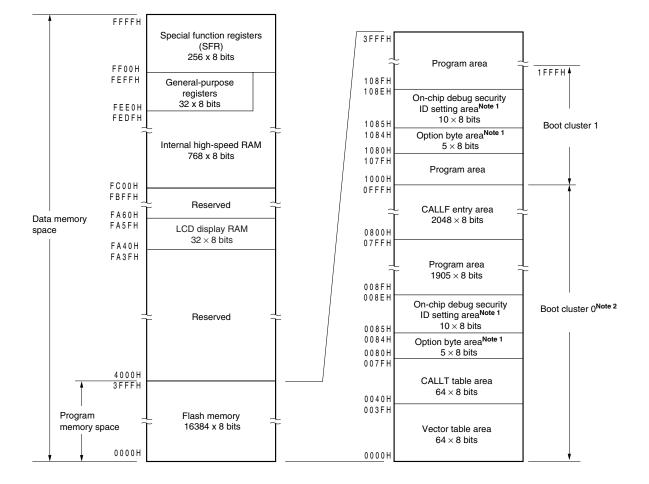
E. Renesas Electronics America Inc - UPD78F0452GK-GAJ-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

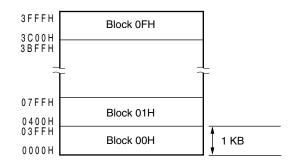

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	10MHz
Connectivity	3-Wire SIO, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0452gk-gaj-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Figure 3-1. Memory Map (µPD78F0441, 78F0451)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H, and the on-chip debug security IDs to 0085H to 008EH.

When boot swap is used:

Set the option bytes to 0080H to 0084H and 1080H to 1084H, and the on-chip debug security IDs to 0085H to 008EH and 1085H to 108EH.

- 2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Setting).
- **Remark** The flash memory is divided into blocks (one block = 1 KB). For the address values and block numbers, see **Table 3-2 Correspondence Between Address Values and Block Numbers in Flash Memory**.

(2) Processor clock control register (PCC)

This register is used to select the CPU clock, the division ratio, and operation mode for subsystem clock. PCC is set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets PCC to 01H.

Address: FF	FBH After	reset: 01H	$R/W^{Note 1}$					
Symbol	7	6	<5>	<4>	3	2	1	0
PCC	0	0	CLS	CSS	0	PCC2	PCC1	PCC0
	CLS			С	PU clock stati	JS		
	0	Main system	l clock					
	1	Subsystem of	Subsystem clock					
	CSS	PCC2	PCC2 PCC1 PCC0 CPU clock (fcpu) selection					

Figure 5-3.	Format of	Processor	Clock	Control	Register	(PCC)
-------------	-----------	-----------	-------	---------	----------	-------

CSS	PCC2	PCC1	PCC0	CPU clock (fcPu) selection
0	0	0	0	fxp
	0	0	1	fxp/2 (default)
	0	1	0	fxp/2 ²
	0	1	1	fxp/2 ³
	1	0	0	fxp/2 ⁴
1	0	0	0	fsub/2
	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
	Other the	an above		Setting prohibited

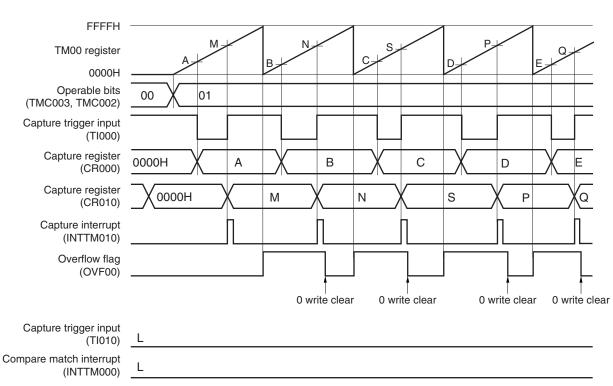
Note Bit 5 is read-only.

Caution Be sure to clear bits 3, 6, and 7 to "0".

Remarks 1. fxp: Main system clock oscillation frequency

2. fsub: Subsystem clock oscillation frequency

The fastest instruction can be executed in 2 clocks of the CPU clock in the 78K0/LE3. Therefore, the relationship between the CPU clock (fcPu) and the minimum instruction execution time is as shown in Table 5-2.


(2) Measuring the pulse width by using one input signal of the TI000 pin (free-running mode)

Set the free-running timer mode (TMC003 and TMC002 = 01). The count value of TM00 is captured to CR000 in the phase reverse to the valid edge detected on the Tl000 pin. When the valid edge of the Tl000 pin is detected, the count value of TM00 is captured to CR010.

By this measurement method, values are stored in separate capture registers when a width from one edge to another is measured. Therefore, the capture values do not have to be saved. By subtracting the value of one capture register from that of another, a high-level width, low-level width, and cycle are calculated.

