

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87j72-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Dia Mara	Pin Number	Pin	Buffer	Description					
Pin Name	TQFP	Туре	Туре	Description					
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.					
RB0/INT0/SEG30 RB0 INT0 SEG30	57	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 0. SEG30 output for LCD.					
RB1/INT1/SEG8 RB1 INT1 SEG8	56	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 1. SEG8 output for LCD.					
RB2/INT2/SEG9/ CTED1 RB2 INT2 CTED1 SEG9	55	I/O I I O	TTL ST ST Analog	Digital I/O. External Interrupt 2. CTMU Edge 1 input. SEG9 output for LCD.					
RB3/INT3/SEG10/ CTED2 RB3 INT3 SEG10 CTED2	54	I/O 0 	TTL ST Analog ST	Digital I/O. External Interrupt 3. SEG10 output for LCD. CTMU Edge 2 input.					
RB4/KBI0/SEG11 RB4 KBI0 SEG11	53	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG11 output for LCD.					
RB5/KBI1/SEG29 RB5 KBI1 SEG29	52	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG29 output for LCD.					
RB6/KBI2/PGC RB6 KBI2 PGC	51	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.					
RB7/KBI3/PGD RB7 KBI3 PGD	46	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.					
Legend: TTL = TTL ST = Sch I^2C = I^2C , I = Inpu P = Pov	PGD I/O ST In-Circuit Debugger and ICSP programming data pin. Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input I ² C = I ² C/SMBus compatible input OD = Open-Drain (no P diode to VDD) I = Input O = Output P = Power O = Output								

TABLE 1-2: PIC18F8XJ72 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

4.3 Sleep Mode

The power-managed Sleep mode is identical to the legacy Sleep mode offered in all other PIC devices. It is entered by clearing the IDLEN bit (the default state on device Reset) and executing the SLEEP instruction. This shuts down the selected oscillator (Figure 4-5). All clock source Status bits are cleared.

Entering the Sleep mode from any other mode does not require a clock switch. This is because no clocks are needed once the controller has entered Sleep. If the WDT is selected, the INTRC source will continue to operate. If the Timer1 oscillator is enabled, it will also continue to run.

When a wake event occurs in Sleep mode (by interrupt, Reset or WDT time-out), the device will not be clocked until the clock source selected by the SCS<1:0> bits becomes ready (see Figure 4-6), or it will be clocked from the internal oscillator if either the Two-Speed Start-up or the Fail-Safe Clock Monitor is enabled (see **Section 26.0 "Special Features of the CPU"**). In either case, the OSTS bit is set when the primary clock is providing the device clocks. The IDLEN and SCS bits are not affected by the wake-up.

4.4 Idle Modes

The Idle modes allow the controller's CPU to be selectively shut down while the peripherals continue to operate. Selecting a particular Idle mode allows users to further manage power consumption.

If the IDLEN bit is set to a '1' when a SLEEP instruction is executed, the peripherals will be clocked from the clock source selected using the SCS<1:0> bits; however, the CPU will not be clocked. The clock source Status bits are not affected. Setting IDLEN and executing a SLEEP instruction provides a quick method of switching from a given Run mode to its corresponding Idle mode.

If the WDT is selected, the INTRC source will continue to operate. If the Timer1 oscillator is enabled, it will also continue to run.

Since the CPU is not executing instructions, the only exits from any of the Idle modes are by interrupt, WDT time-out or a Reset. When a wake event occurs, CPU execution is delayed by an interval of TCSD (parameter 38, Table 29-2) while it becomes ready to execute code. When the CPU begins executing code, it resumes with the same clock source for the current Idle mode. For example, when waking from RC_IDLE mode, the internal oscillator block will clock the CPU and peripherals (in other words, RC_RUN mode). The IDLEN and SCS bits are not affected by the wake-up.

While in any Idle mode or the Sleep mode, a WDT time-out will result in a WDT wake-up to the Run mode currently specified by the SCS<1:0> bits.

