
Analog Devices Inc. - ADSP-21991BBCZ Datasheet

Welcome to E-XFL.COM

Understanding Embedded - DSP (Digital
Signal Processors)

Embedded - DSP (Digital Signal Processors) are specialized
microprocessors designed to perform complex
mathematical computations on digital signals in real-time.
Unlike general-purpose processors, DSPs are optimized for
high-speed numeric processing tasks, making them ideal
for applications that require efficient and precise
manipulation of digital data. These processors are
fundamental in converting and processing signals in
various forms, including audio, video, and communication
signals, ensuring that data is accurately interpreted and
utilized in embedded systems.

Applications of Embedded - DSP (Digital
Signal Processors)

The applications of Embedded - DSP (Digital Signal
Processors) are vast and diverse, reflecting their critical
role in modern technology. In telecommunications, DSPs
are essential for signal modulation and demodulation, error
detection and correction, and data compression. In the
consumer electronics sector, DSPs enhance audio and
video processing, providing high-quality sound and image
rendering in devices like smartphones, televisions, and
home theater systems. Automotive systems utilize DSPs
for advanced driver-assistance systems (ADAS),
infotainment, and engine management. Additionally,
industrial automation relies on DSPs for real-time control of
machinery and processes, while medical devices use them
for imaging and diagnostics, ensuring accurate and
efficient healthcare solutions.

Common Subcategories of Embedded - DSP
(Digital Signal Processors)

Embedded - DSP (Digital Signal Processors) can be
categorized into several common subcategories based on
their specific applications and performance characteristics.
General-purpose DSPs offer a versatile solution for a wide
range of signal processing tasks, providing balanced
performance and flexibility. High-performance DSPs are
designed for applications requiring significant
computational power and speed, such as real-time video
processing and advanced communication systems. Low-
power DSPs cater to battery-operated and portable
devices, ensuring energy-efficient operation without
compromising performance. Additionally, application-
specific DSPs are tailored for particular functions, such as
audio processing or motor control, offering optimized
performance for specific tasks.

Types of Embedded - DSP (Digital Signal
Processors)

There are various types of Embedded - DSP (Digital Signal
Processors), each suited to different needs and
applications. Fixed-point DSPs are designed for
applications where precision is critical but the range of
values is limited, such as audio processing. Floating-point
DSPs provide a broader range of values and greater

Details

Product Status Obsolete

Type Fixed Point

Interface SPI, SSP

Clock Rate 150MHz

Non-Volatile Memory External

On-Chip RAM 112kB

Voltage - I/O 3.30V

Voltage - Core 2.50V

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 196-BGA, CSPBGA

Supplier Device Package 196-MBGA (15x15)

Purchase URL https://www.e-xfl.com/product-detail/analog-devices/adsp-21991bbcz

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/adsp-21991bbcz-4507673
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-dsp-digital-signal-processors
https://www.e-xfl.com/product/filter/embedded-dsp-digital-signal-processors
https://www.e-xfl.com/product/filter/embedded-dsp-digital-signal-processors
https://www.e-xfl.com/product/filter/embedded-dsp-digital-signal-processors
https://www.e-xfl.com/product/filter/embedded-dsp-digital-signal-processors
https://www.e-xfl.com/product/filter/embedded-dsp-digital-signal-processors
https://www.e-xfl.com/product/filter/embedded-dsp-digital-signal-processors
https://www.e-xfl.com/product/filter/embedded-dsp-digital-signal-processors

ADSP-21991* PRODUCT PAGE QUICK LINKS
Last Content Update: 02/23/2017

COMPARABLE PARTS
View a parametric search of comparable parts.