If an overflow occurs, the value becomes negative if one captured value is simply subtracted from another and, therefore, a borrow occurs (bit 0 (CY) of the program status word (PSW) is set to 1). If this happens, ignore CY and take the calculated value as the pulse width. In addition, clear bit 0 (OVF00) of 16-bit timer mode control register 00 (TMC00) to 0.

Figure 6-50. Timing Example of Pulse Width Measurement (2)

• TMC00 = 04H, PRM00 = 10H, CRC00 = 07H

(2) Cautions for input enable control for TI52 pin

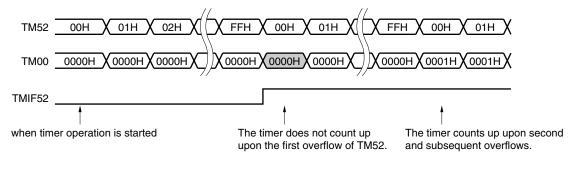
The input enable control signal (TMH2 output signal) for the TI52 pin is synchronized by the TI52 pin input clock, as described in Figure 6-54 Configuration Diagram of External 24-bit Event Counter and Figure 6-55 Operation Timing of External 24-bit Event Counter. Thus, when the counter is operated as an external event counter, an error up to one count may be caused.

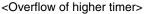
(3) Cautions for 16-bit timer/event counter 00 count up during external 24-bit event counter operation

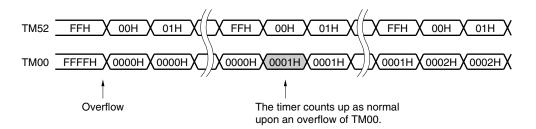
16-bit timer/event counter 00 has an internal synchronization circuit to eliminate noise when starting operation, and the first clock immediately after operation start is not counted.

When using the counter as a 24-bit counter, by setting 16-bit timer/event counter 00 and 8-bit timer/event counter 52 as the higher and lower timer and connecting them in cascade, the interrupt request flag of 8-bit timer/event counter 52 which is the lower timer must be checked as described below, in order to accurately read the 24-bit count values.

- If TMIF52 = 1 when TM52 and TM00 are read:

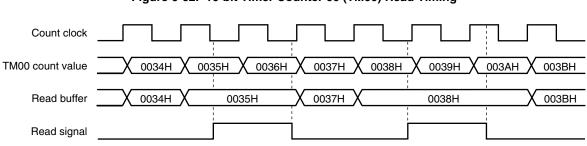

The actual TM00 count value is "read value of TM00 + 1".


- If TMIF52 = 0 when TM52 and TM00 are read:


The read value is the correct value.

This phenomenon of 16-bit timer/event counter 00 occurs only when operation is started. A count delay will not occur when 16-bit timer/event counter 00 overflows and the count is restarted from 0000H, since synchronization has already been implemented.

<When starting operation>



<R> (12) Reading of 16-bit timer counter 00 (TM00)

TM00 can be read without stopping the actual counter, because the count values captured to the buffer are fixed when it is read. The buffer, however, may not be updated when it is read immediately before the counter counts up, because the buffer is updated at the timing the counter counts up.

Figure 6-62. 16-bit Timer Counter 00 (TM00) Read Timing

7.4 Operations of 8-Bit Timer/Event Counters 50, 51, and 52

7.4.1 Operation as interval timer

8-bit timer/event counter 5n operates as an interval timer that generates interrupt requests repeatedly at intervals of the count value preset to 8-bit timer compare register 5n (CR5n).

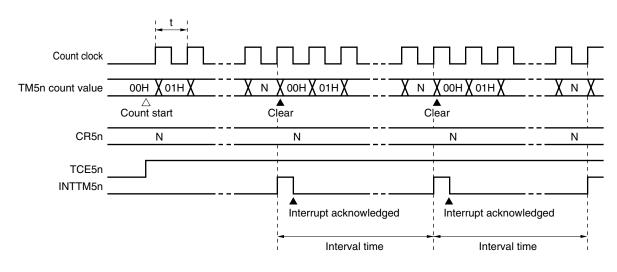
When the count value of 8-bit timer counter 5n (TM5n) matches the value set to CR5n, counting continues with the TM5n value cleared to 0 and an interrupt request signal (INTTM5n) is generated.

The count clock of TM5n can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock selection register 5n (TCL5n).

Setting

- <1> Set the registers.
 - TCL5n: Select the count clock.
 - CR5n: Compare value
 - TMC5n: Stop the count operation, select the mode in which clear & start occurs on a match of TM5n and CR5n.

