E. Renesas Electronics America Inc - UPD78F0453GB-GAH-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	78K/0
Core Size	8-Bit
Speed	10MHz
Connectivity	3-Wire SIO, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0453gb-gah-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

[MEMO]

Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE – Products and Packages –	X13769X
Semiconductor Device Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Note See the "Semiconductor Device Mount Manual" website (http://www.necel.com/pkg/en/mount/index.html).

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

																	(3/3)
Part Number			78K0/LF3														
			μPD78F047x μPD78F048x μPD78F0							D78F0	49x						
Iter	n			80 Pins													
Fla	sh i	nemory (KB)	16	24	32	48	60	16	24	32	48	60	16	24	32	48	60
RA	М (KB)	0.75	1	1	2	2	0.75	1	1	2	2	0.75	1	1	2	2
Po	wer	supply voltage							VDD =	1.8 to	5.5 V						
Re	gula	ator							F	Provide	d						
Mir	nimu	um instruction			0.2	μs (10	MHz: \	/DD = 2.	7 to 5.5	5 V)/ 0.4	4 <i>μ</i> s (5	MHz: '	Vdd = 1	.8 to 5.	5 V)		
exe	ecut	ion time															
	ain	High-speed system clock				10) MHz:	V _{DD} = 2	2.7 to 5	.5 V/5 I	MHz: V	DD = 1.	8 to 5.5	V			
lock	Ŵ	Internal high-speed oscillation clock		8 MHz (TYP.): V _{DD} = 1.8 to 5.5 V													
0	Su	bclock					3	2.768 k	Hz (TY	′P.): V□	o = 1.8	to 5.5	V				
	Int os	ernal low-speed cillation clock						240 kH	z (TYP	9.): Vdd	= 1.8 t	o 5.5 V	1				
Port	То	tal								62							
	16	bits (TM0)								1 ch							
۲	8 b	its (TM5)								3 ch							
ime	8 b	its (TMH)								3 ch							
- 1	RT	C								1 ch							
	WDT		1 ch														
e	3-v	vire CSI/UART ^{Note 1}	1 ch														
irfac	Au	tomatic transmit/	1 ch														
inte	rec	eive 3-wire CSI															
שור UART supporting LIN- שור שור שור שור שור שור שור שור שור שור			1 ch														
	Ty	oe	External resistance division and internal resistance division are switchable.														
8	Se	gment signal		40 (36) [36 (32)] ^{Note 3, 4} 32 (28) [28 (24)] ^{Note 3, 4}										4			
	Co	mmon signal	4 (8) ^{Note 3}														
10	bit	successive	– 8 ch														
ар	pro	ximation type A/D															
16	bit	ΔΣ type A/D						_							3 ch		
ıpt	Ex	ternal								7							
Interru	Int	ernal			20					21					22		
Se out	gme put	ent key source signal								8 ch							
Ke	y int	errupt								8 ch							
	RE	SET pin							F	rovide	d						
ēt	PC	OC				1.59	V ±0.1	5 V (Tin	ne for ri	ising up	o to 1.8	V : 3.6	6 ms (N	IAX.))			
Res	LV	1			т	he dete	ection I	evel of	he sup	lov vla	age is	selecta	able in f	16 step	S.		
								F	Provide	d				-			
Clock output/ Buzzer output								F	Provide	d							
Re	mot	e controller receiver							F	Provide	d						
мс	G								F	Provide	d						
On	-chi	p debug function								Provide	d						

Notes 1. Select either of the functions of these alternate-function pins.

- 2. The LIN-bus supporting UART pins can be changed to the Automatic transmit/receive 3-wire CSI/UART pins (pin numbers 75 and 76).
- 3. The values in parentheses are the number of signal outputs when 8com is used.
- **4.** The values in square brackets are the number of signal outputs when using the UART6 pins (RxD6, TxD6) on the bottom side.

