# E. Renesas Electronics America Inc - UPD78F0465GK-GAJ-AX Datasheet



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Active                                                                               |
|--------------------------------------------------------------------------------------|
| 78K/0                                                                                |
| 8-Bit                                                                                |
| 10MHz                                                                                |
| 3-Wire SIO, LINbus, UART/USART                                                       |
| LCD, LVD, POR, PWM, WDT                                                              |
| 46                                                                                   |
| 60KB (60K x 8)                                                                       |
| FLASH                                                                                |
| -                                                                                    |
| 2K x 8                                                                               |
| 1.8V ~ 5.5V                                                                          |
| A/D 8x10b, 3x16b                                                                     |
| Internal                                                                             |
| -40°C ~ 85°C (TA)                                                                    |
| Surface Mount                                                                        |
| 64-LQFP                                                                              |
| -                                                                                    |
| https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0465gk-gaj-ax |
|                                                                                      |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 1.6 Block Diagram



**Notes 1.**  $\mu$ PD78F046x only.

- **2.** *μ*PD78F045x and 78F046x only.
- **3.** μPD78F044x and 78F045x only.

| Address | Special Function Register (SFR) Name                               | Symbol  | R/W | Mani         | Manipulatable Bit Unit |         |       |
|---------|--------------------------------------------------------------------|---------|-----|--------------|------------------------|---------|-------|
|         |                                                                    |         |     | 1 Bit        | 8 Bits                 | 16 Bits | Reset |
| FF34H   | Pull-up resistor option register 4                                 | PU4     | R/W | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF38H   | Pull-up resistor option register 8                                 | PU8     | R/W | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF3AH   | Pull-up resistor option register 10                                | PU10    | R/W | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF3BH   | Pull-up resistor option register 11                                | PU11    | R/W | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF3CH   | Pull-up resistor option register 12                                | PU12    | R/W | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF3EH   | Pull-up resistor option register 14                                | PU14    | R/W | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF3FH   | Pull-up resistor option register 15                                | PU15    | R/W | $\checkmark$ | $\checkmark$           | _       | 00H   |
| FF40H   | Clock output selection register                                    | CKS     | R/W | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF41H   | 8-bit timer compare register 51                                    | CR51    | R/W | I            | $\checkmark$           | -       | 00H   |
| FF42H   | 8-bit timer H mode register 2                                      | TMHMD2  | R/W | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF43H   | 8-bit timer mode control register 51                               | TMC51   | R/W | $\checkmark$ | $\checkmark$           | _       | 00H   |
| FF44H   | 8-bit timer H compare register 02                                  | CMP02   | R/W | -            | $\checkmark$           | -       | 00H   |
| FF45H   | 8-bit timer H compare register 12                                  | CMP12   | R/W | -            | $\checkmark$           | -       | 00H   |
| FF47H   | MCG status register                                                | MC0STR  | R   | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF48H   | External interrupt rising edge enable register                     | EGP     | R/W | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF49H   | External interrupt falling edge enable register                    | EGN     | R/W | $\checkmark$ | $\checkmark$           | _       | 00H   |
| FF4AH   | MCG transmit buffer register                                       | MC0TX   | R/W | -            | $\checkmark$           | -       | FFH   |
| FF4BH   | MCG transmit bit count specification register                      | MC0BIT  | R/W | -            | $\checkmark$           | -       | 07H   |
| FF4CH   | MCG control register 0                                             | MC0CTL0 | R/W | $\checkmark$ | $\checkmark$           | -       | 10H   |
| FF4DH   | MCG control register 1                                             | MC0CTL1 | R/W | -            | $\checkmark$           | -       | 00H   |
| FF4EH   | MCG control register 2                                             | MC0CTL2 | R/W | -            | $\checkmark$           | -       | 1FH   |
| FF4FH   | Input switch control register                                      | ISC     | R/W | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF50H   | Asynchronous serial interface operation mode register 6            | ASIM6   | R/W | $\checkmark$ | $\checkmark$           | -       | 01H   |
| FF51H   | 8-bit timer counter 52                                             | TM52    | R   | _            | $\checkmark$           | -       | 00H   |
| FF53H   | Asynchronous serial interface reception error<br>status register 6 | ASIS6   | R   | _            | $\checkmark$           | -       | 00H   |
| FF54H   | Real-time counter clock selection register                         | RTCCL   | R/W | $\checkmark$ | $\checkmark$           | -       | 00H   |
| FF55H   | Asynchronous serial interface transmission<br>status register 6    | ASIF6   | R   | -            | $\checkmark$           | -       | 00H   |
| FF56H   | Clock selection register 6                                         | CKSR6   | R/W | 1            | $\checkmark$           | -       | 00H   |
| FF57H   | Baud rate generator control register 6                             | BRGC6   | R/W | _            | $\checkmark$           | _       | FFH   |
| FF58H   | Asynchronous serial interface control register 6                   | ASICL6  | R/W | $\checkmark$ | $\checkmark$           | _       | 16H   |
| FF59H   | 8-bit timer compare register 52                                    | CR52    | R/W |              | $\checkmark$           |         | 00H   |
| FF5BH   | Timer clock selection register 52                                  | TCL52   | R/W | $\checkmark$ | $\checkmark$           | _       | 00H   |
| FF5CH   | 8-bit timer mode control register 52                               | TMC52   | R/W | $\checkmark$ | $\checkmark$           |         | 00H   |

| $1 a b c 0^{-0}$ . Opecial i unclion negister List (2/3 |
|---------------------------------------------------------|
|---------------------------------------------------------|