 $(TMC5n = 0000 \times \times \times 0B \times = Don't care)$

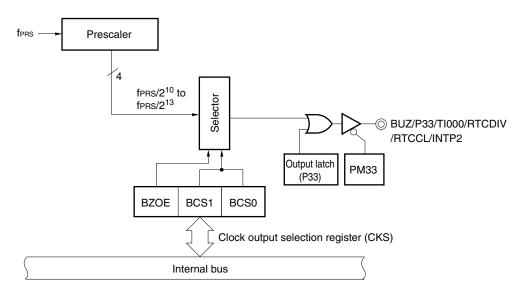

- <2> After TCE5n = 1 is set, the count operation starts.
- <3> If the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).
- <4> INTTM5n is generated repeatedly at the same interval.

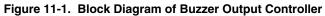
Set TCE5n to 0 to stop the count operation.

Caution Do not write other values to CR5n during operation.

Remarks 1. For how to enable the INTTM5n signal interrupt, see **CHAPTER 20 INTERRUPT FUNCTIONS**. **2.** n = 0 to 2

Figure 7-15. Interval Timer Operation Timing (1/2)


(a) Basic operation


Remark Interval time = $(N + 1) \times t$ N = 01H to FFH n = 0 to 2

CHAPTER 11 BUZZER OUTPUT CONTROLLER

11.1 Functions of Buzzer Output Controller

The buzzer output is intended for square-wave output of buzzer frequency selected with CKS. Figure 11-1 shows the block diagram of buzzer output controller.

The setting methods are described below.

- <1> Set bit 0 (ADCE) of the A/D converter mode register (ADM) to 1.
- <2> Set the channel to be used in the analog input mode by using bits 3 to 0 (ADPC03 to ADPC00) of the A/D port configuration register 0 (ADPC0) and bits 7 to 0 (PM27 to PM20) of port mode register 2 (PM2).
- <3> Select conversion time by using bits 6 to 1 (FR3 to FR0, LV1, and LV0) of ADM.
- <4> Select a channel to be used by using bits 2 to 0 (ADS2 to ADS0) of the analog input channel specification register (ADS).
- <5> Set bit 7 (ADCS) of ADM to 1 to start A/D conversion.
- <6> When one A/D conversion has been completed, an interrupt request signal (INTAD) is generated.
- <7> Transfer the A/D conversion data to the A/D conversion result register (ADCR, ADCRH).

<Change the channel>

- <8> Change the channel using bits 2 to 0 (ADS2 to ADS0) of ADS to start A/D conversion.
- <9> When one A/D conversion has been completed, an interrupt request signal (INTAD) is generated.

<10> Transfer the A/D conversion data to the A/D conversion result register (ADCR, ADCRH).

<Complete A/D conversion>

<11> Clear ADCS to 0.

<12> Clear ADCE to 0.

Cautions 1. Make sure the period of <1> to <5> is 1 μ s or more.

- 2. <1> may be done between <2> and <4>.
- 3. <1> can be omitted. However, ignore data of the first conversion after <5> in this case.
- 4. The period from <6> to <9> differs from the conversion time set using bits 6 to 1 (FR3 to FR0, LV1, LV0) of ADM. The period from <8> to <9> is the conversion time set using FR3 to FR0, LV1, and LV0.

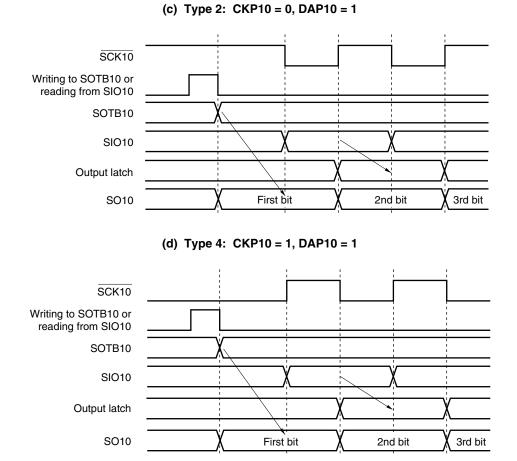


Figure 16-8. Output Operation of First Bit (2/2)

The first bit is directly latched by the SOTB10 register at the falling edge of the write signal of the SOTB10 register or the read signal of the SIO10 register, and output from the SO10 pin via an output selector. Then, the value of the SOTB10 register is transferred to the SIO10 register at the next falling (or rising) edge of SCK10, and shifted one bit. At the same time, the first bit of the receive data is stored in the SIO10 register via the SI10 pin. The second and subsequent bits are latched by the SIO10 register to the output latch at the next rising (or falling) edge of SCK10, and the data is output from the SO10 pin.

(2) LCD display mode register (LCDM)

LCDM specifies whether to enable display operation. It also specifies whether to enable segment pin/common pin output, gate booster circuit control, and the display mode. LCDM is set using a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets LCDM to 00H.