FIGURE 4-5: TRANSITION TIMING FOR ENTRY TO SLEEP MODE

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0					
bit 7							bit 0					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown						
h:+ 7												
		1 = Type-B waveform (phase changes on each frame boundary)										
	о = Туре-А w	aveform (phas	e changes of the	in each comm	on type)							
bit 6	BIASMD: Bias Mode Select bit											
	When LMUX<1:0> = 00:											
	0 = Static Bia	s mode (do no	t set this bit to	'1')								
	When LMUX<	<1:0> = 01 or 2	10:									
	1 = 1/2 Bias r	node										
	0 = 1/3 Blas r											
	0 = 1/3 Bias r	<u>= 1:0> = 11:</u> node (do not s	et this bit to '1')								
bit 5	LCDA: LCD Active Status bit											
	1 = LCD drive	1 = LCD driver module is active										
	0 = LCD drive	er module is inactive										
bit 4	WA: LCD Wri	WA: LCD Write Allow Status bit										
	1 = Write into	the LCDDATA	x registers is a	llowed								
	0 = Write into	the LCDDATA	x registers is n	ot allowed								
bit 3-0	LP<3:0>: LCI	D Prescaler Se	elect bits									
	1111 = 1:16 1110 = 1:15											
	1110 = 1.13 1101 = 1.14											
	1100 = 1:13											
	1011 = 1:12											
	1010 = 1:11											
	1001 = 1:10											
	1000 = 1.9											
	0111 = 1.3 0110 = 1.7											
	0101 = 1:6											
	0100 = 1 :5											
	0011 = 1:4											
	0010 = 1:3											
	0001 = 1.2 0000 = 1.1											
	0000 - 1.1											

REGISTER 17-2: LCDPS: LCD PHASE REGISTER

TABLE 17-6:	REGISTERS ASSOCIATED WITH LCD OPERATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIE L	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	45
PIR3	—	LCDIF	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF	48
PIE3	—	LCDIE	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE	48
IPR3	—	LCDIP	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP	48
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR	46
LCDDATA22	—	_	_	—	—	_	_	S32C3	49
LCDDATA21	S31C3	S30C3	S29C3	S28C3	S27C3	S26C3	S25C3	S24C3	49
LCDDATA20	S23C3	S22C3	S21C3	S20C3	S19C3	S18C3	S17C3	S16C3	49
LCDDATA19	S15C3	S14C3	S13C3	S12C3	S11C3	S10C3	S09C3	S08C3	49
LCDDATA18	S07C3	S06C3	S05C3	S04C3	S03C3	S02C3	S01C3	S00C3	49
LCDDATA16	_	_	_	_	_	_	_	S32C2	49
LCDDATA15	S31C2	S30C2	S29C2	S28C2	S27C2	S26C2	S25C2	S24C2	49
LCDDATA14	S23C2	S22C2	S21C2	S20C2	S19C2	S18C2	S17C2	S16C2	49
LCDDATA13	S15C2	S14C2	S13C2	S12C2	S11C2	S10C2	S09C2	S08C2	49
LCDDATA12	S07C2	S06C2	S05C2	S04C2	S03C2	S02C2	S01C2	S00C2	49
LCDDATA10	—	—	_	—	—	—	_	S32C1	49
LCDDATA9	S31C1	S30C1	S29C1	S28C1	S27C1	S26C1	S25C1	S24C1	49
LCDDATA8	S23C1	S22C1	S21C1	S20C1	S19C1	S18C1	S17C1	S16C1	49
LCDDATA7	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1	49
LCDDATA6	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1	49
LCDDATA4	—	—	_	—	—	—	-	S32C0	47
LCDDATA3	S31C0	S30C0	S29C0	S28C0	S27C0	S26C0	S25C0	S24C0	47
LCDDATA2	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0	47
LCDDATA1	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0	47
LCDDATA0	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0	47
LCDSE4	—	_		—	_	—		SE32	47
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	47
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	47
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE09	SE08	47
LCDSE0	SE07	SE06	SE05	SE04	SE03	SE02	SE01	SE00	47
LCDCON	LCDEN	SLPEN	WERR	—	CS1	CS0	LMUX1	LMUX0	47
LCDPS	WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0	47
LCDREG	_	CPEN	BIAS2	BIAS1	BIAS0	MODE13	CKSEL1	CKSEL0	46

Legend: -- = unimplemented, read as '0'. Shaded cells are not used for LCD operation.

Note 1: These registers or individual bits are unimplemented on PIC18F86J72 devices.