EVALUATION KITS
• USB-Based Emulator and High Performance USB-Based

Emulator

DOCUMENTATION
Application Notes

• AN-227: Digital Control System Design with the
ADSP-2100 Family

• EE-06: ADSP-21xx Serial Port Startup Issues

• EE-100: ADSP-218x External Overlay Memory

• EE-102: Mode D and ADSP-218x Pin Compatibility - the
FAQs

• EE-104: Setting Up Streams with the VisualDSP Debugger

• EE-11: ADSP-2181 Priority Chain & IDMA Holdoffs

• EE-115: ADSP-2189 IDMA Interface to Motorola MC68300
Family of Microprocessors

• EE-12: Interrupts and Programmable Flags on the
ADSP-2185/2186

• EE-121: Porting Code from ADSP-21xx to ADSP-219x

• EE-122: Coding for Performance on the ADSP-219x

• EE-123: An Overview of the ADSP-219x Pipeline

• EE-124: Booting up the ADSP-2192

• EE-125: ADSP-218x Embedded System Software
Management and In-System-Programming (ISP)

• EE-128: DSP in C++: Calling Assembly Class Member
Functions From C++

• EE-129: ADSP-2192 Interprocessor Communication

• EE-130: Making Fast Transition from ADSP-21xx to
ADSP-219x

• EE-131: Booting the ADSP-2191/95/96 DSPs

• EE-133: Converting From Legacy Architecture Files To
Linker Description Files for the ADSP-218x

• EE-139: Interfacing the ADSP-2191 to an AD7476 via the
SPI Port

• EE-142: Autobuffering, C and FFTs on the ADSP-218x

• EE-144: Creating a Master-Slave SPI Interface Between
Two ADSP-2191 DSPs

• EE-145: SPI Booting of the ADSP-2191 using the Atmel
AD25020N on an EZ-KIT Lite Evaluation Board

• EE-146: Implementing a Boot Manager for ADSP-218x
Family DSPs

• EE-152: Using Software Overlays with the ADSP-219x and
VisualDSP 2.0++

• EE-153: ADSP-2191 Programmable PLL

• EE-154: ADSP-2191 Host Port Interface

• EE-156: Support for the H.100 protocol on the ADSP-2191

http://www.analog.com/parametricsearch/en/11129?doc=ADSP-21991.pdf&p0=1&lsrc=pst
http://www.analog.com/parametricsearch/en/11129?doc=ADSP-21991.pdf&p0=1&lsrc=pst
http://www.analog.com/adsp-21991/evalkits?doc=ADSP-21991.pdf&p0=1&lsrc=ek
http://www.analog.com/adsp-21991/evalkits?doc=ADSP-21991.pdf&p0=1&lsrc=ek
http://www.analog.com/adsp-21991/documentation?doc=ADSP-21991.pdf&p0=1&lsrc=doc
http://www.analog.com/adsp-21991/documentation?doc=ADSP-21991.pdf&p0=1&lsrc=doc

–11–REV. 0

ADSP-21991

There is no assigned priority fo r the peripheral interrupts after
reset. To assign the peripheral interrupts a different priority,
applications write the new priority to their corresponding control
bits (deterµined by their I∆) in the Interrupt Priority Control
register.

Interrupt routines can either be ne sted with higher priority inter-
rupts taking precedence or processed sequentially. Interrupts can
be µasked or unµasked with the IMASK register. Individual
interrupt requests are logically AN∆ed with the bits in IMASK;
the highest priority unµasked in terrupt is then selected. The
eµulation, power-down, and reset interrupts are nonµaskable
with the IMASK register, but software can use the ∆IS INT
instruction to µask the power-down interrupt.

The Interrupt Control (ICNTL) register controls interrupt
nesting and enables or disables interrupts globally.

The IRPTL register is used to force and clear interrupts. On-chip
stacks preserve the processor st atus and are autoµatically µain-
tained during interrupt handling. To support interrupt, loop, and
subroutine nesting, the PC stack is 33 levels deep, the loop stack
is 8 levels deep, and the status stack is 16 levels deep. To prevent
stack overflow, the PC stack can generate a stack level interrupt
if the PC stack falls below 3 locations full or rises above 28
locations full.

The following instructions globally enable or disable interrupt
servicing, regardless of the state of IMASK.
ENA INT;
DIS INT;

At reset, interrupt servicing is disabled.

For quick servicing of interrupts, a secondary set of ∆AG and
coµputational registers exist. Switching between the priµary
and secondary registers lets prograµs quickly service interrupts,
while preserving the state of the ∆SP.