| Address | Special Function Register (SFR) Name                      | Symbol |             | Name Symbol |              | R/W          | Mani         | pulatable Bi          | t Unit | After |
|---------|-----------------------------------------------------------|--------|-------------|-------------|--------------|--------------|--------------|-----------------------|--------|-------|
|         |                                                           |        |             |             | 1 Bit        | 8 Bits       | 16 Bits      | Reset                 |        |       |
| FFB0H   | LCD mode register                                         | LCDM   | D           | R/W         | $\checkmark$ | $\checkmark$ | -            | 00H                   |        |       |
| FFB1H   | LCD display mode register                                 | LCDM   |             | R/W         | $\checkmark$ | $\checkmark$ | -            | 00H                   |        |       |
| FFB2H   | LCD clock control register 0                              | LCDC   | 0           | R/W         | $\checkmark$ | $\checkmark$ | -            | 00H                   |        |       |
| FFB5H   | Port function register 2 <sup>Note 1</sup>                | PF2    |             | R/W         | $\checkmark$ | $\checkmark$ | -            | 00H                   |        |       |
| FFB6H   | Port function register ALL                                | PFALI  | -           | R/W         | $\checkmark$ | $\checkmark$ | -            | 00H                   |        |       |
| FFBAH   | 16-bit timer mode control register 00                     | TMC0   | 0           | R/W         | $\checkmark$ | $\checkmark$ | -            | 00H                   |        |       |
| FFBBH   | Prescaler mode register 00                                | PRM0   | 0           | R/W         | $\checkmark$ | $\checkmark$ | -            | 00H                   |        |       |
| FFBCH   | Capture/compare control register 00                       | CRC0   | 0           | R/W         | $\checkmark$ | $\checkmark$ | -            | 00H                   |        |       |
| FFBDH   | 16-bit timer output control register 00                   | TOC00  |             | R/W         | $\checkmark$ | $\checkmark$ | -            | 00H                   |        |       |
| FFBEH   | Low-voltage detection register                            | LVIM   |             | R/W         | $\checkmark$ | $\checkmark$ | -            | 00H <sup>Note 2</sup> |        |       |
| FFBFH   | Low-voltage detection level selection register            | LVIS   |             | R/W         | $\checkmark$ | $\checkmark$ | -            | 00H <sup>Note 2</sup> |        |       |
| FFE0H   | Interrupt request flag register 0L                        | IF0    | <b>IF0L</b> | R/W         | $\checkmark$ | $\checkmark$ | $\checkmark$ | 00H                   |        |       |
| FFE1H   | Interrupt request flag register 0H                        |        | IF0H        | R/W         | $\checkmark$ | $\checkmark$ |              | 00H                   |        |       |
| FFE2H   | Interrupt request flag register 1L                        | IF1    | IF1L        | R/W         | $\checkmark$ | $\checkmark$ | $\checkmark$ | 00H                   |        |       |
| FFE3H   | Interrupt request flag register 1H                        |        | IF1H        | R/W         | $\checkmark$ | $\checkmark$ |              | 00H                   |        |       |
| FFE4H   | Interrupt mask flag register 0L                           | MK0    | MK0L        | R/W         | $\checkmark$ | $\checkmark$ | $\checkmark$ | FFH                   |        |       |
| FFE5H   | Interrupt mask flag register 0H                           |        | MK0H        | R/W         | $\checkmark$ | $\checkmark$ |              | FFH                   |        |       |
| FFE6H   | Interrupt mask flag register 1L                           | MK1    | MK1L        | R/W         | $\checkmark$ | $\checkmark$ | $\checkmark$ | FFH                   |        |       |
| FFE7H   | Interrupt mask flag register 1H                           |        | MK1H        | R/W         | $\checkmark$ | $\checkmark$ |              | FFH                   |        |       |
| FFE8H   | Priority specification flag register 0L                   | PR0    | PR0L        | R/W         | $\checkmark$ | $\checkmark$ | $\checkmark$ | FFH                   |        |       |
| FFE9H   | Priority specification flag register 0H                   |        | PR0H        | R/W         | $\checkmark$ | $\checkmark$ |              | FFH                   |        |       |
| FFEAH   | Priority specification flag register 1L                   | PR1    | PR1L        | R/W         | $\checkmark$ | $\checkmark$ | $\checkmark$ | FFH                   |        |       |
| FFEBH   | Priority specification flag register 1H                   |        | PR1H        | R/W         | $\checkmark$ | $\checkmark$ |              | FFH                   |        |       |
| FFF0H   | Internal memory size switching register <sup>Note 3</sup> | IMS    |             | R/W         | -            | $\checkmark$ | -            | CFH                   |        |       |
| FFF4H   | Internal expansion RAM size switching register Note 3     | IXS    |             | R/W         | -            | $\checkmark$ | -            | 0CH                   |        |       |
| FFF9H   | Remote controller receive interrupt status register       | INTS   |             | R           | $\checkmark$ | $\checkmark$ | _            | 00H                   |        |       |
| FFFAH   | Remote controller receive interrupt status clear register | INTC   |             | R/W         | $\checkmark$ | $\checkmark$ | _            | 00H                   |        |       |
| FFFBH   | Processor clock control register                          | PCC    |             | R/W         |              | $\checkmark$ | -            | 01H                   |        |       |

| Table 3-8. | Special | Function | Register | List (5/5) |
|------------|---------|----------|----------|------------|
|------------|---------|----------|----------|------------|

**Notes 1.**  $\mu$ PD78F044x and 78F045x only.

- 2. The reset values of LVIM and LVIS vary depending on the reset source.
- 3. Regardless of the internal memory capacity, the initial values of the internal memory size switching register (IMS) and internal expansion RAM size switching register (IXS) of all products in the 78K0/LE3 are fixed (IMS = CFH, IXS = 0CH). Therefore, set the value corresponding to each product as indicated below.

