External Interrupt Flag bit
	1 = The INT0 external interrupt occurred (must be cleared in software)
	0 = The INT0 external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾
	1 = At least one of the RB<7:4> pins changed state (must be cleared in software) 0 = None of the RB<7:4> pins have changed state
	0 - None of the ND>7.47 pins have changed state

Note 1: A mismatch condition will continue to set this bit. Reading PORTB, then waiting one instruction cycle, will end the mismatch condition and allow the bit to be cleared.

TABLE 12-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR^(2,3,4)

Oscillator Type	Freq.	C1	C2					
LP	32.768 kHz	27 pF ⁽¹⁾	27 pF ⁽¹⁾					
Note 1: 1	Microchip sug starting point i circuit.	gests these in validating f	values as a the oscillator					
2: i	Higher capacitance increases the stabil- ity of the oscillator but also increases the start-up time.							
3: 5	Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.							
4: (Capacitor value	es are for des	ign guidance					

12.3.1 USING TIMER1 AS A CLOCK SOURCE

The Timer1 oscillator is also available as a clock source in power-managed modes. By setting the System Clock Select bits, SCS<1:0> (OSCCON<1:0>), to '01', the device switches to SEC_RUN mode. Both the CPU and peripherals are clocked from the Timer1 oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in **Section 4.0 "Power-Managed Modes"**.

Whenever the Timer1 oscillator is providing the clock source, the Timer1 system clock status flag, T1RUN (T1CON<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source being currently used by the Fail-Safe Clock Monitor. If the Clock Monitor is enabled and the Timer1 oscillator fails while providing the clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

15.6 Register Maps

Table 15-5, Table 15-6 and Table 15-7 summarize the registers associated with the RTCC module.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets on Page
RTCCFG	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	50
RTCCAL	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	50
PADCFG1	_	_	—	_	_	RTSECSEL1	RTSECSEL0	_	50
ALRMCFG	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	50
ALRMRPT	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	50

TABLE 15-5: RTCC CONTROL REGISTERS

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 80-pin devices.

TABLE 15-6: RTCC VALUE REGISTERS

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets on Page
RTCVALH	RTCC Value High Register Window Based on RTCPTR<1:0>								
RTCVALL		R	TCC Value Lo	w Register V	Vindow Base	ed on RTCPTF	R<1:0>		50

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 80-pin devices.

TABLE 15-7: ALARM VALUE REGISTERS

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets on Page					
ALRMVALH	ALH Alarm Value High Register Window Based on ALRMPTR<1:0>													
ALRMVALL	Alarm Value L	ow Register	Window Base	ed on ALRMI	Alarm Value Low Register Window Based on ALRMPTR<1:0>									

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 80-pin devices.

16.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

16.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize timers, 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 16-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource				
Capture	Timer1 or Timer3				
Compare	Timer1 or Timer3				
PWM	Timer2				

The assignment of a particular timer to a module is determined by the Timer to CCP enable bits in the T3CON register (Register 14-1). Both modules may be active at any given time and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time. The interactions between the two modules are summarized in Table 16-2.

Depending on the configuration selected, up to four timers may be active at once, with modules in the same configuration (Capture/Compare or PWM) sharing timer resources. The possible configurations are shown in Figure 16-1.

16.1.2 OPEN-DRAIN OUTPUT OPTION

When operating in Output mode (i.e., in Compare or PWM modes), the drivers for the CCPx pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor and allows the output to communicate with external circuits without the need for additional level shifters.

The open-drain output option is controlled by the CCP2OD and CCP1OD bits (TRISG<6:5>). Setting the appropriate bit configures the pin for the corresponding module for open-drain operation.

16.1.3 CCP2 PIN ASSIGNMENT

The pin assignment for CCP2 (capture input, compare and PWM output) can change, based on device configuration. The CCP2MX Configuration bit determines which pin CCP2 is multiplexed to. By default, it is assigned to RC1 (CCP2MX = 1). If the Configuration bit is cleared, CCP2 is multiplexed with RE7.

Changing the pin assignment of CCP2 does not automatically change any requirements for configuring the port pin. Users must always verify that the appropriate TRIS register is configured correctly for CCP2 operation, regardless of where it is located.