Note: When the device enters Sleep mode while operating in Bias modes, M0 or M1, be sure that the bias capacitors are fully discharged in order to get the lowest Sleep current.

18.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.

The general call address is recognized when the General Call Enable bit, GCEN, is enabled (SSP-CON2<7> set). Following a Start bit detect, eight bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit), and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device-specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-Bit Addressing mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 18-17).

19.5.2 EUSART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical except in the case of Sleep or any Idle mode, and bit, SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting the CREN bit prior to entering Sleep or any Idle mode, then a word may be received while in this low-power mode. Once the word is received, the RSR register will transfer the data to the RCREG1 register; if the RC1IE enable bit is set, the interrupt generated will wake the chip from the low-power mode. If the global interrupt is enabled, the program will branch to the interrupt vector. To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. If interrupts are desired, set enable bit, RC1IE.
- 3. If 9-bit reception is desired, set bit, RX9.
- 4. To enable reception, set enable bit, CREN.
- 5. Flag bit, RC1IF, will be set when reception is complete. An interrupt will be generated if enable bit, RC1IE, was set.
- Read the RCSTA1 register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG1 register.
- 8. If any error occurred, clear the error by clearing bit, CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

TABLE 19-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	45	
PIR1	—	ADIF	RC1IF	TX1IF	SSPIF	—	TMR2IF	TMR1IF	48	
PIE1	—	ADIE	RC1IE	TX1IE	SSPIE	—	TMR2IE	TMR1IE	48	
IPR1	—	ADIP	RC1IP	TX1IP	SSPIP	—	TMR2IP	TMR1IP	48	
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	47	
RCREG1			EL	JSART Rec	eive Registe	er			47	
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	47	
BAUDCON1	ABDOVF	RCMT	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	49	
SPBRGH1	EUSART Baud Rate Generator Register High Byte									
SPBRG1		EL	JSART Bau	d Rate Gen	erator Regis	ster Low By	te		47	

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

20.5 AUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA2<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK2 pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

20.5.1 AUSART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical except in the case of the Sleep mode.

If two words are written to the TXREG2 and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG2 register.
- c) Flag bit, TX2IF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREG2 register will transfer the second word to the TSR and flag bit, TX2IF, will now be set.
- e) If enable bit, TX2IE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TX2IE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREG2 register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page	
INTCON	GIE/GIEH	PEIE/GIE L	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	45	
PIR3	—	LCDIF	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF	48	
PIE3	—	LCDIE	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE	48	
IPR3	_	LCDIP	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP	48	
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	50	
TXREG2			AU	ISART Tran	smit Registe	er			50	
TXSTA2	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	50	
SPBRG2	AUSART Baud Rate Generator Register									
LATG	U2OD	U10D	_	LATG4	LATG3	LATG2	LATG1	LATG0	48	

TABLE 20-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

24.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 24-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 29.0 "Electrical Characteristics"**.

24.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

24.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

24.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RF5 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RF5 as a digital output with CVRSS enabled will also increase current consumption.

The RF5 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 24-2 shows an example buffering technique.

25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. By working with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

The module includes the following key features:

- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- Four-edge input trigger sources
- · Polarity control for each edge source

- Control of edge sequence
- · Control of response to edges
- · Time measurement resolution of 1 nanosecond
- High-precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- Accurate current source suitable for capacitive measurement

The CTMU works in conjunction with the A/D Converter to provide up to 13 channels for time or charge measurement, depending on the specific device and the number of A/D channels available. When configured for time delay, the CTMU is connected to one of the analog comparators. The level-sensitive input edge sources can be selected from four sources: two external inputs or CCP1/CCP2 Special Event Triggers.

Figure 25-1 provides a block diagram of the CTMU.

FIGURE 25-1: CTMU BLOCK DIAGRAM

25.5 Measuring Time with the CTMU Module

Time can be precisely measured after the ratio (C/I) is measured from the current and capacitance calibration step by following these steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT.
- 3. Set EDG2STAT.
- 4. Perform an A/D conversion.
- 5. Calculate the time between edges as T = (C/I) * V, where *I* is calculated in the current calibration step (Section 25.3.1 "Current Source Calibration"), *C* is calculated in the capacitance calibration step (Section 25.3.2 "Capacitance Calibration") and *V* is measured by performing the A/D conversion.