| Flash Memory Version (78K0/LE3) | IMS | IXS | ROM Capacity | Internal High-Speed<br>RAM Capacity | Internal Expansion<br>RAM Capacity |
|---------------------------------|-----|-----|--------------|-------------------------------------|------------------------------------|
| μPD78F0441, 78F0451, 78F0461    | 04H | 0CH | 16 KB        | 768 bytes                           | _                                  |
| μPD78F0442, 78F0452, 78F0462    | C6H |     | 24 KB        | 1 KB                                |                                    |
| μPD78F0443, 78F0453, 78F0463    | C8H |     | 32 KB        |                                     |                                    |
| μPD78F0444, 78F0454, 78F0464    | ССН | 0AH | 48 KB        |                                     | 1 KB                               |
| μPD78F0445, 78F0455, 78F0465    | CFH |     | 60 KB        |                                     |                                    |

| Function Name | I/O | Function                                                                                                                                                     | After Reset           | Alternate Function                                                       |
|---------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------|
| P11           | I/O | Port 1.                                                                                                                                                      | Input port            | SCK10                                                                    |
| P12           |     | 4-bit I/O port.                                                                                                                                              |                       | SI10/RxD0/ <rxd6></rxd6>                                                 |
| P13           |     | Input/output can be specified in 1-bit units.                                                                                                                |                       | SO10/TxD0/ <txd6></txd6>                                                 |
| P14           |     | software setting.                                                                                                                                            |                       | INTP4                                                                    |
| P20           | I/O | Port 2.<br>8-bit I/O port.                                                                                                                                   | Digital<br>input port | SEG31 <sup>Note1</sup> /ANI0 <sup>Note2</sup> /D<br>S0- <sup>Note3</sup> |
| P21           |     | Input/output can be specified in 1-bit units.                                                                                                                |                       | SEG30 <sup>Note1</sup> /ANI1 <sup>Note2</sup> /D<br>S0+ <sup>Note3</sup> |
| P22           |     |                                                                                                                                                              |                       | SEG29 <sup>Note1</sup> /ANI2 <sup>Note2</sup> /D<br>S1- <sup>Note3</sup> |
| P23           |     |                                                                                                                                                              |                       | SEG28 <sup>Note1</sup> /ANI3 <sup>Note2</sup> /D<br>S1+ <sup>Note3</sup> |
| P24           |     |                                                                                                                                                              |                       | SEG27 <sup>Note1</sup> /ANI4 <sup>Note2</sup> /D<br>S2- <sup>Note3</sup> |
| P25           |     |                                                                                                                                                              |                       | SEG26 <sup>Note1</sup> /ANI5 <sup>Note2</sup> /D<br>S2+ <sup>Note3</sup> |
| P26           |     |                                                                                                                                                              |                       | SEG25 <sup>Note1</sup> /ANI6 <sup>Note2</sup> /R<br>EF- <sup>Note3</sup> |
| P27           |     |                                                                                                                                                              |                       | SEG24 <sup>Note1</sup> /ANI7 <sup>Note2</sup> /R<br>EF+ <sup>Note3</sup> |
| P31           | I/O | Port 3.                                                                                                                                                      | Input port            | TOH1/INTP3                                                               |
| P32           | -   | 4-bit I/O port.                                                                                                                                              |                       | TOH0/MCGO                                                                |
| P33           |     | Input/output can be specified in 1-bit units.<br>Use of an on-chip pull-up resistor can be specified by a                                                    |                       | TI000/RTCDIV/RTCC<br>L/BUZ/INTP2                                         |
| P34           |     | Soltware Setting.                                                                                                                                            |                       | TI52/TI010/TO00/RT<br>C1HZ/INTP1                                         |
| P40           | I/O | Port 4.                                                                                                                                                      | Input port            | VLC3/KR0                                                                 |
| P41           |     | 5-bit I/O port.                                                                                                                                              |                       | RIN/KR1                                                                  |
| P42           |     | Input/output can be specified in 1-bit units.                                                                                                                |                       | KR2                                                                      |
| P43           |     | software setting.                                                                                                                                            |                       | TO51/TI51/KR3                                                            |
| P44           |     |                                                                                                                                                              |                       | TO50/TI50/KR4                                                            |
| P80 to P83    | 1/0 | Port 8.<br>4-bit I/O port.<br>Input/output can be specified in 1-bit units.<br>Use of an on-chip pull-up resistor can be specified by a<br>software setting. | Input port            | SEG4 to SEG7                                                             |

**Notes 1.** *μ*PD78F044x and 78F045x only.

- **2.** *μ*PD78F045x and 78F046x only.
- **3.** *μ*PD78F046x only.

**Remark** The functions within arrowheads (< >) can be assigned by setting the input switch control register (ISC).





OSCCTL: Clock operation mode select register RD: Read signal

#### (7) A/D port configuration register 0 (ADPC0) (µPD78F045x and 78F046x only)

This register switches the P20/ANI0 to P27/ANI7 pins to analog input of A/D converter or digital I/O of port. ADPC0 can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears this register to 08H.

#### Figure 4-27. Format of A/D Port Configuration Register 0 (ADPC0)

Address: FF8FH After reset: 08H R/W

| Symbol | 7 | 6 | 5 | 4 | 3      | 2      | 1      | 0      |
|--------|---|---|---|---|--------|--------|--------|--------|
| ADPC0  | 0 | 0 | 0 | 0 | ADPC03 | ADPC02 | ADPC01 | ADPC00 |