Address	Special Function Register (SFR) Name		Symbol	R/W	Manipulatable Bit Unit		After	
				1 Bit	8 Bits	16 Bits	Reset	
FF00H	Receive buffer regi	ster 6	RXB6	R	_	\checkmark	-	FFH
FF01H	Port register 1		P1	R/W	\checkmark	\checkmark	-	00H
FF02H	Port register 2		P2	R/W	\checkmark	\checkmark	-	00H
FF03H	Port register 3		P3	R/W	\checkmark	\checkmark	-	00H
FF04H	Port register 4		P4	R/W	\checkmark	\checkmark	-	00H
FF05H	Transmit buffer reg	jister 6	TXB6	R/W	_	\checkmark	-	FFH
FF06H	10-bit A/D convers	ion result register ^{Note}	ADCR	R	_	-	\checkmark	0000H
FF07H		8-bit A/D conversion result register H ^{∾ote}	ADCRH	R	-	\checkmark	-	00H
FF08H	Port register 8		P8	R/W	\checkmark	\checkmark	-	00H
FF0AH	Port register 10		P10	R/W	\checkmark	\checkmark	_	00H
FF0BH	Port register 11		P11	R/W	\checkmark	\checkmark	_	00H
FF0CH	Port register 12		P12	R/W	\checkmark	\checkmark	_	00H
FF0EH	Port register 14		P14	R/W	\checkmark	\checkmark	_	00H
FF0FH	Port register 15		P15	R/W	\checkmark	\checkmark	-	00H
FF10H	16-bit timer counte	r 00	ТМ00	R	-	-	\checkmark	0000H
FF11H								
FF12H	16-bit timer capture	e/compare register 000	CR000	R/W	_	-	\checkmark	0000H
FF13H								
FF14H	16-bit timer capture	CR010	R/W	_	-	\checkmark	0000H	
FF15H								
FF16H	8-bit timer counter	50	TM50	R	_	\checkmark	_	00H
FF17H	8-bit timer compare	e register 50	CR50	R/W	_	\checkmark	_	00H
FF18H	8-bit timer H comp	are register 00	CMP00	R/W	_	\checkmark	-	00H
FF19H	8-bit timer H comp	are register 10	CMP10	R/W	_	\checkmark	-	00H
FF1AH	8-bit timer H comp	are register 01	CMP01	R/W	_	\checkmark	-	00H
FF1BH	8-bit timer H comp	are register 11	CMP11	R/W	_	\checkmark	-	00H
FF1FH	Serial I/O shift regi	ster 10	SIO10	R	-	\checkmark	-	00H
FF20H	Port function regist	ter 1	PF1	R/W	\checkmark	\checkmark	-	00H
FF21H	Port mode register	1	PM1	R/W	\checkmark	\checkmark	-	FFH
FF22H	Port mode register	2	PM2	R/W	\checkmark	\checkmark	-	FFH
FF23H	Port mode register	3	PM3	R/W	\checkmark	\checkmark	-	FFH
FF24H	Port mode register	4	PM4	R/W	\checkmark	\checkmark	-	FFH
FF28H	Port mode register	8	PM8	R/W	\checkmark	\checkmark	-	FFH
FF2AH	Port mode register	10	PM10	R/W	\checkmark	\checkmark	-	FFH
FF2BH	Port mode register	PM11	R/W	\checkmark	\checkmark	-	FFH	
FF2CH	Port mode register	PM12	R/W	\checkmark	\checkmark	-	FFH	
FF2EH	Port mode register	PM14	R/W	\checkmark	\checkmark	-	FFH	
FF2FH	Port mode register	PM15	R/W		1		FFH	
FF30H	Internal high-speed	d oscillation trimming register	HIOTRM	R/W		\checkmark		10H
FF31H	Pull-up resistor opt	tion register 1	PU1	R/W		\checkmark	_	00H
FF33H	Pull-up resistor opt	tion register 3	PU3	R/W		\checkmark		00H

Table 3-8.	Special	Function	Register	List (1	/5)
------------	---------	----------	----------	---------	-----

Note μ PD78F045x and 78F046x only.