FIGURE 16-1: CCP AND TIMER INTERCONNECT CONFIGURATIONS

16.4 PWM Mode

In Pulse-Width Modulation (PWM) mode, the CCP2 pin produces up to a 10-bit resolution PWM output. Since the CCP2 pin is multiplexed with a PORTC or PORTE data latch, the appropriate TRIS bit must be cleared to make the CCP2 pin an output.

Note:	Clearing the CCP2CON register will force
	the RC1 or RE7 output latch (depending
	on device configuration) to the default low
	level. This is not the PORTC or PORTE
	I/O data latch.

Figure 16-4 shows a simplified block diagram of the CCP1 module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 16.4.3** "Setup for PWM Operation".

A PWM output (Figure 16-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

16.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

EQUATION 16-1:

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP2 pin is set (exception: if PWM duty cycle = 0%, the CCP2 pin will not be set)
- The PWM duty cycle is latched from CCPR2L into CCPR2H

PIC18F87J72

FIGURE 17-6: TYPE-A/TYPE-B WAVEFORMS IN STATIC DRIVE

PIC16(L)F1512/3

18.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will automatically be cleared by hardware. The Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

Note: If, at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs. The Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

18.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur).

Note: Because queuing of events is not allowed, writing to the lower five bits of SSPCON2 is disabled until the Start condition is complete.

FIGURE 18-21: FIRST START BIT TIMING

21.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the Charge Holding Capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 21-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 21-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Equation 21-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 2 \ k\Omega$
Temperature	=	85°C (system max.)

EQUATION 21-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 21-2: A/D MINIMUM CHARGING TIME

 $VHOLD = (VREF - (VREF/2048)) \cdot (1 - e^{(-TC/CHOLD(RIC + RSS + RS))})$ or $TC = -(CHOLD)(RIC + RSS + RS) \ln(1/2048)$

EQUATION 21-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 µs
TCOFF	=	$(Temp - 25 \ \campot{\campot{\campot{\cambod{\cambol$
Tempera	ture co	Defficient is only required for temperatures > 25 °C. Below 25 °C, $T_{COFF} = 0$ ms.
ТС	=	-(CHOLD)(RIC + RSS + RS) $ln(1/2048) \mu s$ -(25 pF) (1 $k\Omega$ + 2 $k\Omega$ + 2.5 $k\Omega$) $ln(0.0004883) \mu s$ 1.05 μs
TACQ	=	$0.2 \ \mu s + 1 \ \mu s + 1.2 \ \mu s$ $2.4 \ \mu s$

25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. By working with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

The module includes the following key features:

- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- Four-edge input trigger sources
- · Polarity control for each edge source

- Control of edge sequence
- · Control of response to edges
- · Time measurement resolution of 1 nanosecond
- High-precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- Accurate current source suitable for capacitive measurement

The CTMU works in conjunction with the A/D Converter to provide up to 13 channels for time or charge measurement, depending on the specific device and the number of A/D channels available. When configured for time delay, the CTMU is connected to one of the analog comparators. The level-sensitive input edge sources can be selected from four sources: two external inputs or CCP1/CCP2 Special Event Triggers.

Figure 25-1 provides a block diagram of the CTMU.

FIGURE 25-1: CTMU BLOCK DIAGRAM

EXAMPLE 25-3: CAPACITANCE CALIBRATION ROUTINE

```
#include "pl8cxxx.h"
#define COUNT 25
                                          //@ 8MHz INTFRC = 62.5 us.
#define ETIME COUNT*2.5
                                          //time in uS
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define ADSCALE 1023
                                          //for unsigned conversion 10 sig bits
#define ADREF 3.3
                                          //Vdd connected to A/D Vr+
#define RCAL .027
                                          //R value is 4200000 (4.2M)
                                          //scaled so that result is in
                                          //1/100th of uA
int main(void)
{
    int i;
   int j = 0;
                                          //index for loop
    unsigned int Vread = 0;
    float CTMUISrc, CTMUCap, Vavg, VTot, Vcal;
//\ensuremath{\mathsf{assume}} CTMU and A/D have been setup correctly
//see Example 25-1 for CTMU & A/D setup
setup();
CTMUCONHbits.CTMUEN = 1;
                                          //Enable the CTMU
    for(j=0;j<10;j++)</pre>
    {
        CTMUCONHbits.IDISSEN = 1;
                                          //drain charge on the circuit
       DELAY;
                                          //wait 125us
        CTMUCONHbits.IDISSEN = 0;
                                          //end drain of circuit
        CTMUCONLbits.EDG1STAT = 1;
                                          //Begin charging the circuit
                                          //using CTMU current source
        DELAY;
                                          //wait for 125us
        CTMUCONLbits.EDG1STAT = 0;
                                          //Stop charging circuit
        PIR1bits.ADIF = 0;
                                          //make sure A/D Int not set
        ADCON0bits.GO=1;
                                         //and begin A/D conv.
        while(!PIR1bits.ADIF);
                                         //Wait for A/D convert complete
        Vread = ADRES;
                                          //Get the value from the A/D
        PIR1bits.ADIF = 0;
                                          //Clear A/D Interrupt Flag
        VTot += Vread;
                                          //Add the reading to the total
    }
    Vavg = (float)(VTot/10.000);
                                          //Average of 10 readings
    Vcal = (float)(Vavg/ADSCALE*ADREF);
                                          //CTMUISrc is in 1/100ths of uA
    CTMUISrc = Vcal/RCAL;
    CTMUCap = (CTMUISrc*ETIME/Vcal)/100;
}
```