| ADPC03           | ADPC02 | ADPC01 | ADPC00 | D                     | igital I              | /O (D)/<br>matior     | analog                | g input               | (A: su                | ICCESS<br>switchi     | ive<br>na             |
|------------------|--------|--------|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                  |        |        |        | P27/<br>ANI7/<br>REF+ | P26/<br>ANI6/<br>REF- | P25/<br>ANI5/<br>DS2+ | P24/<br>ANI4/<br>DS2- | P23/<br>ANI3/<br>DS1+ | P22/<br>ANI2/<br>DS1- | P21/<br>ANI1/<br>DS0+ | P20/<br>ANI0/<br>DS0- |
| 0                | 0      | 0      | 0      | $A/\Delta$            | Α/Δ                   |
| 0                | 0      | 0      | 1      | Α/Δ                   | $A/\Delta$            | Α/Δ                   | Α/Δ                   | Α/Δ                   | Α/Δ                   | A                     | D                     |
| 0                | 0      | 1      | 0      | A/Δ                   | $A/\Delta$            | Α/Δ                   | $A/\Delta$            | Α/Δ                   | Α/Δ                   | D                     | D                     |
| 0                | 0      | 1      | 1      | $A/\Delta$            | $A/\Delta$            | Α/Δ                   | Α/Δ                   | A                     | D                     | D                     | D                     |
| 0                | 1      | 0      | 0      | $A/\Delta$            | $A/\Delta$            | Α/Δ                   | Α/Δ                   | D                     | D                     | D                     | D                     |
| 0                | 1      | 0      | 1      | А                     | А                     | A                     | D                     | D                     | D                     | D                     | D                     |
| 0                | 1      | 1      | 0      | A                     | А                     | D                     | D                     | D                     | D                     | D                     | D                     |
| 0                | 1      | 1      | 1      | Α                     | D                     | D                     | D                     | D                     | D                     | D                     | D                     |
| 1                | 0      | 0      | 0      | D                     | D                     | D                     | D                     | D                     | D                     | D                     | D                     |
| Other than above |        |        |        |                       | ng pro                | hibited               | 4                     |                       |                       |                       |                       |

- Cautions 1. Set the channel used for A/D conversion to the input mode by using port mode register 2 (PM2).
  - 2. The pin to be set as a digital I/O via ADPC, must not be set via ADS, ADDS1 or ADDS0.
  - 3. If data is written to ADPC0, a wait cycle is generated. Do not write data to ADPC0 when the CPU is operating on the subsystem clock and the peripheral hardware clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.
  - 4. If pins ANI0/P20/SEG31 to ANI7/P27/SEG24 are set to segment output via the PF2 register, output is set to segment output, regardless of the ADPC0 setting (for μPD78F045x only).

#### CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00

#### 6.1 Functions of 16-Bit Timer/Event Counter 00

16-bit timer/event counter 00 has the following functions.

#### (1) Interval timer

16-bit timer/event counter 00 generates an interrupt request at the preset time interval.

#### (2) Square-wave output

16-bit timer/event counter 00 can output a square wave with any selected frequency.

#### (3) External event counter

16-bit timer/event counter 00 can measure the number of pulses of an externally input signal.

#### (4) One-shot pulse output

16-bit timer event counter 00 can output a one-shot pulse whose output pulse width can be set freely.

#### (5) PPG output

16-bit timer/event counter 00 can output a rectangular wave whose frequency and output pulse width can be set freely.

#### (6) Pulse width measurement

16-bit timer/event counter 00 can measure the pulse width of an externally input signal.

#### (7) 24-bit external event counter

16-bit timer/event counter 00 can be operated to function as an external 24-bit event counter, by connecting 16bit timer 00 and 8-bit timer/event counter 52 in cascade, and using the external event counter function of 8-bit timer/event counter 52.

When using it as an external 24-bit event counter, external event input gate enable can be controlled via 8-bit timer counter H2 output.

| External Input<br>Signal<br>Capture<br>Operation | TI000 Pin Input<br>-                             |                                                                        | TI010 Pin Input<br>-              |                                                                        |
|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------|
| Capture operation of CR000                       | CRC001 = 1<br>TI000 pin input<br>(reverse phase) | Set values of ES001 and<br>ES000<br>Position of edge to be<br>captured | CRC001 bit = 0<br>TI010 pin input | Set values of ES101 and<br>ES100<br>Position of edge to be<br>captured |
|                                                  |                                                  | 01: Rising                                                             |                                   | 01: Rising                                                             |
|                                                  |                                                  | 00: Falling                                                            |                                   | 00: Falling                                                            |
|                                                  |                                                  | 11: Both edges<br>(cannot be captured)                                 |                                   | 11: Both edges                                                         |
|                                                  | Interrupt signal                                 | INTTM000 signal is not<br>generated even if value<br>is captured.      | Interrupt signal                  | INTTM000 signal is generated each time value is captured.              |
| Capture operation of CR010                       | TI000 pin input <sup>Note</sup>                  | Set values of ES001 and<br>ES000<br>Position of edge to be<br>captured |                                   |                                                                        |
|                                                  |                                                  | 01: Rising                                                             |                                   |                                                                        |
|                                                  |                                                  | 00: Falling                                                            |                                   |                                                                        |
|                                                  |                                                  | 11: Both edges                                                         |                                   |                                                                        |
|                                                  | Interrupt signal                                 | INTTM010 signal is generated each time value is captured.              |                                   |                                                                        |

| Table 6-2. Capture Operation of CR000 and CR01 | able 6-2. | e 6-2. Capture | Operation | of CR000 | and CR01 | 0 |
|------------------------------------------------|-----------|----------------|-----------|----------|----------|---|
|------------------------------------------------|-----------|----------------|-----------|----------|----------|---|

Note The capture operation of CR010 is not affected by the setting of the CRC001 bit.

- Caution To capture the count value of the TM00 register to the CR000 register by using the phase reverse to that input to the Tl000 pin, the interrupt request signal (INTTM000) is not generated after the value has been captured. If the valid edge is detected on the Tl010 pin during this operation, the capture operation is not performed but the INTTM000 signal is generated as an external interrupt signal. To not use the external interrupt, mask the INTTM000 signal.
- RemarkCRC001: See 6.3 (2) Capture/compare control register 00 (CRC00).ES101, ES100, ES001, ES000: See 6.3 (4) Prescaler mode register 00 (PRM00).

# Figure 6-28. Timing Example of Clear & Start Mode Entered by TI000 Pin Valid Edge Input (CR000: Capture Register, CR010: Compare Register) (1/2)



(a) TOC00 = 13H, PRM00 = 10H, CRC00, = 03H, TMC00 = 08H, CR010 = 0001H

This is an application example where the TO00 output level is to be inverted when the count value has been captured & cleared.

