

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87j72t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 Effects of Power-Managed Modes on the Various Clock Sources

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In RC_RUN and RC_IDLE modes, the internal oscillator provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the power-managed mode (see Section 26.2 "Watchdog Timer (WDT)" through Section 26.5 "Fail-Safe Clock Monitor" for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up).

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a Real-Time Clock (RTC). Other features may be operating that do not require a device clock source (i.e., MSSP slave, INTx pins and others). Peripherals that may add significant current consumption are listed in Section 29.1 "DC Characteristics: Power-Down and Supply Current PIC18F87J72 Family (Industrial)".

3.7 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances, and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.6 "Power-up Timer (PWRT)**".

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 29-2); it is always enabled.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

There is a delay of interval, TCSD (parameter 38, Table 29-2), following POR, while the controller becomes ready to execute instructions.

Oscillator Mode	OSC1 Pin	OSC2 Pin		
EC, ECPLL	loating, pulled by external clock At logic low (clock/4 output)			
HS, HSPLL	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level		
INTOSC, INTPLL1/2	I/O pin, RA6, direction controlled by TRISA<6>	I/O pin, RA6, direction controlled by TRISA<7>		

 TABLE 3-3:
 OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Note: See Section 5.0 "Reset" for time-outs due to Sleep and MCLR Reset.

4.1.3 CLOCK TRANSITIONS AND STATUS INDICATORS

The length of the transition between clock sources is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Two bits indicate the current clock source and its status: OSTS (OSCCON<3>) and T1RUN (T1CON<6>). In general, only one of these bits will be set while in a given power-managed mode. When the OSTS bit is set, the primary clock is providing the device clock. When the T1RUN bit is set, the Timer1 oscillator is providing the clock. If neither of these bits is set, INTRC is clocking the device.

Note: Executing a SLEEP instruction does not necessarily place the device into Sleep mode. It acts as the trigger to place the controller into either the Sleep mode, or one of the Idle modes, depending on the setting of the IDLEN bit.

4.1.4 MULTIPLE SLEEP COMMANDS

The power-managed mode that is invoked with the SLEEP instruction is determined by the setting of the IDLEN bit at the time the instruction is executed. If another SLEEP instruction is executed, the device will enter the power-managed mode specified by IDLEN at that time. If IDLEN has changed, the device will enter the new power-managed mode specified by the new setting.

4.2 Run Modes

In the Run modes, clocks to both the core and peripherals are active. The difference between these modes is the clock source.

4.2.1 PRI_RUN MODE

The PRI_RUN mode is the normal, full-power execution mode of the microcontroller. This is also the default mode upon a device Reset unless Two-Speed Start-up is enabled (see **Section 26.4 "Two-Speed Start-up"** for details). In this mode, the OSTS bit is set (see **Section 3.2 "Control Registers"**).

4.2.2 SEC_RUN MODE

The SEC_RUN mode is the compatible mode to the "clock switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the Timer1 oscillator. This gives users the option of lower power consumption while still using a high-accuracy clock source.

SEC_RUN mode is entered by setting the SCS<1:0> bits to '01'. The device clock source is switched to the Timer1 oscillator (see Figure 4-1), the primary oscillator is shut down, the T1RUN bit (T1CON<6>) is set and the OSTS bit is cleared.

Note: The Timer1 oscillator should already be running prior to entering SEC_RUN mode. If the T1OSCEN bit is not set when the SCS<1:0> bits are set to '01', entry to SEC_RUN mode will not occur. If the Timer1 oscillator is enabled, but not yet running, device clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