Set Value Before Switchover	Set Value After Switchover				
MCM0	MCM0				
	0	1			
0		1 + 2fвн/fхн clock			
1	1 + 2fхн/frн clock				

Table 5-8. Maximum Time Required for Main System Clock Switchover

Caution When switching the internal high-speed oscillation clock to the high-speed system clock, bit 2 (XSEL) of MCM must be set to 1 in advance. The value of XSEL can be changed only once after a reset release.

2. Calculate the number of clocks in Table 5-8 by removing the decimal portion.

Example When switching the main system clock from the internal high-speed oscillation clock to the high-speed system clock (@ oscillation with $f_{RH} = 8$ MHz, $f_{XH} = 10$ MHz) 1 + 2 $f_{RH}/f_{XH} = 1 + 2 \times 8/10 = 1 + 2 \times 0.8 = 1 + 1.6 = 2.6 \rightarrow 2$ clocks

5.6.9 Conditions before clock oscillation is stopped

The following lists the register flag settings for stopping the clock oscillation (disabling external clock input) and conditions before the clock oscillation is stopped.

Clock	Conditions Before Clock Oscillation Is Stopped (External Clock Input Disabled)	Flag Settings of SFR Register
Internal high-speed oscillation clock	MCS = 1 or CLS = 1 (The CPU is operating on a clock other than the internal high-speed oscillation clock)	RSTOP = 1
X1 clock External main system clock	MCS = 0 or CLS = 1 (The CPU is operating on a clock other than the high-speed system clock)	MSTOP = 1
XT1 clock	CLS = 0 (The CPU is operating on a clock other than the subsystem clock)	OSCSELS = 0

Table 5-9. Conditions Before the Clock Oscillation Is Stopped and Flag Settings

Remarks 1. The number of clocks listed in Table 5-8 is the number of main system clocks before switchover.

Figure 6-19. Example of Software Processing for Square Wave Output Function

<1> Count operation start flow

Note Care must be exercised when setting TOC00. For details, see 6.3 (3) 16-bit timer output control register 00 (TOC00).

6.4.5 Free-running timer operation

When bits 3 and 2 (TMC003 and TMC002) of 16-bit timer mode control register 00 (TMC00) are set to 01 (freerunning timer mode), 16-bit timer/event counter 00 continues counting up in synchronization with the count clock. When it has counted up to FFFFH, the overflow flag (OVF00) is set to 1 at the next clock, and TM00 is cleared (to 0000H) and continues counting. Clear OVF00 to 0 by executing the CLR instruction via software.

The following three types of free-running timer operations are available.

- Both CR000 and CR010 are used as compare registers.
- One of CR000 or CR010 is used as a compare register and the other is used as a capture register.
- Both CR000 and CR010 are used as capture registers.

Remarks 1. For the setting of the I/O pins, see 6.3 (6) Port mode register 3 (PM3).

2. For how to enable the INTTM000 signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.

(1) Free-running timer mode operation

(CR000: compare register, CR010: compare register)

12.6 Cautions for 10-bit successive approximation type A/D Converter

(1) Operating current in STOP mode

The A/D converter stops operating in the STOP mode. At this time, the operating current can be reduced by clearing bit 7 (ADCS) and bit 0 (ADCE) of the A/D converter mode register (ADM) to 0.

To restart from the standby status, clear bit 0 (ADIF) of interrupt request flag register 1L (IF1L) to 0 and start operation.

(2) Input range of ANI0 to ANI7

Observe the rated range of the ANI0 to ANI7 input voltage. If a voltage of AV_{REF} or higher and AVss or lower (even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of the other channels may also be affected.

(3) Conflicting operations

<1> Conflict between A/D conversion result register (ADCR, ADCRH) write and ADCR or ADCRH read by instruction upon the end of conversion

ADCR or ADCRH read has priority. After the read operation, the new conversion result is written to ADCR or ADCRH.

<2> Conflict between ADCR or ADCRH write and A/D converter mode register (ADM) write, analog input channel specification register (ADS), or A/D port configuration register 0 (ADPC0) write upon the end of conversion

ADM, ADS, or ADPC0 write has priority. ADCR or ADCRH write is not performed, nor is the conversion end interrupt signal (INTAD) generated.