It is assumed that the time measured is small enough that the capacitance *C*OFFSET provides a valid voltage to the A/D Converter. For the smallest time measurement, always set the A/D Channel Select register (AD1CHS) to an unused A/D channel; the corresponding pin for which is not connected to any circuit board trace. This minimizes added stray capacitance, keeping the total circuit capacitance close to that of the A/D Converter itself (25 pF). To measure longer time intervals, an external capacitor may be connected to an A/D channel, and this channel selected when making a time measurement.

FIGURE 25-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

REGISTER 2	26-1: CONF	FIG1L: CONF	IGURATION	REGISTER 1	LOW (BYTE	ADDRESS	300000h)			
R/WO-1	R/WO-1	R/WO-1	U-0	U-0	U-0	U-0	R/WO-1			
DEBUG	XINST	STVREN	_	—	_	—	WDTEN			
bit 7		• 		•			bit 0			
Legend:										
R = Readable	bit	WO = Write-C	nce bit	U = Unimplem	nented bit, read	l as `0′				
-n = Value wh	en device is ur	programmed		'1' = Bit is set		'0' = Bit is clea	ared			
bit 7 DEBUG: Background Debugger Enable bit 1 = Background debugger is disabled; RB6 and RB7 are configured as general purpose I/O pins 0 = Background debugger is enabled; RB6 and RB7 are dedicated to In-Circuit Debug bit 6 XINST: Extended Instruction Set Enable bit 1 = Instruction set extension and Indexed Addressing mode are enabled 0 = Instruction set extension and Indexed Addressing mode are disabled (Legacy mode) bit 5 STVREN: Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow is enabled										
bit 4-1 bit 0	0 = Reset on Unimplemen WDTEN: Wat 1 = WDT is e 0 = WDT is d	stack overflow. ted: Read as 'c chdog Timer Ei nabled isabled (contro	/underflow is d)' nable bit I is placed on §	SWDTEN bit)						

REGISTER 26-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

U-0	U-0 U-0) U-0		U-0 R/WO-1		U-0			
(1)	(1)	(1)(1)		(2)	CP0	—	—			
bit 7 bit 0										

Legend:			
R = Readable bit	WO = Write-Once bit	U = Unimplemented bit, read	as `0′
-n = Value when device is ur	programmed	'1' = Bit is set	'0' = Bit is cleared

bit 7-3 Unimplemented: Read as '0'

bit 2 CP0: Code Protection bit

- 1 = Program memory is not code-protected
- 0 = Program memory is code-protected

bit 1-0 Unimplemented: Read as '0'

Note 1: The value of these bits in program memory should always be '1'. This ensures that the location is executed as a NOP if it is accidentally executed.

2: This bit should always be maintained as '0'.

							50000211)				
R/WO-1	R/WO-1	U-0	R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1				
IESO	FCMEN	—	LPT10SC	T1DIG	FOSC2	FOSC1	FOSC0				
bit 7							bit 0				
Legend:											
R = Readable	e bit	WO = Write-C	once bit	U = Unimpler	nented bit, read	das`0′					
-n = Value wh	nen device is un	programmed		'1' = Bit is set		'0' = Bit is clea	ared				
hit 7		ood Start-up (nternal/Extern	al Oscillator Sv	vitchover) Cont	tral bit					
	1 = Two-Speed Start-up (Internal/External Oscillator Switchover) Control Dil										
	0 = Two-Spee	d Start-up is di	sabled								
bit 6	FCMEN: Fail-	Safe Clock Mo	nitor Enable bi	t							
	1 = Fail-Safe	Clock Monitor i	s enabled								
	0 = Fail-Safe	Clock Monitor	s disabled								
bit 5	Unimplement	ted: Read as ')'								
bit 4	LPT1OSC: T1	C: T1OSC/SOSC Power Selection Configuration bit									
	1 = High-powe 0 = Low-powe	er T1OSC/SOS er T1OSC/SOS	SC circuit is sel	ected ected							
bit 3	T1DIG: T1CK	I for Digital Inp	ut Clock Enabl	e bit							
	1 = T1CKI is a	available as a c	ligital input with	nout enabling T	10SCEN						
	0 = T1CKI is r	not available as	s a digital input	without enabli	ng T1OSCEN						
bit 2-0	FOSC<2:0>:	Oscillator Sele	ction bits								
	111 =ECPLL	OSC1/OSC2 a	s primary; ECF	PLL oscillator v	vith PLL is enal	bled; CLKO on	RA6				
	101 =HSPLI	OSC1/OSC2 as pr	s primary: high	-speed crystal	/resonator with	software PLL o	control				
	100 =HS OSC1/OSC2 as primary; high-speed crystal/resonator										
	011 =INTPLL	1 internal oscil	ator block with	software PLL	control; Fosc/4	1 output					
	010 =INTIO1 internal oscillator block with Fosc/4 output on RA6 and I/O on RA7										
		∠ internal oscilla	tor block with L	O on RA6 and	RA7	ON RAD and R	A/				