9.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Enable registers (PIE1, PIE2, PIE3). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 9-7: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
—	ADIE	RC1IE	TX1IE	SSPIE	—	TMR2IE	TMR1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as `0'
bit 6	ADIE: A/D Converter Interrupt Enable bit
	1 = Enables the A/D interrupt
	0 = Disables the A/D interrupt
bit 5	RC1IE: EUSART Receive Interrupt Enable bit
	1 = Enables the EUSART receive interrupt
	0 = Disables the EUSART receive interrupt
bit 4	TX1IE: EUSART Transmit Interrupt Enable bit
	1 = Enables the EUSART transmit interrupt
	0 = Disables the EUSART transmit interrupt
bit 3	SSPIE: Master Synchronous Serial Port Interrupt Enable bit
	1 = Enables the MSSP interrupt
	0 = Disables the MSSP interrupt
bit 2	Unimplemented: Read as '0'
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
	1 = Enables the TMR2 to PR2 match interrupt
	0 = Disables the TMR2 to PR2 match interrupt
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit
	1 = Enables the TMR1 overflow interrupt
	0 = Disables the TMR1 overflow interrupt

REGISTER	9-12: IPR3:	PERIPHERA	L INTERRU	PT PRIORITY	REGISTER	3	
U-0	R/W-1	R-1	R-1	R/W-1	R/W-1	R/W-1	R/W-1
—	LCDIP	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	Unimplemen	ted: Read as '	כי				
bit 6	LCDIP: LCD I	Interrupt Priority	v bit (valid whe	n Type-B wavef	orm with Non-S	tatic mode is s	elected)
	1 = High prio	rity					
	0 = Low prior	rity					
bit 5	RC2IP: AUSA	ART Receive P	riority Flag bit				
	1 = High prio	ority					
L:1 4							
DIL 4	1 ALIP: AUSA		iterrupt Priority	/ DIL			
	$1 = \Pi g \Pi p \Pi o$ 0 = I ow prior	rity					
bit 3	CTMUIP: CTI	MU Interrupt Pr	iority bit				
	1 = Hiah prio	ritv					
	0 = Low prior	rity					
bit	CCP2IP: CCF	P2 Interrupt Pri	ority bit				
	1 = High prio	ority					
	0 = Low prior	rity					
bit	CCP1IP: CCF	P1 Interrupt Pri	ority bit				
	1 = High prio	rity					
		rity					
DIT U	RICCIP: RIC	C Interrupt Pri	ority bit				
	\perp = Hign prio	rity					
		ity					

10.6 PORTE, TRISE and LATE Registers

PORTE is a 7-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISE and LATE. All pins on PORTE are digital only and tolerate voltages up to 5.5V.

All pins on PORTE are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output. The RE7 pin is also configurable for open-drain output when CCP2 is active on this pin. Open-drain configuration is selected by setting the CCP2OD control bit (TRISG<6>)

Note:	These pins are configured as digital inputs
	on any device Reset.

Each of the PORTE pins has a weak internal pull-up. A single control bit can turn off all the pull-ups. This is performed by clearing bit, REPU (PORTG<6>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on any device Reset.

Pins, RE<6:3>, are multiplexed with the LCD common drives. I/O port functions are only available on those PORTE pins depending on which commons are active. The configuration is determined by the LMUX<1:0> control bits (LCDCON<1:0>). The availability is summarized in Table 10-11.

TABLE 10-11: PORTE PINS AVAILABLE IN DIFFERENT LCD DRIVE CONFIGURATIONS

LCDCON <1:0>	Active LCD Commons	PORTE Available for I/O
00	COM0	RE6, RE5, RE4
01	COM0, COM1	RE6, RE5
10	COM0, COM1 and COM2	RE6
11	All (COM0 through COM3)	None

Pins, RE1 and RE0, are multiplexed with the functions of LCDBIAS2 and LCDBIAS1. When LCD bias generation is required (i.e., any application where the device is connected to an external LCD), these pins cannot be used as digital I/O.

Note:	The pin corresponding to RE2 of other
	PIC18F parts has the function of
	LCDBIAS3 in this device. It cannot be
	used as digital I/O.

RE7 is multiplexed with the LCD segment drive (SEG31) controlled by the LCDSE3<7> bit. I/O port function is only available when the segment is disabled.

RE7 can also be configured as the alternate peripheral pin for the CCP2 module. This is done by clearing the CCP2MX Configuration bit.