PIC18F87J72

BCF	Bit Clear f			BN		Branch if Negative					
Syntax:	BCF f, b	{,a}		Synta	ax:	BN n					
Operands:	$0 \leq f \leq 255$			Oper	ands:	-128 ≤ n ≤ 1	127				
	$0 \le b \le 7$ $a \in [0,1]$			Oper	ation:	if Negative (PC) + 2 + 2	bit is '1', 2n \rightarrow PC				
Operation:	$0 \rightarrow f < b >$			Statu	s Affected:	None					
Status Affected:	None			Enco	dina.	1110	0110 nnr	n nnnn			
Encoding:	1001 Bit 'b' in roo	bbba ff	ff ffff	Desc	ription:	If the Negat	tive bit is '1', th	ien the			
Description.	If 'a' is '0', t If 'a' is '1', t GPR bank.	he Access Ba he BSR is use	nk is selected. Ink is selected. In to select the			The 2's con added to the incremented	nplement num e PC. Since the d to fetch the r	ber '2n' is e PC will have next			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f < 95$ (EFb). See		If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f < 95$ (5Eh). See			Word	ls:	PC + 2 + 2r 2-cycle inst	2 + 2n. This instruction is t instruction.		
	Section 27 Bit-Oriente	.2.3 "Byte-Or d Instruction	riented and	Cycle	es:	1(2)					
	Literal Offs	set Mode" for	details.	Q C If Ju	ycle Activity:						
Words:	1				, Q1	Q2	Q3	Q4			
Cycles:	1				Decode	Read literal	Process	Write to			
Q Cycle Activity:						ʻn'	Data	PC			
Q1	Q2	Q3	Q4	l	No	No	No	No			
Decode	Read register 'f'	Process Data	Write register 'f'	lf No	operation Jump:	operation	operation	operation			
					Q1	Q2	Q3	Q4			
Example:	BCF F	LAG_REG,	7, 0		Decode	Read literal 'n'	Process Data	No operation			
Before Instruc FLAG_R After Instructio	ction EG = C7h on			Exan	nple:	HERE	BN Jump	opolation			
FLAG_R	EG = 47h				Before Instruc PC After Instructio	tion = ad	dress (HERE)				
					If Negati PC	ve = 1; = ado ve = 0.	dress (Jump)				
					PC	= ad	dress (HERE	+ 2)			

PIC18F87J72

BNO	v	Branch if N	BNZ						
Synta	Syntax: BNOV n								
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$						
Oper	ation:	if Overflow (PC) + 2 + 2	bit is '0', 2n → PC			Ope			
Statu	s Affected:	None				Statu			
Enco	ding:	1110	0101 nn:	nn	nnnn	Enco			
Desc	ription:	If the Overfi program wi	low bit is '0', tl ll branch.	nen ti	he	Desc			
The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.									
Word	s:	1				Word			
Cycle	es:	1(2)				Cycl			
Q Cy If Ju	ycle Activity: mp:					Q C If Ju			
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'n'	Process Data	V	/rite to PC				
	No operation	No operation	No operation	ор	No eration				
If No	o Jump:					lf N			
	Q1	Q2	Q3	_	Q4				
	Decode	Read literal 'n'	Process Data	ор	No eration				
<u>Exam</u>	<u>ıple:</u>	HERE	BNOV Jump			Exar			
	Before Instruct PC After Instructic If Overflo PC If Overflo PC	tion = ad on = 0; = ad w = 1; = ad	dress (HERE dress (Jump dress (HERE)) + 2	2)				