Figure 17-3. Format of LCD Display Mode Register

Address	s: FFB1H	After reset: 00H	R/W						
Symbol	<7>	<6>	5	<4>	3	2	1	0	_
LCDM	LCDON	SCOC	0	VAON	0	LCDM2	LCDM1	LCDM0	1

LCDON	LCD display enable/disable		
0	isplay off (all segment outputs are deselected.)		
1	Display on		

	SCOC	Segment pin/common pin output control ^{Note 1}		
I	0	Dutput ground level to segment/common pin		
l	1 Output deselect level to segment pin and LCD waveform to common pin			

VAON	Gate booster circuit control ^{Notes 1, 2}	
0	lo gate voltage boosting	
1	Gate voltage boosting	

LCDM2	LCDM1	LCDM0	LCD controller/driver display mode selection	
			Resistance d	ivision method
			Number of time slices	Bias mode
1	1	1		1/4 Note 4
0	0	0	4 Note 3	1/3
0	0	1	3 Note 3	1/3
0	1	0	2 ^{Note 3}	1/2
0	1	1	3 Note 3	1/2
1	0	0	Static	
Other than above	e		Setting prohibited	

(Note and Caution are listed on the next page.)

(3) LCD clock control register (LCDC0)

LCDC0 specifies the LCD source clock and LCD clock. The frame frequency is determined according to the LCD clock and the number of time slices. LCDC0 is set using a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets LCDC0 to 00H.

Figure 17-4. Format of LCD Clock Control Register

Address	s: FFB2H	After reset: 00H	I R/W						
Symbol	7	6	5	4	3	2	1	0	_
LCDC0	0	LCDC6	LCDC5	LCDC4	0	LCDC2	LCDC1	LCDC0	ĺ

LCDC6	LCDC5	LCDC4	LCD source clock (fLCD) selection
0	0	0	fхт (32.768 kHz)
0	0	1	fprs/2 ⁶
0	1	0	fprs/2 ⁷
0	1	1	fprs/2 ⁸
1	0	0	f _{RL} /2 ³
Other than abo	Other than above		Setting prohibited

LCDC2	LCDC1	LCDC0	LCD clock (LCDCL) selection
0	0	0	fLCD/2 ⁴
0	0	1	fLCD/2 ⁵
0	1	0	fLCD/2 ⁶
0	1	1	flcd/2 ⁷
1	0	0	fLCD/2 ⁸
1	0	1	fLCD/2º
Other than abo	Other than above		Setting prohibited

Caution Bits 3 and 7 must be set to 0.

- Remarks 1. fxT: XT1 clock oscillation frequency
 - 2. fPRS: Peripheral hardware clock frequency
 - 3. fr.L: Internal low-speed oscillation clock frequency

17.7.2 Two-time-slice display example

Figure 17-21 shows how the 6-digit LCD panel having the display pattern shown in Figure 17-20 is connected to the segment signals (SEG0 to SEG23) and the common signals (COM0 and COM1) of the 78K0/LE3 chip. This example displays data "12345.6" in the LCD panel. The contents of the display data memory (FA40H to FA57H) correspond to this display.

The following description focuses on numeral "3" (\exists) displayed in the fourth digit. To display "3" in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG12 to SEG15 pins according to Table 17-7 at the timing of the common signals COM0 and COM1; see Figure 17-20 for the relationship between the segment signals and LCD segments.

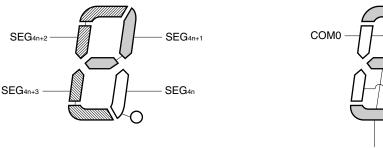
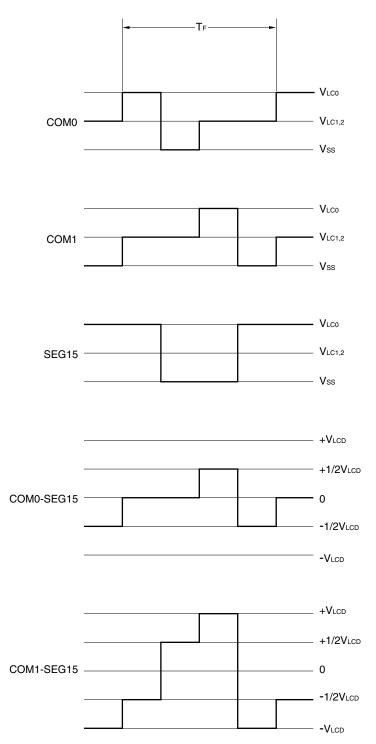

Segment	SEG12	SEG13	SEG14	SEG15
Common				
COM0	Select	Select	Deselect	Deselect
COM1	Deselect	Select	Select	Select

Table 17-7. Select and Deselect Voltages (COM0 and COM1)

According to Table 17-7, it is determined that the display data memory location (FA4FH) that corresponds to SEG15 must contain xx10.