EXAMPLE 10-5: INITIALIZING PORTE

CLRF	PORTE	; Initialize PORTE by ; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
MOVLW	03h	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE<1:0> as inputs
		; RE<7:2> as outputs

17.0 LIQUID CRYSTAL DISPLAY (LCD) DRIVER MODULE

The Liquid Crystal Display (LCD) driver module generates the timing control to drive a static or multiplexed LCD panel. It also provides control of the LCD pixel data. The module can drive panels of up to 132 pixels (33 segments by four commons).

The LCD driver module supports these features:

- · Direct driving of LCD panel
- On-chip bias generator with dedicated charge pump to support a range of fixed and variable bias options
- Up to four commons, with four Multiplexing modes
- · Up to 33 segments
- Three LCD clock sources with selectable prescaler, with a fourth source available for use with the LCD charge pump

A simplified block diagram of the module is shown in Figure 17-1.

FIGURE 17-1: LCD DRIVER MODULE BLOCK DIAGRAM

18.4.4 CLOCK STRETCHING

Both 7-Bit and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

18.4.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, <u>on the falling edge of the</u> ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPCON1 register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 18-15).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

18.4.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode, during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

18.4.4.3 Clock Stretching for 7-Bit Slave Transmit Mode

The 7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 18-10).

Note 1: If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
2: The CKP bit can be set in software

regardless of the state of the BF bit.

18.4.4.4 Clock Stretching for 10-Bit Slave Transmit Mode

In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence which contains the high-order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 18-13).

FIGURE 19-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 19-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	45
PIR1	—	ADIF	RC1IF	TX1IF	SSPIF	—	TMR2IF	TMR1IF	48
PIE1	—	ADIE	RC1IE	TX1IE	SSPIE	_	TMR2IE	TMR1IE	48
IPR1	—	ADIP	RC1IP	TX1IP	SSPIP	—	TMR2IP	TMR1IP	48
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	47
TXREG1			EU	ISART Tran	smit Regist	er			47
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	47
BAUDCON1	ABDOVF	RCMT	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	49
SPBRGH1	EUSART Baud Rate Generator Register High Byte								49
SPBRG1	EUSART Baud Rate Generator Register Low Byte							47	
LATG	U2OD	U1OD	_	LATG4	LATG3	LATG2	LATG1	LATG0	48

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

							D
	K/W-U	K/W-U	K/W-U	K/VV-U	K-0	K-U	K-X
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7	SPEN: Serial	Port Enable bil					
	1 = Serial po	rt enabled (con	figures RX2/L	DI2 and IX2/C	K2 pins as seri	al port pins; 1X	EN must also
	0 = Serial po	rt disabled (hel	d in Reset)	iii.)			
bit 6	RX9: 9-Bit Re	eceive Enable b	, it				
	1 = Selects 9	-bit reception					
	0 = Selects 8	B-bit reception					
bit 5	SREN: Single	e Receive Enab	le bit				
	Asynchronous	<u>s mode</u> :					
	Don't care.						
	Synchronous	<u>mode – Master</u>	<u>.</u>				
	1 = Enables 0 = Disables	single receive					
	This bit is clea	ared after recep	tion is comple	ete.			
	Synchronous	mode - Slave:					
	Don't care.						
bit 4	CREN: Contin	nuous Receive	Enable bit				
	Asynchronous	<u>s mode:</u>					
	1 = Enables 0 = Disables	receiver					
	Synchronous	mode:					
	1 = Enables	continuous rece	eive until enab	le bit, CREN, is	s cleared (CRE	N overrides SR	EN)
	0 = Disables	continuous rec	eive				
bit 3	ADDEN: Add	ress Detect En	able bit				
	Asynchronous	s mode 9-bit (R	X9 = 1):				
	1 = Enables	address detecti	on, enables ir	iterrupt and load	ds the receive	buffer when RS	R<8> is set
		address delect	1011, all bytes a 100 – 0	are received an	a ninth bit can	be used as part	ly Dil
	Don't care.		<u> </u>				
bit 2	FERR: Frami	ng Error bit					
	1 = Framing	error (can be cl	eared by read	ling RCREG2 re	egister and rec	eiving next valio	d byte)
	0 = No framin	ng error	2		•	C	•
bit 1	OERR: Overr	un Error bit					
	1 = Overrun	error (can be cl	eared by clea	ring bit CREN)			
	0 = No overr	un error					
bit 0	RX9D: 9th bit	of Received D	ata			_	
	This can be a	n address/data	bit or a parity	bit and must be	e calculated by	user firmware.	