TM00 is cleared at the rising edge detection of the TI000 pin and it is captured to CR000 at the falling edge detection of the TI000 pin.

When bit 1 (CRC001) of capture/compare control register 00 (CRC00) is set to 1, the count value of TM00 is captured to CR000 in the phase reverse to that of the signal input to the TI000 pin, but the capture interrupt signal (INTTM000) is not generated. However, the INTTM000 signal is generated when the valid edge of the TI010 pin is detected. Mask the INTTM000 signal when it is not used.

| TCL51 | 0      | 0      | 0      | 0                                             | 0         | TCL512    | TCL511    | TCL510     |  |  |  |  |
|-------|--------|--------|--------|-----------------------------------------------|-----------|-----------|-----------|------------|--|--|--|--|
|       |        |        |        |                                               |           |           |           |            |  |  |  |  |
|       | TCL512 | TCL511 | TCL510 | Count clock selection <sup>Note 1</sup>       |           |           |           |            |  |  |  |  |
|       |        |        |        |                                               |           | fprs =    | fprs =    | fprs =     |  |  |  |  |
|       |        |        |        |                                               |           | 2 MHz     | 5 MHz     | 10 MHz     |  |  |  |  |
|       | 0      | 0      | 0      | TI51 pin falling edge<br>TI51 pin rising edge |           |           |           |            |  |  |  |  |
|       | 0      | 0      | 1      |                                               |           |           |           |            |  |  |  |  |
|       | 0      | 1      | 0      | fprs <sup>Note 2</sup>                        | 5 MHz     | 10 MHz    |           |            |  |  |  |  |
|       | 0      | 1      | 1      | fprs/2                                        |           | 1 MHz     | 2.5 MHz   | 5 MHz      |  |  |  |  |
|       | 1      | 0      | 0      | fprs/2⁴                                       | 312.5 kHz | 2 625 kHz |           |            |  |  |  |  |
|       | 1      | 0      | 1      | fprs/2 <sup>6</sup>                           |           | 31.25 kHz | 78.13 kHz | 156.25 kHz |  |  |  |  |
|       | 1      | 1      | 0      | fprs/2 <sup>8</sup>                           |           | 7.81 kHz  | 19.53 kHz | 39.06 kHz  |  |  |  |  |

#### Figure 7-7. Format of Timer Clock Selection Register 51 (TCL51)

4

3

2

1

0

**Notes 1.** If the peripheral hardware clock (fPRs) operates on the high-speed system clock (fxH) (XSEL = 1), the fPRs operating frequency varies depending on the supply voltage.

Timer H1 output signal

• VDD = 2.7 to 5.5 V: fprs  $\leq$  10 MHz

1

Address: FF8CH After reset: 00H R/W

6

5

1

7

1

Symbol

- VDD = 1.8 to 2.7 V: fPRs  $\leq$  5 MHz
- 2. If the peripheral hardware clock (fPRs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when 1.8 V  $\leq$  VDD < 2.7 V, the setting of TCL512, TCL511, TCL510 = 0, 1, 0 (count clock: fPRs) is prohibited.
- Cautions 1. When rewriting TCL51 to other data, stop the timer operation beforehand.
  - 2. Be sure to clear bits 3 to 7 to 0.



Figure 12-5. A/D Converter Sampling and A/D Conversion Timing

Note For details of wait period, see CHAPTER 33 CAUTIONS FOR WAIT.

#### (2) 10-bit A/D conversion result register (ADCR)

This register is a 16-bit register that stores the A/D conversion result. The lower 6 bits are fixed to 0. Each time A/D conversion ends, the conversion result is loaded from the successive approximation register. The higher 8 bits of the conversion result are stored in FF07H and the lower 2 bits are stored in the higher 2 bits of FF06H. ADCR can be read by a 16-bit memory manipulation instruction. Reset signal generation clears this register to 0000H.



Address: FF06H, FF07H After reset: 0000H R



- Cautions 1. When writing to the A/D converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register 0 (ADPC0), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC0. Using timing other than the above may cause an incorrect conversion result to be read.
  - 2. If data is read from ADCR, a wait cycle is generated. Do not read data from ADCR when the CPU is operating on the subsystem clock and the peripheral hardware clock is stopped. For details, see CHAPTER 33 CAUTIONS FOR WAIT.

#### (9) Conversion results just after A/D conversion start

The first A/D conversion value immediately after A/D conversion starts may not fall within the rating range if the ADDCE bit is set to 1 within 1.2  $\mu$ s after the ADDPON bit was set to 1, or if the ADDCE bit is set to 1 with the ADDPON bit = 0. Take measures such as polling the A/D conversion end interrupt request (INTDSAD) and removing the first conversion result.

#### (10) Internal equivalent circuit

The equivalent circuit of the analog input block is shown below.





Table 13-5. Resistance and Capacitance Values of Equivalent Circuit (Reference Values)

| AVREF                                   | R1     | R2     | C1   | C2     | C3      |
|-----------------------------------------|--------|--------|------|--------|---------|
| $4.0~V \leq AV_{\text{REF}} \leq 5.5~V$ | 8.1 kΩ | 6.8 kΩ | 8 pF | 1.3 pF | 0.22 pF |
| $2.7~V \leq AV_{\text{REF}} < 4.0~V$    | 31 kΩ  | 36 kΩ  | 8 pF | 1.3 pF | 0.22 pF |

**Remarks 1.** The resistance and capacitance values shown in Table 13-5 are not guaranteed values. **2.** n = 0 to 2

# (11) Simultaneous use of the 10-bit successive approximation type A/D converter and the 16-bit ΔΣ type A/D converter

The A/D conversion accuracy may deteriorate when the 10-bit successive approximation type A/D converter and the 16-bit  $\Delta\Sigma$  type A/D converter are used at the same time.