(4) Noise countermeasures

To maintain the 10-bit resolution, attention must be paid to noise input to the AVREF pin and pins ANI0 to ANI7.

- <1> Connect a capacitor with a low equivalent resistance and a good frequency response to the power supply.
- <2> The higher the output impedance of the analog input source, the greater the influence. To reduce the noise, connecting external C as shown in Figure 12-20 is recommended.
- <3> Do not switch these pins with other pins during conversion.
- <4> The accuracy is improved if the HALT mode is set immediately after the start of conversion.

14.3 Registers Controlling Serial Interface UART0

Serial interface UART0 is controlled by the following six registers.

- Asynchronous serial interface operation mode register 0 (ASIM0)
- Asynchronous serial interface reception error status register 0 (ASIS0)
- Baud rate generator control register 0 (BRGC0)
- Port function register 1 (PF1)
- Port mode register 1 (PM1)
- Port register 1 (P1)

(1) Asynchronous serial interface operation mode register 0 (ASIM0)

This 8-bit register controls the serial communication operations of serial interface UART0. This register can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets this register to 01H.

Figure 14-2. Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIM0) (1/2)

Address: FF70H After reset: 01H R/W

Symbol	<7>	<6>	<5>	4	3	2	1	0
ASIM0	POWER0	TXE0	RXE0	PS01	PS00	CL0	SL0	1

POWER0	Enables/disables operation of internal operation clock
0 ^{Note 1}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit ^{Note 2} .
1	Enables operation of the internal operation clock.

TXE0	Enables/disables transmission
0	Disables transmission (synchronously resets the transmission circuit).
1	Enables transmission.

RXE0	Enables/disables reception				
0	0 Disables reception (synchronously resets the reception circuit).				
1	Enables reception.				

Notes 1. The input from the RxD0 pin is fixed to high level when POWER0 = 0.

2. Asynchronous serial interface reception error status register 0 (ASIS0), transmit shift register 0 (TXS0), and receive buffer register 0 (RXB0) are reset.

(d) 1/4 bias method

T: One LCD clock period

Figure 19-16. Noise Elimination Operation Example (2/2)

(d) 4-clock noise elimination (PRSEN = 1, NCW = 1)

Remark Internal RIN is a signal after synchronization and sampling are performed three times, and is therefore later than the actual signal input from the outside to the RIN pin by 6 to 8 clocks.

Figure 22-6. STOP Mode Release by Interrupt Request Generation (2/2)

(3) When internal high-speed oscillation clock is used as CPU clock

Note The wait time is as follows:

- When vectored interrupt servicing is carried out:
 8 or 9 clocks
- When vectored interrupt servicing is not carried out: 2 or 3 clocks
- **Remark** The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.

Item			During Reset Period
Sy	stem clock		Clock supply to the CPU is stopped.
	Main system cloo	ck fвн	Operation stopped
		fx	Operation stopped (pin is I/O port mode)
		f exclk	Clock input invalid (pin is I/O port mode)
	Subsystem clock	fxт	Operation stopped (pin is I/O port mode)
	frL		Operation stopped
CF	U		
Fla	sh memory		
RA	М		
Po	rt (latch)		
16	bit timer/event co	unter 00	
8-b	oit timer/event	50	
COI	unter	51	
		52	
8-bit timer H0		HO	
		H1	
		H2	
Re	al-time counter		
Wa	atchdog timer		
Bu	zzer output		
10- typ	bit successive app e A/D converter	proximation	
16	bit $\Delta\Sigma$ type A/D co	nverter	
Se	rial interface	JART0	
	l	JART6	
CSI10		CSI10	
LCD controller/driver			
Ma	inchester code ge	nerator	
Re	mote controller re	ceiver	
Po	wer-on-clear funct	ion	Operable
Lo	w-voltage detectio	n function	Operation stopped
Ex	External interrupt		

Table 23-1. Operation Statuses During Reset Period

Remark free: Internal high-speed oscillation clock

fx:X1 oscillation clockfEXCLK:External main system clockfxr:XT1 oscillation clockfRL:Internal low-speed oscillation clock

(2) Low-voltage detection level selection register (LVIS)

This register selects the low-voltage detection level.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

The generation of a reset signal other than an LVI reset clears this register to 00H.