REGISTER 20-2: RCSTA2: AUSART RECEIVE STATUS AND CONTROL REGISTER

25.1.5 INTERRUPTS

The CTMU sets its interrupt flag (PIR3<2>) whenever the current source is enabled, then disabled. An interrupt is generated only if the corresponding interrupt enable bit (PIE3<2>) is also set. If edge sequencing is not enabled (i.e., Edge 1 must occur before Edge 2), it is necessary to monitor the edge Status bits and determine which edge occurred last and caused the interrupt.

25.2 CTMU Module Initialization

The following sequence is a general guideline used to initialize the CTMU module:

- 1. Select the current source range using the IRNG bits (CTMUICON<1:0>).
- 2. Adjust the current source trim using the ITRIM bits (CTMUICON<7:2>).
- 3. Configure the edge input sources for Edge 1 and Edge 2 by setting the EDG1SEL and EDG2SEL bits (CTMUCONL<3:2 and 6:5>).
- Configure the input polarities for the edge inputs using the EDG1POL and EDG2POL bits (CTMUCONL<4,7>). The default configuration is for negative edge polarity (high-to-low transitions).
- Enable edge sequencing using the EDGSEQEN bit (CTMUCONH<2>). By default, edge sequencing is disabled.
- 6. Select the operating mode (Measurement or Time Delay) with the TGEN bit. The default mode is Time/Capacitance Measurement.
- Configure the module to automatically trigger an A/D conversion when the second edge event has occurred using the CTTRIG bit (CTMUCONH<0>). The conversion trigger is disabled by default.
- Discharge the connected circuit by setting the IDISSEN bit (CTMUCONH<1>); after waiting a sufficient time for the circuit to discharge, clear IDISSEN.
- 9. Disable the module by clearing the CTMUEN bit (CTMUCONH<7>).
- 10. Clear the Edge Status bits, EDG2STAT and EDG1STAT (CTMUCONL<1:0>).
- 11. Enable both edge inputs by setting the EDGEN bit (CTMUCONH<3>).
- 12. Enable the module by setting the CTMUEN bit.

Depending on the type of measurement or pulse generation being performed, one or more additional modules may also need to be initialized and configured with the CTMU module:

- Edge Source Generation: In addition to the external edge input pins, CCPx Special Event Triggers can be used as edge sources for the CTMU.
- Capacitance or Time Measurement: The CTMU module uses the A/D Converter to measure the voltage across a capacitor that is connected to one of the analog input channels.
- Pulse Generation: When generating system clock independent output pulses, the CTMU module uses Comparator 2 and the associated comparator voltage reference.

25.3 Calibrating the CTMU Module

The CTMU requires calibration for precise measurements of capacitance and time, as well as for accurate time delay. If the application only requires measurement of a relative change in capacitance or time, calibration is usually not necessary. An example of this type of application would include a capacitive touch switch, in which the touch circuit has a baseline capacitance, and the added capacitance of the human body changes the overall capacitance of a circuit.

If actual capacitance or time measurement is required, two hardware calibrations must take place: the current source needs calibration to set it to a precise current, and the circuit being measured needs calibration to measure and/or nullify all other capacitance other than that to be measured.

25.3.1 CURRENT SOURCE CALIBRATION

The current source onboard the CTMU module has a range of $\pm 60\%$ nominal for each of three current ranges. Therefore, for precise measurements, it is possible to measure and adjust this current source by placing a high-precision resistor, *RCAL*, onto an unused analog channel. An example circuit is shown in Figure 25-2. The current source measurement is performed using the following steps:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- 3. Enable the current source by setting EDG1STAT (CTMUCONL<0>).
- 4. Issue settling time delay.
- 5. Perform A/D conversion.
- 6. Calculate the current source current using I = V/RCAL, where RCAL is a high-precision resistance and *V* is measured by performing an A/D conversion.