REGISTER 26-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

26.2 Watchdog Timer (WDT)

For PIC18F87J72 family devices, the WDT is driven by the INTRC oscillator. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by the WDTPS bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared whenever a SLEEP or CLRWDT instruction is executed, or a clock failure (primary or Timer1 oscillator) has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: When a CLRWDT instruction is executed, the postscaler count will be cleared.

26.2.1 CONTROL REGISTER

The WDTCON register (Register 26-9) is a readable and writable register. The SWDTEN bit enables or disables WDT operation. This allows software to override the WDTEN Configuration bit and enable the WDT only if it has been disabled by the Configuration bit.

LFSF	र	Load FSR	Load FSR			MOVF	Move f					
Synta	ax:	LFSR f, k			•	Syntax:	MOVF f{	,d {,a}}				
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$	5			Operands:	$0 \le f \le 255$ $d \in [0,1]$					
Oper	ation:	$k\toFSRf$					a ∈ [0,1]					
Statu	s Affected:	None				Operation:	$f \rightarrow dest$	$f \rightarrow dest$				
Enco	ding:	1110 1111	1110 00 0000 k ₇ k	ff k ₁₁ kkk kk kkkk		Status Affected: Encoding:	N, Z 0101	N,Z 0101 00da ffff fff				
Desc	ription:	The 12-bit I file select re	literal 'k' is loa egister pointe	ided into the d to by 'f'.	<u>.</u>	Description: The contents of register 'f' are m a destination dependent upon t				moved to the		
Word	ls:	2					status of 'd	'. If 'd' is '(0', the res	sult is		
Cycle	es:	2					placed in w placed bac	k in regist	⊥', the rea er 'f'. Loc	ation 'f'		
QC	ycie Activity:	02	03	04			256-byte ba	ank.	.110			
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k'		If 'a' is '0', the Access Bank is se If 'a' is '1', the BSR is used to se GPR bank						
				MSB to ESRfH				nd the eve	tandad in	atruction		
	Decode	Read literal 'k' LSB	Read literal Process Write literal 'k' LSB Data 'k' to FSRfL				set is enabled, in Indexed Liter			I, this instruction operates eral Offset Addressing		
<u>Exan</u>	<u>nple:</u> After Instructio	LFSR 2,	3ABh				mode whenever f ≤ 95 (5Fh). See Section 27.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
	FSR2H	= 03	h			Words:	1					
	FORZL	- AC				Cvcles:	1					
						O Cycle Activity						
						Q1	Q2	Q3		Q4		
						Decode	Read register 'f'	Proces Data	s	Write W		
						Example:	MOVF R	EG, 0, (0			
						Before Instru	ction					
						REG W	= 22 = FF	h h				
						After Instruction						
						REG W	= 22 = 22	.n !h				