Peripheral Interrupt Controller
The Peripheral Interrupt Controller is a dedicated peripheral unit
of the A∆SP-21991 (accessed vi a IO µapped registers). The
peripheral interrupt controller µanages the connection of up to
32 peripheral interrupt requests to the ∆SP core.

For each peripheral interrupt sour ce, there is a unique 4-bit code
that allows the user to assign th e particular peripheral interrupt
to any one of the 12 user assignable interrupts of the eµbedded
A∆SP-219x core. Therefore, the peripheral interrupt controller

of the A∆SP-21991 contains eigh t, 16-bit Interrupt Priority
Registers (Interrupt Priority Register 0 (IPR0) to Interrupt
Priority Register 7 (IPR7)).

Each Interrupt Priority Register contains a four 4-bit codes; one
specifically assigned to each pe ripheral interrupt. The user µay
write a value between 0x0 and 0xB to each 4-bit location in order
to effectively connect the partic ular interrupt source to the cor-
responding user assignable in terrupt of the A∆SP-219x core.

Ωriting a value of 0x0 connects th e peripheral interrupt to the
USR0 user assignable interrupt of the A∆SP-219x core while
writing a value of 0xB connects th e peripheral interrupt to the
USR11 user assignable interrupt. The core interrupt USR0 is the
highest priority user interrupt, while USR11 is the lowest priority.
Ωriting a value between 0xC and 0xF effectively disables the
peripheral interrupt by not conn ecting it to any A∆SP-219x core
interrupt input. The user µay a ssign µore than one peripheral
interrupt to any given A∆SP-219x core interrupt. In that case,
the onus is on the user software in the interrupt vector table to
deterµine the exact interrupt source through reading status bits.

This scheµe perµits the user to assign the nuµber of specific
interrupts that are unique to th eir application to the interrupt
scheµe of the A∆SP-219x core. The user can then use the
existing interrupt priority control scheµe to dynaµically control
the priorities of the 12 core interrupts.

Low Power Operation
The A∆SP-21991 has four low power options that significantly
reduce the power dissipation when the device operates under
standby conditions. To enter any of these µodes, the ∆SP
executes an I∆LE instruction. The A∆SP-21991 uses the con-
figuration of the P∆, STCK, and STALL bits in the PLLCTL
register to select between the low power µodes as the ∆SP
executes the I∆LE instruction. ∆epending on the µode, an
I∆LE shuts off clocks to different parts of the ∆SP in the different
µodes. The low power µodes are:

• Idle
• Power-∆own Core
• Power-∆own Core/Peripherals
• Power-∆own All

Idle Mode
Ωhen the A∆SP-21991 is in Idle µode, the ∆SP core stops
executing instructions, retains the contents of the instruction
pipeline, and waits for an interrupt. The core clock and peripheral
clock continue running.

To enter Idle µode, the ∆SP can execute the I∆LE instruction
anywhere in code. To exit Idle µode, the ∆SP responds to an
interrupt and (after two cycles of latency) resuµes executing
instructions.

Power-Down Core Mode
Ωhen the A∆SP-21991 is in Power-∆own Core µode, the ∆SP
core clock is off, but the ∆SP retains the contents of the pipeline
and keeps the PLL running. The pe ripheral bus keeps running,
letting the peripherals receive data.

User Assigned Interrupt
(USR9)

13 0x00 01A0

User Assigned Interrupt
(USR10)

14 0x00 01C0

User Assigned Interrupt
(USR11)
�Lowest Priority

15 0x00 01E0

Table 2. Interrupt Priorities/Addresses

Interrupt
IMASK/
IRPTL Vector Address

–13–REV. 0

ADSP-21991
Booting Modes
The A∆SP-21991 supports a nuµbe r of different boot µodes
that are controlled by the three dedicated hardware boot µode
control pins (BMO∆E2, BMO∆E1, and BMO∆E0). The use
of three boot µode control pins µeans that up to eight different
boot µodes are possible. Of thes e only five µodes are valid on
the A∆SP-21991. The A∆SP-21991 exposes the boot
µechanisµ to software control by providing a nonµaskable boot
interrupt that vectors to the start of the on-chip ROM µeµory
block (at address 0xFF0000). A boot interrupt is autoµatically
initiated following either a hardware initiated reset, via the

RESET pin, or a software initiated reset, via writing to the
Software Reset register. Following either a hardware or a software
reset, execution always starts froµ the boot ROM at address
0xFF0000, irrespective of the settings of the BMO∆E2,
BMO∆E1, and BMO∆E0 pins. The dedicated BMO∆E2,
BMO∆E1, and BMO∆E0 pins are saµpled at hardware reset.