Figure 17-22 shows examples of LCD drive waveforms between the SEG15 signal and each common signal. When the select voltage is applied to SEG15 at the timing of COM1, an alternate rectangle waveform, $+V_{LCD}/-V_{LCD}$, is generated to turn on the corresponding LCD segment.



COM1

Remark n = 0 to 5

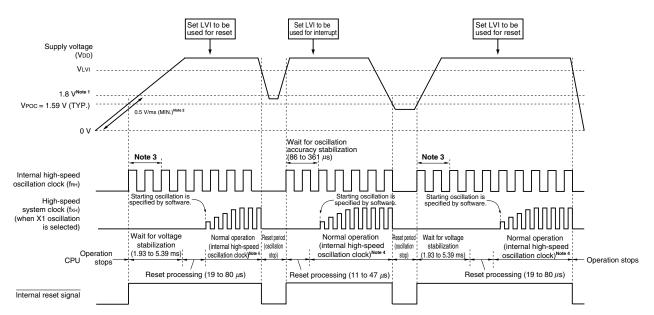

Figure 17-22. Two-Time-Slice LCD Drive Waveform Examples (1/2 Bias Method)

Figure 24-2. Timing of Generation of Internal Reset Signal by Power-on-Clear Circuit and Low-Voltage Detector (1/2)

(1) In 1.59 V POC mode (option byte: POCMODE = 0)

- Notes 1. The operation guaranteed range is 1.8 V ≤ V_{DD} ≤ 5.5 V. To make the state at lower than 1.8 V reset state when the supply voltage falls, use the reset function of the low-voltage detector, or input the low level to the RESET pin.
 - If the voltage rises to 1.8 V at a rate slower than 0.5 V/ms (MIN.) on power application, input a low level to the RESET pin after power application and before the voltage reaches 1.8 V, or set the 2.7 V/1.59 V POC mode by using an option byte (POCMODE = 1).
 - **3.** The internal voltage stabilization time includes the oscillation accuracy stabilization time of the internal high-speed oscillation clock.
 - 4. The internal high-speed oscillation clock and a high-speed system clock or subsystem clock can be selected as the CPU clock. To use the X1 clock, use the OSTC register to confirm the lapse of the oscillation stabilization time. To use the XT1 clock, use the timer function for confirmation of the lapse of the stabilization time.
- Caution Set the low-voltage detector by software after the reset status is released (see CHAPTER 25 LOW-VOLTAGE DETECTOR).
- Remark
 VLVI:
 LVI detection voltage

 VPOC:
 POC detection voltage

27.3 Writing with Flash memory programmer

Data can be written to the flash memory on-board or off-board, by using a dedicated flash memory programmer.

(1) On-board programming

The contents of the flash memory can be rewritten after the 78K0/LE3 has been mounted on the target system. The connectors that connect the dedicated flash memory programmer must be mounted on the target system.

(2) Off-board programming

Data can be written to the flash memory with a dedicated program adapter (FA series) before the 78K0/LE3 is mounted on the target system.

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.

Table 27-3. Wiring Between 78K0/LE3 and Dedicated Flash memory programmer

Pin Configuration of Dedicated Flash memory programmer			With CSI10)	With UART6		
Signal Name	I/O	Pin Function	Pin Name	Pin No.	Pin Name	Pin No.	
SI/RxD	Input	Receive signal	SO10/TxD0 / <txd6>/P13</txd6>	62	TxD6/SEG14/P112	28	
SO/TxD	Output	Transmit signal	SI10/RxD0 / <rxd6>/P12</rxd6>	63	RxD6/SEG15/P113	27	
SCK	Output	Transfer clock	SCK10/P11	64	-	-	
CLK	Output	Clock to 78K0/LE3	_Note 1	-	Note 2	Note 2	
/RESET	Output	Reset signal	RESET	10	RESET	10	
FLMD0	Output	Mode signal	FLMD0	13	FLMD0	13	
VDD	I/O	VDD voltage generation/	VDD	18	VDD	18	
		power monitoring	VDD ^{Note 3}	47	VDD ^{Note 3}	47	
			AVREF ^{Note 4}		AVREF ^{Note 4}		
GND	-	Ground	Vss	17	Vss	17	
			Vss ^{Note 3}	48	Vss ^{Note 3}	48	
			AVss ^{Note 4}	1	AVss ^{Note 4}		

Notes 1. Only the internal high-speed oscillation clock (fRH) can be used when CSI10 is used.

2. Only the X1 clock (fx), external main system clock (fexcLk), or internal high-speed oscillation clock (fRH) can be used when UART6 is used. When using the clock output of the dedicated flash memory programmer, connect CLK of the PG-FP5 or FL-PR5 to EXCLK/X2/P122 (pin number 14).