MOVLW	Move L	iteral to W		MOVWF	Move W to	f		
Syntax: MOVLW k			Syntax:	MOVWF f {,a}				
Operands:	$0 \le k \le$	255		Operands:	$0 \leq f \leq 255$	$0 \le f \le 255$		
Operation:	$k\toW$				a ∈ [0,1] (W) → f			
Status Affecte	ed: None			Operation:				
Encoding:	0000) 1110 kk	kk kkkk	Status Affected:	None	None		
Description:	The 8-b	oit literal 'k' is load	led into W.	Encoding:	0110	111a ff	ff ffff	
Words: Cycles:	1 1			Description:	Description: Move data from W to Location 'f' can be a		o register 'f'. nywhere in the	
Q Cycle Acti	vity:				lf 'a' is '0' t	he Access Ba	ank is selected	
Q1	Q2	Q3	Q4		lf 'a' is '1', t	he BSR is use	ed to select the	
Deco	de Read	Process	Write to		GPR bank.			
Example: After Ins W	MOVLW truction = 5Ar	.' Data 5Ah	W		If 'a' is '0' a set is enabl in Indexed mode wher Section 27 Bit-Oriente Literal Offs	nd the extend led, this instru- Literal Offset never $f \le 95$ (§ .2.3 "Byte-O ed Instruction set Mode" for	ded instruction action operates Addressing 5Fh). See riented and ns in Indexed r details.	
				Words:	1			
				Cycles:	1			
				Q Cycle Activity:				
				Q1	Q2	Q3	Q4	
				Decode	Read	Process	Write	
					register 'f'	Data	register 'f'	

Example: MOVWF

Before Instruction					
W	=	4Fh			
REG	=	FFh			
After Instruct	ion				
W	=	4Fh			
REG	=	4Fh			

REG, O

29.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +100°C
Storage temperature	65°C to +150°C
Voltage on any digital only I/O pin or MCLR with respect to Vss (except VDD)	0.3V to 5.6V
Voltage on any combined digital and analog pin with respect to Vss (except VDD and $\overline{\text{MCLR}}$)	0.3V to (VDD + 0.3V)
Voltage on VDDCORE with respect to Vss	0.3V to 2.75V
Voltage on VDD with respect to Vss	0.3V to 3.6V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Maximum output current sunk by PORTA<7:6> and any PORTB and PORTC I/O pins	25 mA
Maximum output current sunk by any PORTD, PORTE and PORTJ I/O pins	8 mA
Maximum output current sunk by PORTA<5:0> and any PORTF, PORTG and PORTH I/O pins	2 mA
Maximum output current sourced by PORTA<7:6> and any PORTB and PORTC I/O pins	25 mA
Maximum output current sourced by any PORTD, PORTE and PORTJ I/O pins	8 mA
Maximum output current sourced by PORTA<5:0> and any PORTF, PORTG and PORTH I/O p	oins2 mA
Maximum current sunk by all ports combined	200 mA
Voltage on AFE SVDD	7.0V
AFE digital inputs and outputs with respect to SAVss	0.6V to (SVDD + 0.6V)
AFE analog input with respect to SAVss	6V to +6V
AFE VREF input with respect to SAVss	0.6V to (SVDD + 0.6V)
ESD on the AFE analog inputs (HBM ⁽²⁾ ,MM ⁽³⁾)	7.0 kV, 400V
ESD on all other AFE pins (HBM ⁽²⁾ ,MM ⁽³⁾)	7.0 kV, 400V