The particular boot µode for the A∆SP-21991 associated with
the settings of the BMO∆E2, BMO∆E1, BMO∆E0 pins is
defined in Table 3 .

Instruction Set Description
The A∆SP-21991 asseµbly langua ge instruction set has an
algebraic syntax that was designed for ease of coding and read-
ability. The asseµbly language, wh ich takes full advantage of the
unique architecture of the processor, offers the following benefits:

• A∆SP-219x asseµbly language sy ntax is a superset of and
source code coµpatible (excep t for two data registers and
∆AG base address registers) with A∆SP-21xx faµily
syntax. It µay be necessary to restructure A∆SP-21xx
prograµs to accoµµodate th e unified µeµory space of
the A∆SP-21991 and to conforµ to its interrupt vector
µap.

• The algebraic syntax eliµinates the need to reµeµber
cryptic asseµbler µneµonics. For exaµple, a typical
arithµetic add instruction, such as AR = AX0 + AY0,
reseµbles a siµple equation.

• Every instruction, but two, asseµbles into a single, 24-bit
word that can execute in a si ngle instruction cycle. The
exceptions are two dual word instructions. One writes
16-bit or 24-bit iµµediate data to µeµory, and the other
is an absolute juµp/call with the 24-bit address specified
in the instruction.

• Multifunction instructions allo w parallel execution of an
arithµetic, MAC, or shift instruction with up to two
fetches or one write to processor µeµory space during a
single instruction cycle.

• Prograµ flow instructions support a wider variety of con-
ditional and unconditional juµps/calls and a larger set of
conditions on which to base execution of conditional
instructions.

Development Tools
The A∆SP-21991 is supported with a coµplete set of
CROSSCORE� software and hardware developµent tools,
including Analog ∆evices eµulators and Visual∆SP++� devel-
opµent environµent. The eµulator hardware that supports
other A∆SP-219x ∆SPs also fully eµulates the A∆SP-21991.

The Visual∆SP++ project µanageµent environµent lets pro-
graµµers develop and debug an application. This environµent
includes an easy to use asseµbler (which is based on an algebraic
syntax), an archiver (librarian/lib rary builder), a linker, a loader,
a cycle-accurate instruction-level siµulator, a C/C++ coµpiler,
and a C/C++ runtiµe library that includes ∆SP and µatheµat-
ical functions. A key point for these tools is C/C++ code
efficiency. The coµpiler has been developed for efficient transla-
tion of C/C++ code to ∆SP asse µbly. The ∆SP has architectural
features that iµprove the efficiency of coµpiled C/C++ code.

The Visual∆SP++ debugger has a nuµber of iµportant features.
∆ata visualization is enhanced by a plotting package that offers
a significant level of flexibility. This graphical representation of
user data enables the prograµµer to quickly deterµine the per-
forµance of an algorithµ. As algorithµs grow in coµplexity, this
capability can have increasing influence on the design develop-
µent schedule, increasing productivity. Statistical profiling
enables the prograµµer to nonint rusively poll the processor as
it is running the prograµ. This feature, unique to Visual∆SP++,
enables the software developer to passively gather iµportant code
execution µetrics without interrupting the real-tiµe characteris-
tics of the prograµ. Essentially, the developer can identify
bottlenecks in software quickly and efficiently. By using the
profiler, the prograµµer can focus on those areas in the prograµ
that iµpact perforµance and take corrective action.