Stop the 16-bit  $\Delta\Sigma$  type A/D converter during 10-bit successive approximation type A/D converter operation, because the accuracy cannot be guaranteed. Also, stop the 10-bit successive approximation type A/D converter during 16-bit  $\Delta\Sigma$  type A/D converter operation. (Do not operate them simultaneously.)

#### 15.4.3 Dedicated baud rate generator

The dedicated baud rate generator consists of a source clock selector and an 8-bit programmable counter, and generates a serial clock for transmission/reception of UART6.

Separate 8-bit counters are provided for transmission and reception.

#### (1) Configuration of baud rate generator

Base clock

The clock selected by bits 3 to 0 (TPS63 to TPS60) of clock selection register 6 (CKSR6) is supplied to each module when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is 1. This clock is called the base clock and its frequency is called  $f_{XCLK6}$ . The base clock is fixed to low level when POWER6 = 0.

• Transmission counter

This counter stops operation, cleared to 0, when bit 7 (POWER6) or bit 6 (TXE6) of asynchronous serial interface operation mode register 6 (ASIM6) is 0.

It starts counting when POWER6 = 1 and TXE6 = 1.

The counter is cleared to 0 when the first data transmitted is written to transmit buffer register 6 (TXB6).

If data are continuously transmitted, the counter is cleared to 0 again when one frame of data has been completely transmitted. If there is no data to be transmitted next, the counter is not cleared to 0 and continues counting until POWER6 or TXE6 is cleared to 0.

Reception counter

This counter stops operation, cleared to 0, when bit 7 (POWER6) or bit 5 (RXE6) of asynchronous serial interface operation mode register 6 (ASIM6) is 0.

It starts counting when the start bit has been detected.

The counter stops operation after one frame has been received, until the next start bit is detected.

- (6) Remote controller receive GPHS compare register (RMGPHS) (Type A, Type B reception mode only) This register is used to detect the high level of a remote controller guide pulse (short side). RMGPHS is set with an 8-bit memory manipulation instruction. Reset signal generation sets RMGPHS to 00H.
- (7) Remote controller receive GPHL compare register (RMGPHL) (Type A, Type B reception mode only)
   This register is used to detect the high level of a remote controller guide pulse (long side).
   RMGPHL is set with an 8-bit memory manipulation instruction.
   Reset signal generation sets RMGPHL to 00H.

#### (a) Type A reception mode



If RMGPHS  $\leq$  counter value < RMGPHL is satisfied, it is assumed that the high level of the guide pulse has been successfully received.

(b) Type B reception mode



If RMGPHS  $\leq$  counter value < RMGPHL is satisfied, it is assumed that the high level of the guide pulse has been successfully received.



#### Figure 19-14. Generation Timing of INTRERR Signal (Type B reception mode)

| Interrupt                   | Interrupt Request                                                                                           | Flag     | Interrupt Mask F                                                                                            | lag      | Priority Specification Flag                                                                                 |          |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------|----------|--|
| Source                      |                                                                                                             | Register |                                                                                                             | Register |                                                                                                             | Register |  |
| INTAD <sup>Note 1</sup>     | ADIF <sup>Note 1</sup>                                                                                      | IF1L     | ADMK <sup>Note 1</sup>                                                                                      | MK1L     |                                                                                                             | PR1L     |  |
| INTSR0                      | SRIF0                                                                                                       |          | SRMK0                                                                                                       |          | SRPR0                                                                                                       |          |  |
| INTRTC                      | RTCIF                                                                                                       |          | RTCMK                                                                                                       |          | RTCPR                                                                                                       |          |  |
| INTTM51 <sup>Note 2</sup>   | TMIF51                                                                                                      |          | TMMK51                                                                                                      |          | TMPR51                                                                                                      |          |  |
| INTKR                       | KRIF                                                                                                        |          | KRMK                                                                                                        |          | KRPR                                                                                                        |          |  |
| INTRTCI                     | RTCIIF                                                                                                      |          | RTCIMK                                                                                                      |          | RTCIPR                                                                                                      |          |  |
| INTDSAD <sup>Note 3</sup>   | DSADIF <sup>Note 3</sup>                                                                                    |          | DSADMK <sup>Note 3</sup>                                                                                    |          | DASDPR <sup>Note 3</sup>                                                                                    |          |  |
| INTTM52                     | TMIF52                                                                                                      |          | TMMK52                                                                                                      |          | TMPR52                                                                                                      |          |  |
| INTTMH2                     | TMHIF2                                                                                                      | IF1H     | TMHMK2                                                                                                      | MK1H     | TMHPR2                                                                                                      | PR1H     |  |
| INTMCG                      | MCGIF                                                                                                       |          | MCGMK                                                                                                       |          | MCGPR                                                                                                       |          |  |
| INTRIN                      | RINIF                                                                                                       |          | RINMK                                                                                                       |          | RINPR                                                                                                       |          |  |
| INTRERR<br>INTGP<br>INTREND | RERRIF <sup>Note 4</sup><br>GPIF <sup>Note 4</sup><br>RENDIF <sup>Note 4</sup><br>DEULUIF <sup>Note 4</sup> |          | RERRMK <sup>Note 5</sup><br>GPMK <sup>Note 5</sup><br>RENDMK <sup>Note 5</sup><br>DEULLMK <sup>Note 5</sup> |          | RERRPR <sup>Note 6</sup><br>GPPR <sup>Note 6</sup><br>RENDPR <sup>Note 6</sup><br>DEUL PB <sup>Note 6</sup> |          |  |

Table 20-2. Flags Corresponding to Interrupt Request Sources (2/2)

**Notes 1.** *μ*PD78F045x and 78F046x only.

- 2. When 8-bit timer/event counter 51 and 8-bit timer H1 are used in the carrier generator mode, an interrupt is generated upon the timing when the INTTM5H1 signal is generated (see Figure 8-15 Transfer Timing).
- **3.**  $\mu$ PD78F046x only.
- 4. If either interrupt source INTRERR, INTGP, INTREND, or INTDFULL is generated, bit 3 of IF1H is set (1).
- 5. Bit 3 of MK1H supports all of interrupt sources INTRERR, INTGP, INTREND, and INTDFULL.
- 6. Bit 3 of PR1H supports all of interrupt sources INTRERR, INTGP, INTREND, and INTDFULL.