EXAMPLE 25-3: CAPACITANCE CALIBRATION ROUTINE

```
#include "pl8cxxx.h"
#define COUNT 25
                                          //@ 8MHz INTFRC = 62.5 us.
#define ETIME COUNT*2.5
                                          //time in uS
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define ADSCALE 1023
                                          //for unsigned conversion 10 sig bits
#define ADREF 3.3
                                          //Vdd connected to A/D Vr+
#define RCAL .027
                                          //R value is 4200000 (4.2M)
                                          //scaled so that result is in
                                          //1/100th of uA
int main(void)
{
    int i;
   int j = 0;
                                          //index for loop
    unsigned int Vread = 0;
    float CTMUISrc, CTMUCap, Vavg, VTot, Vcal;
//\ensuremath{\mathsf{assume}} CTMU and A/D have been setup correctly
//see Example 25-1 for CTMU & A/D setup
setup();
CTMUCONHbits.CTMUEN = 1;
                                          //Enable the CTMU
    for(j=0;j<10;j++)</pre>
    {
        CTMUCONHbits.IDISSEN = 1;
                                          //drain charge on the circuit
       DELAY;
                                          //wait 125us
        CTMUCONHbits.IDISSEN = 0;
                                          //end drain of circuit
        CTMUCONLbits.EDG1STAT = 1;
                                          //Begin charging the circuit
                                          //using CTMU current source
        DELAY;
                                          //wait for 125us
        CTMUCONLbits.EDG1STAT = 0;
                                          //Stop charging circuit
        PIR1bits.ADIF = 0;
                                          //make sure A/D Int not set
        ADCON0bits.GO=1;
                                         //and begin A/D conv.
        while(!PIR1bits.ADIF);
                                         //Wait for A/D convert complete
        Vread = ADRES;
                                          //Get the value from the A/D
        PIR1bits.ADIF = 0;
                                          //Clear A/D Interrupt Flag
        VTot += Vread;
                                          //Add the reading to the total
    }
    Vavg = (float)(VTot/10.000);
                                          //Average of 10 readings
    Vcal = (float)(Vavg/ADSCALE*ADREF);
                                          //CTMUISrc is in 1/100ths of uA
    CTMUISrc = Vcal/RCAL;
    CTMUCap = (CTMUISrc*ETIME/Vcal)/100;
}
```

Mnemonic,		Description	Cycles	16-I	Bit Instruction Word			Status	Notos
Opera	ands	Description	Cycles	MSb	MSb LSb		Affected	Notes	
LITERAL OPERATIONS									
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA ME	Emory «	→ PROGRAM MEMORY OPERAT	IONS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*	r	Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	
TBLWT+'	k	Table Write with Pre-Increment		0000	0000	0000	1111	None	

TABLE 27-2: PIC18F87J72 FAMILY INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

ΒZ		Branch if 2	Branch if Zero					
Synta	ax:	BZ n	BZ n					
Oper	ands:	-128 ≤ n ≤ [°]	127					
Oper	ation:	if Zero bit is (PC) + 2 +	s '1', 2n → PC					
Statu	s Affected:	None						
Enco	ding:	1110	0000 n	nnn	nnnn			
Desc	ription:	If the Zero will branch.	bit is '1', the	n the p	rogram			
		The 2's cor added to th incremente instruction, PC + 2 + 2 2-cycle inst	nplement nu e PC. Since d to fetch the the new add n. This instru ruction.	mber ' the PC e next dress v uction i	2n' is ; will have vill be s then a			
Word	ls:	1						
Cycle	es:	1(2)	1(2)					
Q C If Ju	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Process Data	v	Vrite to PC			
	No operation	No operation	No operation	ор	No peration			
lf No	o Jump:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Process Data	ор	No peration			
Example: Before Instruction		HERE	BZ Jun	ıp				
	PC After Instruction If Zero PC If Zero PC	= ad on = 1; = ad = 0; = ad	dress (HER dress (Jum dress (HER	E) p) E + 2	2)			
	PC After Instruction If Zero PC If Zero PC	= ad on = 1; = ad = 0; = ad	dress (HER dress (Jum dress (HER	E) p) E + 2	2)			