Figure 25-3. Format of Low-Voltage Detection Level Selection Register (LVIS)

Address:	FFBFH Aft	ter reset: 00H	H ^{Note} R/W							
Symbol	7	6	5	4	3	2	1	0		
LVIS	0	0	0	0	LVIS3	LVIS2	LVIS1	LVIS0		
	LVIS3	LVIS2	LVIS1	LVIS0	Detection level					
	0	0	0	0	VLVI0 (4.24 \	/ ±0.1 V)				
	0	0	0	1	V _{LVI1} (4.09 V ±0.1 V)					
	0	0	1	0	VLVI2 (3.93 V ±0.1 V)					
	0	0	1	1	VLVI3 (3.78 \	/ ±0.1 V)				
	0	1	0	0	VLVI4 (3.62 \	/ ±0.1 V)				
	0	1	0	1	VLVI5 (3.47 \	/ ±0.1 V)				
	0	1	1	0	VLVI6 (3.32 \	/ ±0.1 V)				
	0	1	1	1	VLVI7 (3.16 \	/ ±0.1 V)				
	1	0	0	0	VLVI8 (3.01 \	/ ±0.1 V)				
	1	0	0	1	VLVI9 (2.85 \	/ ±0.1 V)				
	1	0	1	0	VLVI10 (2.70	V ±0.1 V)				
	1	0	1	1	VLVI11 (2.55	V ±0.1 V)				
	1	1	0	0	VLVI12 (2.39	V ±0.1 V)				
	1	1	0	1	VLVI13 (2.24	V ±0.1 V)				
	1	1	1	0	VLVI14 (2.08	V ±0.1 V)				
	1	1	1	1	VLVI15 (1.93	V ±0.1 V)				

Note The value of LVIS is not reset but retained as is, upon a reset by LVI. It is cleared to 00H upon other resets.

Cautions 1. Be sure to clear bits 4 to 7 to "0".

- 2. Do not change the value of LVIS during LVI operation.
- 3. When an input voltage from the external input pin (EXLVI) is detected, the detection voltage (VEXLVI = 1.21 V (TYP.)) is fixed. Therefore, setting of LVIS is not necessary.

Figure 25-9. Example of Software Processing After Reset Release (2/2)

27.7.3 Selecting communication mode

In the 78K0/LE3, a communication mode is selected by inputting pulses to the FLMD0 pin after the dedicated flash memory programming mode is entered. These FLMD0 pulses are generated by the flash memory programmer. The following table shows the relationship between the number of pulses and communication modes.

Communication		Standard Setti	Pins Used	Peripheral	Number of			
Mode	Port	Speed	Frequency	Multiply Rate		Clock	FLMD0 Pulses	
UART	UART-Ext-OSC	115,200 bps ^{Note 3}	2 M to 10 MHz ^{Note 2}	1.0	TxD6, RxD6	fx	0	
(UART6)	UART-Ext-FP5CLK					fexclk	3	
	UART-Internal-OSC		-			fвн	5	
3-wire serial I/O (CSI10)	CSI-Internal-OSC	2.4 kHz to 2.5 MHz	_		SO10, SI10, SCK10	f _{RH}	8	

des

Notes 1. Selection items for Standard settings on GUI of the flash memory programmer.