#### **CHAPTER 23 RESET FUNCTION**

The following four operations are available to generate a reset signal.

- (1) External reset input via RESET pin
- (2) Internal reset by watchdog timer program loop detection
- (3) Internal reset by comparison of supply voltage and detection voltage of power-on-clear (POC) circuit
- (4) Internal reset by comparison of supply voltage and detection voltage of low-power-supply detector (LVI)

External and internal resets have no functional differences. In both cases, program execution starts at the address at 0000H and 0001H when the reset signal is generated.

A reset is applied when a low level is input to the RESET pin, the watchdog timer overflows, or by POC and LVI circuit voltage detection, and each item of hardware is set to the status shown in Tables 23-1 and 23-2. Each pin is high impedance during reset signal generation or during the oscillation stabilization time just after a reset release.

When a low level is input to the  $\overrightarrow{\text{RESET}}$  pin, the device is reset. It is released from the reset status when a high level is input to the  $\overrightarrow{\text{RESET}}$  pin and program execution is started with the internal high-speed oscillation clock after reset processing. A reset by the watchdog timer is automatically released, and program execution starts using the internal high-speed oscillation clock (see **Figures 23-2** to **23-4**) after reset processing. Reset by POC and LVI circuit power supply detection is automatically released when  $V_{DD} \ge V_{POC}$  or  $V_{DD} \ge V_{LVI}$  after the reset, and program execution starts using the internal high-speed oscillation clock (see **CHAPTER 24 POWER-ON-CLEAR CIRCUIT** and **CHAPTER 25 LOW-VOLTAGE DETECTOR**) after reset processing.

Cautions 1. For an external reset, input a low level for 10  $\mu$ s or more to the RESET pin.

- During reset input, the X1 clock, XT1 clock, internal high-speed oscillation clock, and internal low-speed oscillation clock stop oscillating. External main system clock input becomes invalid.
- 3. When the STOP mode is released by a reset, the STOP mode contents are held during reset input. However, the port pins become high-impedance.



## Figure 24-2. Timing of Generation of Internal Reset Signal by Power-on-Clear Circuit and Low-Voltage Detector (1/2)



#### (1) In 1.59 V POC mode (option byte: POCMODE = 0)

- Notes 1. The operation guaranteed range is 1.8 V ≤ V<sub>DD</sub> ≤ 5.5 V. To make the state at lower than 1.8 V reset state when the supply voltage falls, use the reset function of the low-voltage detector, or input the low level to the RESET pin.
  - If the voltage rises to 1.8 V at a rate slower than 0.5 V/ms (MIN.) on power application, input a low level to the RESET pin after power application and before the voltage reaches 1.8 V, or set the 2.7 V/1.59 V POC mode by using an option byte (POCMODE = 1).
  - **3.** The internal voltage stabilization time includes the oscillation accuracy stabilization time of the internal high-speed oscillation clock.
  - 4. The internal high-speed oscillation clock and a high-speed system clock or subsystem clock can be selected as the CPU clock. To use the X1 clock, use the OSTC register to confirm the lapse of the oscillation stabilization time. To use the XT1 clock, use the timer function for confirmation of the lapse of the stabilization time.
- Caution Set the low-voltage detector by software after the reset status is released (see CHAPTER 25 LOW-VOLTAGE DETECTOR).
- Remark
   VLVI:
   LVI detection voltage