BNZ		Branch if I	Branch if Not Zero							
Synta	ax:	BNZ n								
Oper	ands:	-128 \leq n \leq	$-128 \le n \le 127$							
Oper	ation:	if Zero bit is (PC) + 2 +	s '0', 2n → PC							
Statu	is Affected:	None								
Enco	oding:	1110	0001 nn:	nn nnnn						
Desc	cription:	If the Zero will branch.	bit is '0', then t	the program						
		The 2's cor added to th incremente instruction, PC + 2 + 2 2-cycle inst	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.							
Word	ls:	1	1							
Cycle	es:	1(2)	1(2)							
Q C If Ju	ycle Activity: Imp:									
	Q1	Q2	Q3	Q4						
	Decode	Read literal 'n'	Process Data	Write to PC						
	No operation	No operation	No operation	No operation						
lf No	o Jump:									
	Q1	Q2	Q3	Q4						
	Decode	Read literal	Process Data	No						
			Dulu	operation						
<u>Exan</u>										
	Before Instruct PC After Instruction If Zero PC	tion = ad on = 0; = ad	dress (HERE)							
	If Zero PC	= 1; = ad	= 1; = address (HERE + 2)							

РОР		Рор Тор о	f Returr	Stack			PUS	н	Push Top	of Retur	n Stac	k
Syntax:		POP					Synta	ax:	PUSH			
Operands:		None					Oper	ands:	None			
Operation:		$(TOS) \rightarrow b$	it bucket	t			Oper	ation:	$(PC + 2) \rightarrow$	TOS		
Status Affecte	ed:	None					Statu	s Affected:	None			
Encoding:		0000	0000	0000	0 0110		Enco	ding:	0000	0000	000	0 0101
Description:		The TOS v stack and i then become was pushe This instruct the user to stack to inc	alue is p s discard nes the p d onto th ction is p properly corporate	oulled off ded. The previous ne return provided / manag e a softw	the return TOS value value that stack. to enable e the return vare stack.	-	Desc	ription: Is:	The PC + 2 is pushed onto the the return stack. The previou value is pushed down on the This instruction allows imple software stack by modifying then pushing it onto the return 1		o the top of ous TOS he stack. lementing a g TOS and turn stack.	
Words:		1					Cycle	es:	1			
Cycles:		1					QC	vcle Activitv:				
Q Cycle Activ	vity:							Q1	Q2	Q	3	Q4
Q1		Q2	Q	3	Q4	_		Decode	PUSH	No		No
Decod	de	No operation	POP [·] valu	TOS Je	No operation				PC + 2 onto return stack	operat	tion	operation
Example:		POP GOTO	NEW				<u>Exan</u>	<u>nple:</u> Before Instru	PUSH			
Before Instruction TOS = 0031A2h Stack (1 level down) = 014332b				TOS PC		= 3 = (345Ah)124h					
After Insi TOS PC	truction S	,	= =	014332I NEW	ı			After Instructi PC TOS Stack (1	on level down)	= (= (= 3)126h)126h 345Ah	

MOV	SS	Move Inde	Move Indexed to Indexed								
Synta	ax:	MOVSS [z _s], [z _d]								
Oper	ands:	$0 \le z_s \le 12$ $0 \le z_d \le 12$	$0 \le z_s \le 127$ $0 \le z_d \le 127$								
Oper	ation:	((FSR2) + :	$z_s) \rightarrow ((F$	SR2)	+ z _d))					
Statu	s Affected:	None									
Enco 1st w 2nd v	oding: vord (source) word (dest.)	1110 1111	1110 1011 1zzz zzzz _s								
Desc	ription	The conter moved to the addresses registers and 7-bit literal respectivel registers ca the 4096-b (000h to FF The MOVSS PCL, TOSU destination	The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets, ' z_s ' or ' z_d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the								
If the resultant source address poin an Indirect Addressing register, the value returned will be 00h. If the resultant destination address point an Indirect Addressing register, the instruction will execute an endor						points to r, the ne points to r, the DP.					
Word	ls:	2	2								
Cycle	es:	2	2								
QC	ycle Activity:										
	Q1	Q2	Q3	3	Q4						
	Decode	Determine source addr	Determ source	nine addr	l sou	Read urce reg					

		dest add	łr	des	t addr	to dest reg
Exan	<u>nple:</u>	MOVSS	[05	b],	[06h]	
	Before Instruc	tion				
	FSR2	=	80	n		
	Contents of 85h Contents	=	331	ı		
	of 86h	=	111	۱		
	After Instructio	n				
	FSR2	=	80	า		
	Contents of 85h Contents	=	331	۱		
	of 86h	=	331	า		