- 2. The possible setting range differs depending on the voltage. For details, see CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS).
- **3.** Because factors other than the baud rate error, such as the signal waveform slew, also affect UART communication, thoroughly evaluate the slew as well as the baud rate error.
- Caution When UART6 is selected, the receive clock is calculated based on the reset command sent from the dedicated flash memory programmer after the FLMD0 pulse has been received.
- Remark fx: X1 clock

<R>

- fexclk: External main system clock
- free: Internal high-speed oscillation clock

Table 27-10. Relationship Between Enabling Security Function and Command

(1) During on-board/off-board programming

Valid Security	Executed Command					
	Batch Erase (Chip Erase)	Block Erase	Write			
Prohibition of batch erase (chip erase)	Cannot be erased in batch	Blocks cannot be	Can be performed ^{Note} .			
Prohibition of block erase	Can be erased in batch.	erased.	Can be performed.			
Prohibition of writing			Cannot be performed.			
Prohibition of rewriting boot cluster 0	Cannot be erased in batch	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.			

Note Confirm that no data has been written to the write area. Because data cannot be erased after batch erase (chip erase) is prohibited, do not write data if the data has not been erased.

(2) During self programming

Valid Security	Executed Command			
	Block Erase	Write		
Prohibition of batch erase (chip erase)	Blocks can be erased.	Can be performed.		
Prohibition of block erase				
Prohibition of writing				
Prohibition of rewriting boot cluster 0	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.		

Table 27-11 shows how to perform security settings in each programming mode.

Table 27-11. Setting Security in Each Programming Mode

(1) On-board/off-board programming

Security	Security Setting	How to Disable Security Setting		
Prohibition of batch erase (chip erase)	Set via GUI of dedicated flash memory	Cannot be disabled after set.		
Prohibition of block erase	programmer, etc.	Execute batch erase (chip erase)		
Prohibition of writing		command		
Prohibition of rewriting boot cluster 0		Cannot be disabled after set.		

(2) Self programming

Security	Security Setting	How to Disable Security Setting
Prohibition of batch erase (chip erase)	Set by using information library.	Cannot be disabled after set.
Prohibition of block erase		Execute batch erase (chip erase)
Prohibition of writing		command during on-board/off-board programming (cannot be disabled during self programming)
Prohibition of rewriting boot cluster 0		Cannot be disabled after set.

Instruction	Mnomonio	Onerende	Dutos	Clocks		Operation		Flag
Group	winemonic	Operands	Bytes	Note 1	Note 2	Operation	Ζ	AC CY
16-bit data	MOVW	rp, #word	3	6	-	$rp \leftarrow word$		
transfer		saddrp, #word	4	8	10	$(saddrp) \leftarrow word$		
		sfrp, #word	4	-	10	$sfrp \leftarrow word$		
		AX, saddrp	2	6	8	$AX \leftarrow (saddrp)$		
		saddrp, AX	2	6	8	$(saddrp) \leftarrow AX$		
		AX, sfrp	2		8	$AX \leftarrow sfrp$		
		sfrp, AX	2		8	sfrp ← AX		
		AX, rp	³ 1	4		AX ← rp		
		rp, AX	³ 1	4		$rp \leftarrow AX$		
		AX, !addr16	3	10	12	$AX \leftarrow (addr16)$		
		!addr16, AX	3	10	12	(addr16) ← AX		
	XCHW	AX, rp	³ 1	4		$AX \leftrightarrow rp$		
8-bit	ADD	A, #byte	2	4		A, CY \leftarrow A + byte	×	× ×
operation		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) + byte	×	× ×
		A, r	4 2	4	_	A, CY ← A + r	×	× ×
		r, A	2	4	_	r, CY ← r + A	×	× ×
		A, saddr	2	4	5	A, CY \leftarrow A + (saddr)	×	× ×
		A, laddr16	3	8	9	A, CY \leftarrow A + (addr16)	×	× ×
		A, [HL]	1	4	5	A, CY ← A + (HL)	×	× ×
		A, [HL + byte]	2	8	9	A, CY \leftarrow A + (HL + byte)	×	× ×
		A, [HL + B]	2	8	9	A, CY \leftarrow A + (HL + B)	×	× ×
		A, [HL + C]	2	8	9	$A, CY \leftarrow A + (HL + C)$	×	× ×
	ADDC	A, #byte	2	4	-	A, CY \leftarrow A + byte + CY	×	× ×
		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) + byte + CY	×	× ×
		A, r	4 2	4	-	$A,CY \leftarrow A + r + CY$	×	× ×
		r, A	2	4	-	$r, CY \leftarrow r + A + CY$	×	× ×
		A, saddr	2	4	5	A, CY \leftarrow A + (saddr) + CY	×	× ×
		A, !addr16	3	8	9	A, CY \leftarrow A + (addr16) + C	×	× ×
		A, [HL]	1	4	5	$A, CY \leftarrow A + (HL) + CY$	×	× ×
		A, [HL + byte]	2	8	9	A, CY \leftarrow A + (HL + byte) + CY	×	× ×
		A, [HL + B]	2	8	9	$A, CY \leftarrow A + (HL + B) + CY$	×	× ×
		A, [HL + C]	2	8	9	$A, CY \leftarrow A + (HL + C) + CY$	×	× ×