- **Note 1:** Power dissipation is calculated as follows:
 - Pdis = Vdd x {Idd $-\sum$ Ioh} + \sum {(Vdd Voh) x Ioh} + \sum (Vol x Iol)
 - 2: Human Body Model for ESD testing.
 - **3:** Machine Model for ESD testing.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
	VIL	Input Low Voltage					
		All I/O Ports:					
D030		with TTL Buffer	Vss	0.15 Vdd	V	VDD < 3.3V	
D030A			—	0.8	V	$3.3V \leq V\text{DD} \leq 3.6V$	
D031		with Schmitt Trigger Buffer	Vss	0.2 VDD	V		
D031A		RC3 and RC4 only	Vss	0.3 VDD	V	I ² C enabled	
D031B			Vss	0.8	V	SMBus	
D032		MCLR	Vss	0.2 VDD	V		
D033		OSC1	Vss	0.3 VDD	V	HS, HSPLL modes	
D033A		OSC1	Vss	0.2 VDD	V	EC, ECPLL modes	
D034		T13CKI	Vss	0.3	V		
	Vih	Input High Voltage					
		I/O Ports (not 5.5V tolerant):					
D040		with TTL Buffer	0.25 VDD + 0.8V	Vdd	V	VDD < 3.3V	
D040A			2.0	Vdd		$3.3V \leq V\text{DD} \leq 3.6V$	
D041		with Schmitt Trigger Buffer	0.8 VDD	Vdd	V		
D041A		RC3 and RC4 only	0.7 VDD	Vdd	V	I ² C enabled	
D041B			2.1	Vdd	V	SMBus	
		I/O Ports (5.5V tolerant):					
		with TTL Buffer	0.25 VDD + 0.8V	5.5	V	VDD < 3.3V	
			2.0	5.5	V	$3.3V \leq V\text{DD} \leq 3.6V$	
		with Schmitt Trigger Buffer	0.8 VDD	5.5	V		
D042		MCLR	0.8 VDD	Vdd	V		
D043		OSC1	0.7 Vdd	Vdd	V	HS, HSPLL modes	
D043A		OSC1	0.8 Vdd	Vdd	V	EC, ECPLL modes	
D044		T13CKI	1.6	Vdd	V		
	lı∟	Input Leakage Current ⁽¹⁾					
D060		I/O Ports with Analog Functions	—	200	nA	$\label{eq:VSS} \begin{split} \text{VSS} &\leq \text{VPIN} \leq \text{VDD}, \\ \text{Pin at high-impedance} \end{split}$	
		Digital Only I/O Ports	_	200	nA	Vss \leq VPIN \leq 5.5V, Pin at high-impedance	
D061		MCLR	—	±1	μA	$Vss \leq V PIN \leq V DD$	
D063		OSC1	_	±1	μA	$V \textbf{s} \textbf{s} \leq V \text{PIN} \leq V \text{DD}$	
	IPU	Weak Pull-up Current					
D070	IPURB	PORTB Weak Pull-up Current	80	400	μA	VDD = 3.3V, VPIN = VSS	

29.2 DC Characteristics: PIC18F87J72 Family (Industrial)

Note 1: Negative current is defined as current sourced by the pin.

TABLE 29-16: A/D CONVERSION REQUIREMENTS

Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
130	TAD	A/D Clock Period	0.8	12.5 ⁽¹⁾	μS	Tosc based, VREF $\geq 3.0V$
131	TCNV	Conversion Time (not including acquisition time) ⁽²⁾	13	14	Tad	
132	TACQ	Acquisition Time ⁽³⁾	1.4	—	μS	
135	Tswc	Switching Time from Convert \rightarrow Sample	—	(Note 4)		
137	TDIS	Discharge Time	0.2	_	μS	

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50Ω.

4: On the following cycle of the device clock.

B.6.2 PHASE REGISTER

The PHASE register (PHASE<7:0>) is a 7 bits + sign, MSB first, two's complement register that indicates how much phase delay there should be between Channel 0 and Channel 1.

The reference channel for the delay is Channel 1 (typically, the voltage channel when used in energy metering applications) i.e., when PHASE register code is positive, Channel 0 is lagging Channel 1.

When PHASE register code is negative, Channel 0 is leading versus Channel 1.

The delay is give by the following formula:

EQUATION B-17:

 $Delay = \frac{Phase Register Code}{DMCLK}$

B.6.2.1 Phase Resolution from OSR

The timing resolution of the phase delay is 1/DMCLK or 1 μ s in the default configuration (MCLK = 4 MHz). The PHASE register coding depends on the OSR setting, as shown in Table B-14.

TABLE B-14: PHASE ENCODING RESOLUTION BY OVERSAMPLING RATIO

Oversampling Ratio		Encoding			
OSR <1:0>	Value	# Significant Digits		Range	
00	32	7 <6:0>	<7>	-128 to +127	
01	64	6 <5:0>	<6>	-64 to +63	
10	128	5 <4:0>	<5>	-32 to +31	
11	256	4 <3:0>	<4>	-16 to +15	

REGISTER B-2: PHASE: PHASE REGISTER (ADDRESS 0x07)

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PHASE<7> | PHASE<6> | PHASE<5> | PHASE<4> | PHASE<3> | PHASE<2> | PHASE<1> | PHASE<0> |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 PHASE<7-0>: CH0 Relative to CH1 Phase Delay bits

Delay = PHASE register two's complement code/DMCLK (Default PHASE = 0)