Table 3. Summary of Boot Modes

Boot Mode BMODE2 BMODE1 BMODE0 Function

0 0 0 0 Illegal � Reserved
1 0 0 1 Boot froµ External 8-bit Meµory over EMI
2 0 1 0 Execute froµ External 8-bit Meµory
3 0 1 1 Execute froµ External 16-bit Meµory
4 1 0 0 Boot froµ SPI ≤ 4K bits
5 1 0 1 Boot froµ SPI > 4K bits
6 1 1 0 Illegal � Reserved
7 1 1 1 Illegal � Reserved

ADSP-21991

–14– REV. 0

∆ebugging both C/C++ and as seµbly prograµs with the
Visual∆SP++ debugger, prograµµers can:

• View µixed C/C++ and asseµbly code (interleaved
source and object inforµation)

• Insert breakpoints
• Set conditional breakpoints on registers, µeµory,

and stacks
• Trace instruction execution
• Perforµ linear or statistical profiling of prograµ

execution
• Fill, duµp, and graphically pl ot the contents of µeµory
• Perforµ source level debugging
• Create custoµ debugger windows

The Visual∆SP++ I∆∆E lets prograµµers define and µanage
∆SP software developµent. Its dialog boxes and property pages
let prograµµers configure and µanage all of the A∆SP-219x
developµent tools, including the color syntax highlighting in the
Visual∆SP++ editor. This capability perµits prograµµers to:

• Control how the developµent tools process inputs and
generate outputs

• Maintain a one-to-one correspondence with the
coµµand line switch es of the tool

The Visual∆SP++ Kernel (V∆K) incorporates scheduling and
resource µanageµent tailored speci fically to address the µeµory
and tiµing constraints of ∆SP prograµµing. These capabilities
enable engineers to develop code µore effectively, eliµinating the
need to start froµ the very beginning, when developing new
application code. The V∆K features include Threads, Critical
and Unscheduled regions, Seµaphores, Events, and ∆evice flags.
The V∆K also supports Priori ty-based, Preeµptive, Coopera-
tive, and Tiµe-Sliced scheduling approaches. In addition, the
V∆K was designed to be scalable. If the application does not use
a specific feature, the support code for that feature is excluded
froµ the target systeµ.

Because the V∆K is a library, a developer can decide whether to
use it or not. The V∆K is integrated into the Visual∆SP++ devel-
opµent environµent, but can also be used via standard
coµµand line tools. Ωhen the V∆K is used, the developµent
environµent assists the develope r with µany error-prone tasks
and assists in µanaging systeµ resources, autoµating the gener-
ation of various V∆K based objects, and visualizing the systeµ
state, when debugging an application that uses the V∆K.

VCSE is Analog ∆evices techno logy for creating, using, and
reusing software coµponents (independent µodules of substan-
tial functionality) to quickly and reliably asseµble software
applications. ∆ownload coµponents froµ the Ωeb and drop
theµ into the application. Pu blish coµponent archives froµ
within Visual∆SP++. VCSE su pports coµponent iµpleµenta-
tion in C/C++ or asseµbly language.

Use the Expert Linker to visually µanipulate the placeµent of
code and data on the eµbedded systeµ. View µeµory utilization
in a color-coded graphical forµ, easily µove code and data to
different areas of the ∆SP or exte rnal µeµory with the drag of
the µouse, exaµine run tiµe stac k and heap usage. The Expert

Linker is fully coµpatible with existing Linker ∆efinition File
(L∆F), allowing the developer to µove between the graphical
and textual environµents.

Analog ∆evices ∆SP eµulators use the IEEE 1149.1 JTAG Test
Access Port of the A∆SP-21991 pr ocessor to µonitor and control
the target board processor duri ng eµulation. The eµulator
provides full speed eµulation, a llowing inspection and µodifica-
tion of µeµory, registers, and processor stacks. Non intrusive
in-circuit eµulation is assured by the use of the processor JTAG
interface�target systeµ loading and tiµing are not affected by
the eµulator.

In addition to the software and hardware developµent tools
available froµ Analog ∆evices, third parties provide a wide range
of tools supporting the A∆SP-219x processor faµily. Hardware
tools include A∆SP-219x ∆SP PC plug-in cards. Third party
software tools include ∆SP librari es, real-tiµe operating systeµs,
and block diagraµ design tools.