3. *μ*PD78F044x only.

4. *μ*PD78F045x and 78F046x only.

<R>

<R>

Caution Only the bottom side pins (pin numbers 27 and 28) correspond to the UART6 pins (RxD6 and TxD6) when writing by a flash memory programmer. Writing cannot be performed by the top side pins (pin numbers 63 and 62).

27.7.4 Communication commands

The 78K0/LE3 communicates with the dedicated flash memory programmer by using commands. The signals sent from the flash memory programmer to the 78K0/LE3 are called commands, and the signals sent from the 78K0/LE3 to the dedicated flash memory programmer are called response.

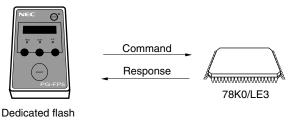


Figure 27-14. Communication Commands

The flash memory control commands of the 78K0/LE3 are listed in the table below. All these commands are issued from the programmer and the 78K0/LE3 perform processing corresponding to the respective commands.

Classification	Command Name	Function
Verify	Verify	Compares the contents of a specified area of the flash memory with data transmitted from the programmer.
Erase	Chip Erase	Erases the entire flash memory.
	Block Erase	Erases a specified area in the flash memory.
Blank check	Block Blank Check	Checks if a specified block in the flash memory has been correctly erased.
Write	Programming	Writes data to a specified area in the flash memory.
Getting information	Status	Gets the current operating status (status data).
	Silicon Signature	Gets 78K0/Lx3 information (such as the part number and flash memory configuration).
	Version Get	Gets the 78K0/Lx3 version and firmware version.
	Checksum	Gets the checksum data for a specified area.
Security	Security Set	Sets security information.
Others	Reset	Used to detect synchronization status of communication.
	Oscillating Frequency Set	Specifies an oscillation frequency.

Table 27-8. Flash Memory Control Commands

The 78K0/LE3 return a response for the command issued by the dedicated flash memory programmer. The response names sent from the 78K0/LE3 are listed below.

Table 27-9. Response Names

Response Name	Function
ACK	Acknowledges command/data.
NAK	Acknowledges illegal command/data.

memory programmer

Function Name	Interrupt Response Time (µs)							
	When entry RA	M is allocated out	side short direct	When entry RAM is allocated within short direct				
		addressing range			addressing range			
	RSTOP = 0 a	and RSTS = 1	RSTOP = 1	RSTOP = 0 a	RSTOP = 1			
	(during stable	e operation of	(internal	(during stable	(during stable operation of			
	internal high-sp	peed oscillator)	high-speed	internal high-s	peed oscillator)	high-speed		
			oscillator			oscillator		
			stopped) ^{Note}			stopped) ^{Note}		
	MCS = 0	MCS = 1	MCS = 1	MCS = 0	MCS = 1	MCS = 1		
	(CPU operates with internal with		(CPU operates	(CPU operates	(CPU operates	(CPU operates		
			with	with internal	with	with		
	high-speed	high-speed	high-speed	high-speed	high-speed	high-speed		
	oscillation	system clock)	system clock)	oscillation	system clock)	system clock)		
	clock)			clock)				
Block erase function	136/fcpu+1269	136/fcpu+1269	136/fcpu+1912	136/fcpu+703	136/fcpu+703	136/fcpu+713		
Word write function	272/fcpu+1098	272/fcpu+1098	272/fcpu+1742	272/fcpu+533	272/fcpu+533	272/fcpu+543		
Block verify function	136/fcpu+1013	136/fcpu+1013	136/fcpu+1656	136/fcpu+448	136/fcpu+448	136/fcpu+456		
Block blank check function	136/fcpu+993	136/fcpu+993	136/fcpu+1637	136/fcpu+428	136/fcpu+428	136/fcpu+438		
Set information function	72/fcpu+833	72/fcpu+833	72/fcpu+1477	72/fcpu+346	72/fcpu+346	72/fcpu+346		
EEPROM write function	268/fcpu+1107	268/fcpu+1107	268/fcpu+1751	268/fcpu+542	268/fcpu+542	268/fcpu+552		

Table 27-14. Interrupt Response Time (Library for Static Model) (2/2)

- **Note** This is the function processing time when the function is executed immediately after the self programming start function has been executed. The processing time after a function other than the self programming start function has been executed is the same as that of RSTOP = 0.
- Remark RSTOP: Bit 0 of the internal oscillation mode register (RCM)
 - RSTS: Bit 7 of RCM
 - MCS: Bit 1 of main clock mode register (MCM)
 - fcpu: CPU clock frequency
 - W: Number of words to be written (1 word = 4 bytes)