   VPOC:
   POC detection voltage

| Instruction | Magaania | Onerende       | Dutos | Clocks |        | Operation                                    |   | Fla | ig  |
|-------------|----------|----------------|-------|--------|--------|----------------------------------------------|---|-----|-----|
| Group       | whemonic | Operands       | Dytes | Note 1 | Note 2 | Operation                                    |   | AC  | CCY |
| 8-bit       | SUB      | A, #byte       | 2     | 4      | -      | A, CY $\leftarrow$ A – byte                  | × | ×   | : × |
| operation   |          | saddr, #byte   | 3     | 6      | 8      | (saddr), CY $\leftarrow$ (saddr) – byte      | × | ×   | : × |
|             |          | A, r           | 2     | 4      | -      | A, CY $\leftarrow$ A – r                     | × | ×   | : × |
|             |          | r, A           | 2     | 4      | -      | r, CY ← r − A                                | × | ×   | ×   |
|             |          | A, saddr       | 2     | 4      | 5      | A, CY $\leftarrow$ A – (saddr)               | × | ×   | ×   |
|             |          | A, !addr16     | 3     | 8      | 9      | A, CY $\leftarrow$ A – (addr16)              | × | ×   | ×   |
|             |          | A, [HL]        | 1     | 4      | 5      | A, CY $\leftarrow$ A – (HL)                  | × | ×   | ×   |
|             |          | A, [HL + byte] | 2     | 8      | 9      | A, CY $\leftarrow$ A – (HL + byte)           | × | ×   | ×   |
|             |          | A, [HL + B]    | 2     | 8      | 9      | $A, CY \leftarrow A - (HL + B)$              | × | ×   | ×   |
|             |          | A, [HL + C]    | 2     | 8      | 9      | $A,CY \leftarrow A - (HL + C)$               | × | ×   | ×   |
|             | SUBC     | A, #byte       | 2     | 4      | -      | A, CY $\leftarrow$ A – byte – CY             | × | ×   | ×   |
|             |          | saddr, #byte   | 3     | 6      | 8      | (saddr), CY $\leftarrow$ (saddr) – byte – CY | × | ×   | ×   |
|             |          | A, r Note 3    | 2     | 4      | -      | $A,CY \leftarrow A-r-CY$                     | × | ×   | ×   |
|             |          | r, A           | 2     | 4      | -      | $r,CY \leftarrow r-A-CY$                     | × | ×   | ×   |
|             |          | A, saddr       | 2     | 4      | 5      | A, CY $\leftarrow$ A – (saddr) – CY          | × | ×   | ×   |
|             |          | A, laddr16     | 3     | 8      | 9      | A, CY $\leftarrow$ A – (addr16) – CY         | × | ×   | ×   |
|             |          | A, [HL]        | 1     | 4      | 5      | $A,CY \leftarrow A - (HL) - CY$              | × | ×   | ×   |
|             |          | A, [HL + byte] | 2     | 8      | 9      | A, CY $\leftarrow$ A – (HL + byte) – CY      | × | ×   | ×   |
|             |          | A, [HL + B]    | 2     | 8      | 9      | $A, CY \leftarrow A - (HL + B) - CY$         | × | ×   | ×   |
|             | AND      | A, [HL + C]    | 2     | 8      | 9      | $A,CY \leftarrow A - (HL + C) - CY$          | × | ×   | ×   |
|             |          | A, #byte       | 2     | 4      | -      | $A \leftarrow A \land byte$                  | × |     |     |
|             |          | saddr, #byte   | 3     | 6      | 8      | $(saddr) \leftarrow (saddr) \land byte$      | × |     |     |
|             |          | A, r Note 3    | 2     | 4      | -      | $A \leftarrow A \wedge r$                    | × |     |     |
|             |          | r, A           | 2     | 4      | -      | $r \leftarrow r \wedge A$                    | × |     |     |
|             |          | A, saddr       | 2     | 4      | 5      | $A \leftarrow A \land (saddr)$               | × |     |     |
|             |          | A, !addr16     | 3     | 8      | 9      | $A \leftarrow A \land (addr16)$              | × |     |     |
|             |          | A, [HL]        | 1     | 4      | 5      | $A \leftarrow A \land (HL)$                  | × |     |     |
|             |          | A, [HL + byte] | 2     | 8      | 9      | A ← A ∧ (HL + byte)                          | × |     |     |
|             |          | A, [HL + B]    | 2     | 8      | 9      | $A \leftarrow A \land (HL + B)$              | × |     |     |
|             |          | A, [HL + C]    | 2     | 8      | 9      | $A \leftarrow A \land (HL + C)$              | × |     |     |

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

2. When an area except the internal high-speed RAM area is accessed

- 3. Except "r = A"
- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).

2. This clock cycle applies to the internal ROM program.

### 29.3 Instructions Listed by Addressing Type

#### (1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

| Second Operand                      | #byte                                                        | А                                                            | r <sup>Note</sup>                                                   | sfr        | saddr                                                       | !addr16                                                     | PSW      | [DE]       | [HL]                                                        | [HL+byte]<br>[HL+B]                                         | \$addr16 | 1                          | None         |
|-------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|------------|-------------------------------------------------------------|-------------------------------------------------------------|----------|------------|-------------------------------------------------------------|-------------------------------------------------------------|----------|----------------------------|--------------|
| First Operand                       |                                                              |                                                              |                                                                     |            |                                                             |                                                             |          |            |                                                             | [HL + C]                                                    |          |                            |              |
| A                                   | ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP        |                                                              | MOV<br>XCH<br>ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV<br>XCH | MOV<br>XCH<br>ADD<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV<br>XCH<br>ADD<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV      | MOV<br>XCH | MOV<br>XCH<br>ADD<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV<br>XCH<br>ADD<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP |          | ROR<br>ROL<br>RORC<br>ROLC |              |
| r                                   | MOV                                                          | MOV<br>ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP |                                                                     |            |                                                             |                                                             |          |            |                                                             |                                                             |          |                            | INC<br>DEC   |
| B, C                                |                                                              |                                                              | <b> </b>                                                            | ļ          | ļ                                                           |                                                             | <b> </b> | <u> </u>   | <u> </u>                                                    | ļ                                                           | DBNZ     |                            |              |
| sfr                                 | MOV                                                          | MOV                                                          | <b> </b>                                                            | ļ          |                                                             |                                                             | <b> </b> | <b></b>    | <b>_</b>                                                    | <b></b>                                                     | ļ        |                            | <b> </b>     |
| saddr                               | MOV<br>ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV                                                          |                                                                     |            |                                                             |                                                             |          |            |                                                             |                                                             | DBNZ     |                            | INC<br>DEC   |
| !addr16                             |                                                              | MOV                                                          | <b></b>                                                             | <b></b>    |                                                             |                                                             | <b></b>  | <b></b>    |                                                             | <b> </b>                                                    | <b></b>  |                            | <u> </u>     |
| PSW                                 | MOV                                                          | MOV                                                          |                                                                     |            |                                                             |                                                             |          |            |                                                             |                                                             |          |                            | PUSH<br>POP  |
| [DE]                                |                                                              | MOV                                                          |                                                                     |            |                                                             |                                                             |          |            |                                                             |                                                             |          |                            |              |
| [HL]                                |                                                              | MOV                                                          |                                                                     |            |                                                             |                                                             |          |            |                                                             |                                                             |          |                            | ROR4<br>ROL4 |
| [HL + byte]<br>[HL + B]<br>[HL + C] |                                                              | MOV                                                          |                                                                     |            |                                                             |                                                             |          |            |                                                             |                                                             |          |                            |              |
| х                                   |                                                              | ļ'                                                           | <u> </u>                                                            |            | '                                                           | ļ'                                                          | <u> </u> | <u> </u>   | <u> </u>                                                    | <u> </u>                                                    | <u> </u> | ļ'                         | MULU         |
| С                                   |                                                              |                                                              |                                                                     |            |                                                             |                                                             |          |            |                                                             |                                                             |          |                            | DIVUW        |