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

2. When an area except the internal high-speed RAM area is accessed

- **3.** Only when rp = BC, DE or HL
- **4.** Except "r = A"
- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).
 - 2. This clock cycle applies to the internal ROM program.

<R> Caution The 78K0/LE3 has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. NEC Electronics is not liable for problems occurring when the on-chip debug function is used.

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
	Vss		–0.5 to +0.3	V
	$AV_{REF}^{Note 2}$		-0.5 to Vdd + 0.3 ^{Note 1}	V
	AVss ^{Note 2}		–0.5 to +0.3	V
REGC pin input voltage	VIREGC		–0.5 to + 3.6 and –0.5 to V₀₀	V
Input voltage	Vı	P11 to P14, P20 to P27, P31 to P34, P40 to P44, P80 to P83, P100 to P103, P110 to P113, P120 to P124, P140 to P143, P150 to P153, X1, X2, XT1, XT2, FLMD0, RESET	–0.3 to V _{DD} + 0.3 ^{Note 1}	V
Output voltage	Vo		-0.3 to V _{DD} + 0.3 ^{Note 1}	V
Analog input voltage	Van	ANI0 to ANI7 ^{Note 2} , DS0- to DS2- ^{Note 3} , DS0+ to DS2+ ^{Note 3}	-0.3 to AV _{REF} + 0.3 ^{Note 1} and -0.3 to V _{DD} + 0.3 ^{Note 1}	V
	REF+ ^{Note 3}		-0.5 to AV _{REF} + 0.3 ^{Note 1}	V
	REF-Note 3		-0.5 to + 0.3	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

Notes 1. Must be 6.5 V or lower.

- **2.** *μ*PD78F045x and 78F046x only.
- **3.** *μ*PD78F046x only.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Standard products

DC Characteristics (3/5)

-	1	1		-	1			
Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	Цинт	P11 to P14, P31 to P34, P40 to P44, P80 to P83, P100 to P103, P110 to P113, P120, P140 to P143, P150 to P153, FLMD0, RESET	VI = VDD				1	μA
	ILIH2	P20 to P27		F = VDD			1	μA
	Ілнз	P121 to 124	$V{\scriptscriptstyle I}=V{\scriptscriptstyle D}{\scriptscriptstyle D}$	I/O port mode			1	μA
	(X1, X2, XT1, XT2)			OSC mode			20	μA
Input leakage current, low	1001	P11 to P14, P31 to P34, P40 to P44, P80 to P83, P100 to P103, P110 to P113, P120, P140 to P143, P150 to P153, FLMD0, RESET	VI = VSS VI = VSS, AVREF = VDD				-1	μA
		P20 to P27					-1	μA
	Ililis	P121 to 124	VI = Vss	I/O port mode			-1	μA
		(X1, X2, XT1, XT2)		OSC mode			-20	μA
Pull-up resistor	Rυ	Vi = Vss			10	20	100	kΩ
FLMD0 supply voltage	Vı∟	In normal operation m	ode		0		0.2VDD	V
	VIH	In self-programming n	0.8Vdd		VDD	V		

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, AVREF \leq VDD, Vss = AVss = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.