CALL	Subroutine	e Call		
Syntax:	CALL k {,s	5}		
Operands:	0 ≤ k ≤ 104 s ∈ [0,1]	8575		
Operation:	$\begin{array}{l} (PC) + 4 \rightarrow \\ k \rightarrow PC < 20 \\ \text{if } s = 1 \\ (W) \rightarrow WS, \\ (STATUS) - \\ (BSR) \rightarrow B \end{array}$	TOS,):1>; → STATU SRS	JSS,	
Status Affected:	None			
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈
Wordo	(PC+ 4) is p If 's' = 1, th registers ar respective s STATUSS a update occl is loaded in 2-cycle inst	bushed o e W, STA re also pu shadow r and BSR urs. Ther to PC<2 truction.	nto the ret TUS and ushed into registers, ' S. If 's' = n, the 20-b 0:1>. CAL	urn stack. BSR their WS, 0, no tit value 'k' L is a
Words:	2			
Cycles:	2			
Q Cycle Activity:				<u>.</u>
Q1 Decode	Q2 Read literal 'k'<7:0>,	Q3 Push P stac	C to Re k 'k' Wr	Q4 ad literal <19:8>, ite to PC
No	No	No		No
operation	operation	operat	ion op	peration
Example:	HERE	CALL	THERE ,	1
Before Instruct PC After Instructio	tion = address n	6 (HERE)	
PC TOS WS BSRS STATUSS	= address = address = W = BSR S= STATUS	S (THER S (HERE	E) + 4)	

MOV	SS	Move Inde	xed to Ir	ndexe	d			
Synta	ax:	MOVSS [z _s], [z _d]					
Oper	ands:	$0 \le z_s \le 12$ $0 \le z_d \le 12$	7 7					
Oper	ation:	((FSR2) + :	$z_s) \rightarrow ((F$	SR2)	+ z _d))		
Statu	s Affected:	None						
Enco 1st w 2nd v	oding: vord (source) word (dest.)	1110 1111	1011 xxxx	lzz xzz	zz zz	zzzz _s zzzz _d		
Desc	ription	The conter moved to the addresses registers and 7-bit literal respectivel registers ca the 4096-b (000h to FF The MOVSS PCL, TOSU destination	The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets, ' z_s ' or ' z_d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the					
	If the resultant source address points t an Indirect Addressing register, the value returned will be 00h. If the resultant destination address points to an Indirect Addressing register, the instruction will execute as a NOP							
Word	ls:	2	2					
Cycle	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q3	3		Q4		
	Decode	Determine source addr	Determ source	nine addr	l sou	Read urce reg		

		dest add	łr	des	t addr	to dest reg
Exan	<u>nple:</u>	MOVSS	[05	b],	[06h]	
	Before Instruc	tion				
	FSR2	=	80	n		
	Contents of 85h Contents	=	331	ı		
	of 86h	=	111	۱		
	After Instructio	n				
	FSR2	=	80	า		
	Contents of 85h Contents	=	331	۱		
	of 86h	=	331	า		

Determine

Determine

Write

Decode

PUS	HL	Store Liter	ala	at FSR	2, Decr	eme	ent FSR2
Synta	ax:	PUSHL k					
Oper	ands:	$0 \le k \le 255$	5				
Oper	ation:	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow FSR2					
Statu	s Affected:	None					
Enco	oding:	1111	1	L010	kkkl	c.	kkkk
Desc	ription:	The 8-bit li memory ac FSR2 is de operation.	tera Idro ecre	al 'k' is ess spe emente	written ecified k d by 1 a	to t by F afte	he data SR2. r the
		This instrue values onte	ctio o a	n allow softwa	/s users re stacl	s to k.	push
Word	ls:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2		G	23	-	Q4
	Decode	Read 'k'		Proc da	ess ta	۷ de	Write to estination
Exan	nple: Before Instruc FSR2H:f Memory	PUSHL(ction FSR2L (01ECh)	081	1 = =	01ECh 00h	I	
	After Instruction FSR2H:I Memory	on SR2L (01ECh)		= =	01EBh 08h		