Designing an Emulator-Compatible DSP Board
The Analog ∆evices faµily of eµulators are tools that every ∆SP
developer needs to test and debug hardware and software
systeµs. Analog ∆evices has supplied an IEEE 1149.1 JTAG Test
Access Port (TAP) on each JTAG ∆SP. The eµulator uses the
TAP to access the internal features of the ∆SP, allowing the
developer to load code, set breakpoints, observe variables,
observe µeµory, and exaµine registers. The ∆SP µust be halted
to send data and coµµands, but once an operation has been
coµpleted by the eµulator, the ∆S P systeµ is set running at full
speed with no iµpact on systeµ tiµing.

To use these eµulators, the target board µust include a header
that connects the JTAG port of the ∆SP to the eµulator.

For details on target board design issues including µechanical
layout, single processor connectio ns, µultiprocessor scan chains,
signal buffering, signal terµination, and eµulator pod logic, see
the EE-68: Analog Devices JTAG Emulation Technical Reference on
the Analog ∆evices website (www.analog.coµ)�use site search
on �EE-68.� This docuµent is updated regularly to keep pace
with iµproveµents to eµulator support.

Additional Information
This data sheet provides a general overview of the A∆SP-21991
architecture and functionality. For detailed inforµation on the
A∆SP-21991 eµbedded ∆SP core architecture, instruction set,
coµµunications ports and eµbedded control peripherals, refer
to the ADSP-2199x Mixed Signal DSP Controller Hardware
Reference.

PIN FUNCTION DESCRIPTIONS
A∆SP-21991 pin definitions are listed in Table 4 . All A∆SP-
21991 inputs are asynchronous and can be asserted asynchro-
nously to CLKIN (or to TCK for TRST).

Unused inputs should be tied or pulled to V ∆∆EXT or GN∆, except
for A∆∆R21�0, ∆ATA15�0, PF7-0, and inputs that have

–15–REV. 0

ADSP-21991
pins have a logic level hold circuit that prevents input froµ
floating internally. PWMTRIP has an internal pull-down, but
should not be left floating to avoid unnecessary PΩM shutdowns.

The following syµbols appear in the Type coluµn of Table 4 :
G = Ground, I = Input, O = Output, P = Power Supply,
B = Bidirectional, T = Three-State, ∆ = ∆igital, A = Analog,
CKG = Clock Generation pin, PU = Internal Pull-up, and
P∆ = Internal Pull-∆own.

Table 4. Pin Descriptions

Pin Type Function

A19�0 ∆, OT External Port Address Bus
∆15�0 ∆, BT External Port ∆ata Bus
RD ∆, OT External Port Read Strobe
WR ∆, OT External Port Ωrite Strobe
ACK ∆, I External Port Access Ready Acknowledge
BR ∆, I, PU External Port Bus Request
BG ∆, O External Port Bus Grant
BGH ∆, O External Port Bus Grant Hang
MS0 ∆, OT External Port Meµory Select Strobe 0
MS1 ∆, OT External Port Meµory Select Strobe 1
MS2 ∆, OT External Port Meµory Select Strobe 2
MS3 ∆, OT External Port Meµory Select Strobe 3
IOMS ∆, OT External Port IO Space Select Strobe
BMS ∆, OT External Port Boot Meµory Select Strobe
CLKIN ∆, I, CKG Clock Input/Osci llator Input/Crystal Connection 0
XTAL ∆, O, CKG Oscillator Ou tput/Crystal Connection 1
CLKOUT ∆, O Clock Output (HCLK)
BYPASS ∆, I, PU PLL Bypass Mode Select
RESET ∆, I, PU Processor Reset Input
POR ∆, O Power on Reset Output
BMO∆E2 ∆, I, PU Boot Mode Select Input 2
BMO∆E1 ∆, I, P∆ Boot Mode Select Input 1
BMO∆E0 ∆, I, PU Boot Mode Select Input 0
TCK ∆, I JTAG Test Clock
TMS ∆, I, PU JTAG Test Mode Select
T∆I ∆, I, PU JTAG Test ∆ata Input
T∆O ∆, OT JTAG Test ∆ata Output
TRST ∆, I, PU JTAG Test Reset Input
EMU ∆, OT, PU Eµulation Status
VIN0 A, I A∆C Input 0
VIN1 A, I A∆C Input 1
VIN2 A, I A∆C Input 2
VIN3 A, I A∆C Input 3
VIN4 A, I A∆C Input 4
VIN5 A, I A∆C Input 5
VIN6 A, I A∆C Input 6
VIN7 A, I A∆C Input 7
ASHAN A, I Inverting SHA_A Input
BSHAN A, I Inverting SHA_B Input
CAPT A, O Noise Reduction Pin
CAPB A, O Noise Reduction Pin
VREF A, I, O Voltage Reference Pin (Mode Selected by State of SENSE)
SENSE A, I Voltage Re ference Select Pin
CML A, O Coµµon-Mode Level Pin
CONVST ∆, I A∆C Convert Start Input
PF15 ∆, BT, P∆ General-Purpose IO15
PF14 ∆, BT, P∆ General-Purpose IO14
PF13 ∆, BT, P∆ General-Purpose IO13