Determine

Determine

Write

Decode

PUS	HL	Store Liter	ala	at FSR	2, Decr	eme	ent FSR2	
Synta	ax:	PUSHL k						
Oper	ands:	$0 \le k \le 255$	5					
Oper	ation:	$k \rightarrow (FSR2 - 1 + FSR2 - 1 + 1)$	<u>2),</u> → F	-SR2				
Statu	is Affected:	None						
Enco	oding:	1111	1	L010	kkkl	c.	kkkk	
Desc	ription:	The 8-bit li memory ac FSR2 is de operation.	tera Idro ecre	al 'k' is ess spe emente	written ecified k d by 1 a	to t by F afte	he data SR2. r the	
		This instruction allows users to push values onto a software stack.						
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2		Q3		Q4		
	Decode	Read 'k'		Proc da	ess ta	۷ de	Write to estination	
Exan	nple: Before Instruc FSR2H:f Memory	PUSHL(ction FSR2L (01ECh)	081	1 = =	01ECh 00h	I		
	After Instruction FSR2H:I Memory	on SR2L (01ECh)		= =	01EBh 08h			

29.1 DC Characteristics: Power-Down and Supply Current PIC18F87J72 Family (Industrial)

PIC18F87J72 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial										
Param. No.	Device	Тур.	Max.	Units	Condi	tions						
	Power-Down Current (IPD) ⁽¹⁾											
	All devices	0.5	1.4	μA	-40°C							
		0.1	1.4	μA	+25°C	VDD = 2.0V ⁽⁴⁾						
		0.8	6	μA	+60°C	(Sleep mode)						
		5.5	10.2	μA	+85°C							
	All devices	0.5	1.5	μA	-40°C							
		0.1	1.5	μA	+25°C	VDD = 2.5V ⁽⁴⁾						
		1	8	μA	+60°C	(Sleep mode)						
		6.8	12.6	μA	+85°C							
	All devices	2.9	7	μA	-40°C							
		3.6	7	μA	+25°C	VDD = 3.3V ⁽⁵⁾						
		4.1	10	μA	+60°C	(Sleep mode)						
		9.6	19	μA	+85°C							

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator is disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator is enabled (ENVREG = 1, tied to VDD, REGSLP = 1).

TABLE 29-1: CLKO AND I/O TIMING REQUIREMENT

Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
10	TosH2ckL	OSC1 \uparrow to CLKO \downarrow	—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑	—	75	200	ns	(Note 1)
12	TCKR	CLKO Rise Time	_	15	30	ns	(Note 1)
13	ТскF	CLKO Fall Time	—	15	30	ns	(Note 1)
14	TCKL2IOV	CLKO \downarrow to Port Out Valid	—	_	0.5 Tcy + 20	ns	
15	ТюV2скН	Port In Valid before CLKO ↑	0.25 Tcy + 25	_	—	ns	
16	TCKH2IOI	Port In Hold after CLKO ↑	0	—	—	ns	
17	TosH2IoV	OSC1 \uparrow (Q1 cycle) to Port Out Valid	—	50	150	ns	
18	TosH2ıol	OSC1 ↑ (Q2 cycle) to Port Input Invalid (I/O in hold time)	100			ns	
19	TioV2osH	Port Input Valid to OSC1 ↑ (I/O in setup time)	0	_	—	ns	
20	TIOR	Port Output Rise Time	—	—	6	ns	
21	TIOF	Port Output Fall Time	—	_	5	ns	
22†	TINP	INTx Pin High or Low Time	TCY	_	—	ns	
23†	Trbp	RB<7:4> Change INTx High or Low Time	TCY	_		ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in EC mode, where CLKO output is 4 x Tosc.