TABLE 29-7:	EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)	
-------------	--	--

Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge	1.5 Tcy + 40		ns	

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

FIGURE 29-12: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

TABLE 29-8: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input	3 Tcy	—	ns		
70A	TssL2WB	SS to Write to SSPBUF		3 Tcy	_	ns	
71	TscH	SCK Input High Time (Slave mode)	Continuous	1.25 Tcy + 30		ns	
71A			Single Byte	40	—	ns	(Note 1)
72	TscL	SCK Input Low Time (Slave mode)	Continuous	1.25 Tcy + 30	_	ns	
72A			Single Byte	40		ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40		ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDI Data Input to SCK Edge		100		ns	
75	TDOR	SDO Data Output Rise Time			25	ns	

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

30.2 Package Details

The following sections give the technical details of the packages.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensi	on Limits	MIN	NOM	MAX	
Number of Leads	Ν		80		
Lead Pitch	е		0.50 BSC		
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0° 3.5° 7°			
Overall Width	E		14.00 BSC		
Overall Length	D		14.00 BSC		
Molded Package Width	E1		12.00 BSC		
Molded Package Length	D1		12.00 BSC		
Lead Thickness	С	0.09 – 0.20			
Lead Width	b	0.17 0.22 0.27			
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

80-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units MILLIMETERS			S
Dimensio	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B

B.4.5.1 ADC Resolution as a Function of OSR

The ADC resolution is a function of the OSR (Section B.4.4 "SINC3 Filter"). The resolution is the same for both channels. No matter what the resolution is, the ADC output data is always presented in 24-bit words, with added zeros at the end, if the OSR is not large enough to produce 24-bit resolution (left justification).

TABLE B-5: OSR = 256 OUTPUT CODE EXAMPLES

ADC Output Code (MSB First)	Hexadecimal	Decimal
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0x7FFFFF	+ 8,388,607
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0x7FFFFE	+ 8,388,606
0000 0000 0000 0000 0000 0000	0x000000	0
1111 1111 1111 1111 1111 1111	0xFFFFFF	-1
1000 0000 0000 0000 0000 0001	0x800001	- 8,388,607
1000 0000 0000 0000 0000 0000	0x800000	- 8,388,608

TABLE B-6: OSR = 128 OUTPUT CODE EXAMPLES

	ADC Output Code (MSB First)															Hexadecimal	Decimal 23-Bit Resolution										
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1		1	1	0	0x7FFFFE	+ 4,194,303
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1		1 :	1	1	1		1	0	0	0x7FFFFC	+ 4,194,302
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C) (0	0	0	C)	0	0	0	0x000000	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	_	1	1	0	0xFFFFFE	-1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C) (C	0	0	C)	0	1	0	0x800002	- 4,194,303
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C) ()	0	0	C)	0	0	0	0x800000	- 4,194,304

TABLE B-7: OSR = 64 OUTPUT CODE EXAMPLES

	ADC Output Code (MSB First)															Hexadecimal	Decimal 20-Bit resolution						
0 1	. 1	1	1 1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0) () ()	0	0x7FFFF0	+ 524, 287
0 1	. 1	1	1 1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	0	0) () ()	0	0x7FFFE0	+ 524, 286
0 0	0	0	0 0) ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0) () ()	0	0x000000	0
1 1	. 1	1	1 1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0) () ()	0	0xFFFFF0	-1
1 0	0	0	0 0) ()	0	0	0	0	0	0	0	0	0	0	0	0	1	0) () ()	0	0x800010	- 524,287
1 0	0	0	0 0) ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0) () ()	0	0x800000	- 524, 288

TABLE B-8: OSR = 32 OUTPUT CODE EXAMPLES

	ADC Output Code (MSB First)	Hexadecimal	Decimal 17-Bit resolution
0 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	0x7FFF80	+ 65, 535
0 1 1 1	1111 1111 1111 0000 0000	0x7FFF00	+ 65, 534
0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0x000000	0
1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	0xFFFF80	-1
1 0 0 0	0000 0000 0000 1000 0000	0x800080	- 65,535
1 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0x800000	- 65, 536

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0933-5