Instruction	Mnemonic	Operands	Bytes		ocks	Operation		Flag	g
Group	Minemonic	Operands	bytes	Note 1	Note 2	Operation	Z	AC	; CY
16-bit data	MOVW	rp, #word	3	6	-	$rp \leftarrow word$			
transfer		saddrp, #word	4	8	10	$(saddrp) \leftarrow word$			
		sfrp, #word	4	-	10	$sfrp \leftarrow word$			
		AX, saddrp	2	6	8	$AX \leftarrow (saddrp)$			
		saddrp, AX	2	6	8	$(saddrp) \leftarrow AX$			
		AX, sfrp	2	-	8	$AX \leftarrow sfrp$			
		sfrp, AX	2	-	8	sfrp \leftarrow AX			
		AX, rp	³ 1	4	-	$AX \leftarrow rp$			
		rp, AX	³ 1	4	-	$rp \leftarrow AX$			
		AX, !addr16	3	10	12	$AX \leftarrow (addr16)$			
		!addr16, AX	3	10	12	(addr16) ← AX			
	XCHW	AX, rp	³ 1	4	-	$AX \leftrightarrow rp$			
8-bit	ADD	A, #byte	2	4	-	A, CY \leftarrow A + byte	×	×	×
operation		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) + byte	×	×	×
		A, r	⁴ 2	4	-	$\begin{array}{l} rp \leftarrow AX \\ AX \leftarrow (addr16) \\ (addr16) \leftarrow AX \\ AX \leftrightarrow rp \\ A, CY \leftarrow A + byte \\ (saddr), CY \leftarrow (saddr) + byte \\ A, CY \leftarrow A + r \\ r, CY \leftarrow r + A \\ A, CY \leftarrow A + (saddr) \\ A, CY \leftarrow A + (saddr) \\ A, CY \leftarrow A + (hL) \\ A, CY \leftarrow A + (HL + byte) \\ A, CY \leftarrow A + (HL + B) \\ A, CY \leftarrow A + (HL + C) \\ \end{array}$	×	×	×
		r, A	2	4	-	$r, CY \leftarrow r + A$	×	×	×
		A, saddr	2	4	5	A, CY \leftarrow A + (saddr)	×	×	×
		A, !addr16	3	8	9	A, CY \leftarrow A + (addr16)	×	×	×
		A, [HL]	1	4	5	A, CY \leftarrow A + (HL)	×	×	×
		A, [HL + byte]	2	8	9	A, CY \leftarrow A + (HL + byte)	×	×	×
		A, [HL + B]	2	8	9	A, CY \leftarrow A + (HL + B)	×	×	×
		A, [HL + C]	2	8	9	A, CY \leftarrow A + (HL + C)	×	×	×
	ADDC	A, #byte	2	4	-	A, CY \leftarrow A + byte + CY	×	×	×
		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) + byte + CY	×	×	×
		A, r	⁴ 2	4	-	A, $CY \leftarrow A + r + CY$	×	×	×
		r, A	2	4	-	$r,CY \leftarrow r + A + CY$	×	×	×
		A, saddr	2	4	5	A, CY \leftarrow A + (saddr) + CY	×	×	×
		A, !addr16	3	8	9	A, CY \leftarrow A + (addr16) + C	×	×	×
		A, [HL]	1	4	5	$A, CY \leftarrow A + (HL) + CY$	×	×	×
		A, [HL + byte]	2	8	9	A, CY \leftarrow A + (HL + byte) + CY	×	×	×
		A, [HL + B]	2	8	9	$A, CY \leftarrow A + (HL + B) + CY$	×	×	×
		A, [HL + C]	2	8	9	A, CY \leftarrow A + (HL + C) + CY	×	×	×

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

2. When an area except the internal high-speed RAM area is accessed

- **3.** Only when rp = BC, DE or HL
- **4.** Except "r = A"
- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).
 - 2. This clock cycle applies to the internal ROM program.