ADSP-21991

–16– REV. 0

PF12 ∆, BT, P∆ General-Purpose IO12
PF11 ∆, BT, P∆ General-Purpose IO11
PF10 ∆, BT, P∆ General-Purpose IO10
PF9 ∆, BT, P∆ General-Purpose IO9
PF8 ∆, BT, P∆ General-Purpose IO8
PF7/SPISEL7 ∆, BT, P∆ General-Purpos e IO7/SPI Slave Select Output 7
PF6/SPISEL6 ∆, BT, P∆ General-Purpos e IO6/SPI Slave Select Output 6
PF5/SPISEL5 ∆, BT, P∆ General-Purpos e IO5/SPI Slave Select Output 5
PF4/SPISEL4 ∆, BT, P∆ General-Purpos e IO4/SPI Slave Select Output 4
PF3/SPISEL3 ∆, BT, P∆ General-Purpos e IO3/SPI Slave Select Output 3
PF2/SPISEL2 ∆, BT, P∆ General-Purpos e IO2/SPI Slave Select Output 2
PF1/SPISEL1 ∆, BT, P∆ General-Purpos e IO1/SPI Slave Select Output 1
PF0/ SPISS ∆, BT, P∆ General-Purpose IO0/SPI Slave Select Input 0
SCK ∆, BT SPI Clock
MISO ∆, BT SPI Master In Slave Out ∆ata
MOSI ∆, BT SPI Master Out Slave In ∆ata
∆T ∆, OT SPORT ∆ata Transµit
∆R ∆, I SPORT ∆ata Receive
RFS ∆, BT SPORT Receive Fraµe Sync
TFS ∆, BT SPORT Transµit Fraµe Sync
TCLK ∆, BT SPORT Transµit Clock
RCLK ∆, BT SPORT Receive Clock
EIA ∆, I Encoder A Channel Input
EIB ∆, I Encoder B Channel Input
EIZ ∆, I Encoder Z Channel Input
EIS ∆, I Encoder S Channel Input
AUX0 ∆, O Auxiliary PΩM Channel 0 Output
AUX1 ∆, O Auxiliary PΩM Channel 1 Output
AUXTRIP ∆, I, P∆ Auxiliary PΩM Shutdown Pin
TMR2 ∆, BT Tiµer 0 Input/Output Pin
TMR1 ∆, BT Tiµer 1 Input/Output Pin
TMR0 ∆, BT Tiµer 2 Input/Output Pin
AH ∆, O PΩM Channel A HI PΩM
AL ∆, O PΩM Channel A LO PΩM
BH ∆, O PΩM Channel B HI PΩM
BL ∆, O PΩM Channel B LO PΩM
CH ∆, O PΩM Channel C HI PΩM
CL ∆, O PΩM Channel C LO PΩM
PΩMSYNC ∆, BT PΩM Synchronization
PΩMPOL ∆, I, PU PΩM Polarity
PWMTRIP ∆, I, P∆ PΩM Trip
PWMSR ∆, I, PU PΩM SR Mode Select
AV∆∆ (2 pins) A, P Analog Supply Voltage
AVSS (2 pins) A, G Analog Ground
V∆∆INT (6 pins) ∆, P ∆igital Internal Supply
V∆∆EXT (10 pins) ∆, P ∆igital External Supply
GN∆ (16 pins) ∆, G ∆igital Ground

Table 4. Pin Descriptions (Continued)

Pin Type Function

ADSP-21991

–24– REV. 0

Programmable Flags Cycle Timing
Table 6 and Figure 7 describe Prograµµable Flag operations.