Instruction	Magazia	Onorondo	Dutes	Clo	ocks	Operation		-lag
Group	Mnemonic	Operands	Bytes	Note 1	Note 2	Operation		AC C
Call/return	CALL	!addr16	3	7	-	$(SP - 1) \leftarrow (PC + 3)_{H}, (SP - 2) \leftarrow (PC + 3)_{L},$ PC \leftarrow addr16, SP \leftarrow SP - 2		
	CALLF	!addr11	2	5	-	$(SP - 1) \leftarrow (PC + 2)H$, $(SP - 2) \leftarrow (PC + 2)L$, PC ₁₅₋₁₁ \leftarrow 00001, PC ₁₀₋₀ \leftarrow addr11, SP \leftarrow SP - 2		
	CALLT	[addr5]	1	6	_	$(SP - 1) \leftarrow (PC + 1)_{H}, (SP - 2) \leftarrow (PC + 1)_{L},$ $PC_{H} \leftarrow (addr5 + 1), PC_{L} \leftarrow (addr5),$ $SP \leftarrow SP - 2$		
	BRK		1	6	_	$(SP - 1) \leftarrow PSW$, $(SP - 2) \leftarrow (PC + 1)$ H, $(SP - 3) \leftarrow (PC + 1)$ L, PC H $\leftarrow (003FH)$, PC L $\leftarrow (003EH)$, $SP \leftarrow SP - 3$, $IE \leftarrow 0$		
	RET		1	6	-	$PC_{H} \leftarrow (SP + 1), PC_{L} \leftarrow (SP),$ $SP \leftarrow SP + 2$		
	RETI		1	6	_	$PC_{H} \leftarrow (SP + 1), PC_{L} \leftarrow (SP),$ $PSW \leftarrow (SP + 2), SP \leftarrow SP + 3$	R	RR
	RETB		1	6	-	PC _H ← (SP + 1), PC _L ← (SP), PSW ← (SP + 2), SP ← SP + 3	R	RR
Stack	PUSH	PSW	1	2	-	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$		
manipulate		rp	1	4	-	$(SP - 1) \leftarrow rp_H, (SP - 2) \leftarrow rp_L,$ $SP \leftarrow SP - 2$		
	POP	PSW	1	2	-	$PSW \leftarrow (SP), SP \leftarrow SP + 1$	R	RR
		rp	1	4	-	$rp_{H} \leftarrow (SP + 1), rp_{L} \leftarrow (SP),$ SP ← SP + 2		
	MOVW	SP, #word	4	-	10	$SP \leftarrow word$		
		SP, AX	2	-	8	$SP \leftarrow AX$		
		AX, SP	2	-	8	$AX \leftarrow SP$		
Unconditional	BR	!addr16	3	6	-	$PC \leftarrow addr16$		
branch		\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$		
		AX	2	8	-	$PCH \leftarrow A, PC_{L} \leftarrow X$		
Conditional	вс	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$		
branch	BNC	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$		
	BZ	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 1$		
	BNZ	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 0$		

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

2. When an area except the internal high-speed RAM area is accessed

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).

2. This clock cycle applies to the internal ROM program.

Standard products

DC Characteristics (1/5)

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, AVREF \leq VDD, Vss = AVss = 0 V)

Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Output current, high ^{Note1}	Іон1	Per pin for P11 to P14,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0	mA
		P31 to P34, P40 to P44, P120	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-2.5	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-1.0	mA
		Per pin for P80 to P83,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1	mA
		P100 to P103, P110 to P113,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-0.1	mA
		P140 to P143, P150 to P153	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-0.1	mA
		Total ^{Note3} of P11 to P14,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-20.0	mA
		P31 to P34, P40 to P44,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-10.0	mA
		P120	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-5.0	mA
		Total ^{Note3} of P80 to P83,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-2.8	mA
		P100 to P103, P110 to P113,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-2.8	mA
		P140 to P143, P150 to P153	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-2.8	mA
		Total ^{Note3} of all pins	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-22.8	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-12.8	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-7.8	mA
	Іон2	Per pin for P20 to P27	AVREF = VDD			-0.1	mA
Output current, low ^{Note2}	IOL1	Per pin for P11 to P14, P31 to P34, P40 to P44, P120	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			8.5	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			5.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			2.0	mA
		Per pin for P80 to P83, P100 to P103, P110 to P113, P140 to P143, P150 to P153	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			0.4	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			0.4	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			0.4	mA
		Total ^{Note3} of P11 to P14,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			20.0	mA
		P31 to P34, P40 to P44,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
		P120	$1.8~V \leq V_{\text{DD}} < 2.7~V$			9.0	mA
		Total ^{Note3} of P80 to P83,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			11.2	mA
		P100 to P103, P110 to P113,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			11.2	mA
		P140 to P143, P150 to P153	$1.8~V \leq V_{\text{DD}} < 2.7~V$			11.2	mA
		Total ^{Note3} of all pins	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			31.2	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			26.2	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			20.2	mA
	IOL2	Per pin for P20 to P27	AVREF = VDD			0.4	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from V_{DD} to an output pin.

2. Value of current at which the device operation is guaranteed even if the current flows from an output pin to GND.

- **3.** Specification under conditions where the duty factor is 70% (time for which current is output is $0.7 \times t$ and time for which current is not output is $0.3 \times t$, where t is a specific time). The total output current of the pins at a duty factor of other than 70% can be calculated by the following expression.
 - Where the duty factor of IoH is n%: Total output current of pins = (IoH \times 0.7)/(n \times 0.01)

<Example> Where the duty factor is 50%, Iон = 20.0 mA

Total output current of pins = $(20.0 \times 0.7)/(50 \times 0.01) = 28.0 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.