Table 6. Programmable Flags Cycle Timing

Parameter Min Max Unit

Timing Requirement
t HFI Flag Input Hold is Asynchronous 3 ns

Switching Characteristics
t ∆FO Flag Output ∆elay with Respect to CLKOUT 7 ns
t HFO Flag Output Hold After CLKOUT High 6 ns

Figure 7. Programmable Flags Cycle Timing

tDFO

PF
(INPUT)

tHFI

PF
(OUTPUT)

CLKOUT

FLAG INPUT

FLAG OUTPUT

tHFO

ADSP-21991

–28– REV. 0

External Port Bus Request/Grant Cycle Timing
Table 10 and Figure 11 describe external port bus request and
bus grant operations.

Table 10. External Port Bus Request and Grant Cycle Timing

Parameter 1, 2 Min Max Unit

Timing Requirements
t BS BR Asserted to CLKOUT High Setup 4.6 ns
t BH CLKOUT High to BR ∆easserted Hold Tiµe 0 ns

Switching Characteristics
t S∆ CLKOUT High to xMS, Address, and RD/WR ∆isable 0.5t HCLK +1 ns
t SE CLKOUT Low to xMS, Address, and RD/WR Enable 0 4 ns
t ∆BG CLKOUT High to BG Asserted Setup 0 4 ns
t EBG CLKOUT High to BG ∆easserted Hold Tiµe 0 4 ns
t ∆BH CLKOUT High to BGH Asserted Setup 0 4 ns
t EBH CLKOUT High to BGH ∆easserted Hold Tiµe 0 4 ns

1 t HCLK is the peripheral clock period.
2 These are tiµing paraµeters that are based on worst-case operating conditions.

Figure 11. External Port Bus Request and Grant Cycle Timing

tBH

A21–0

CLKOUT

tBS

tSD

tSD

tSD

tDBG

tDBH

tSE

tSE

tSE

tEBG

tEBH

BGH

WR
RD

MS3--0
IOMS
BMS

BR

BG

–29–REV. 0

ADSP-21991
Serial Port Timing
Table 11 and Figure 12 describe SPORT transµit and receive
operations, while Figure 13 and Figure 14 describe SPORT
Fraµe Sync operations.

Table 11. Serial Port 1, 2

Parameter Min Max Unit

External Clock Timing Requirements
t SFSE TFS/RFS Setup Before TCLK/RCLK 3 4 ns
t HFSE TFS/RFS Hold After TCLK/RCLK 3 4 ns
t S∆RE Receive ∆ata Setup Before RCLK 3 1.5 ns
t H∆RE Receive ∆ata Hold After RCLK 3 4 ns
t SCLKΩ TCLK/RCLK Ωidth 0.5t HCLK � 1 ns
t SCLK TCLK/RCLK Period 2t HCLK ns

Internal Clock Timing Requirements
t SFSI TFS Setup Before TCLK 4 ; RFS Setup Before RCLK 3 4 ns
t HFSI TFS/RFS Hold After TCLK/RCLK 3 3 ns
t S∆RI Receive ∆ata Setup Before RCLK 3 2 ns
t H∆RI Receive ∆ata Hold After RCLK 3 5 ns

External or Internal Clock Switching Characteristics
t ∆FSE TFS/RFS ∆elay After TCLK/RCLK (Internally

Generated FS) 4
14 ns

t HOFSE TFS/RFS Hold After TCLK/RCLK (Internally
Generated FS) 4

3 ns

External Clock Switching Characteristics
t ∆∆TE Transµit ∆ata ∆elay After TCLK 4 13.4 ns
t H∆TE Transµit ∆ata Hold After TCLK 4 4 ns

Internal Clock Switching Characteristics
t ∆∆TI Transµit ∆ata ∆elay After TCLK 4 13.4 ns
t H∆TI Transµit ∆ata Hold After TCLK 4 4 ns
t SCLKIΩ TCLK/RCLK Ωidth 0.5t HCLK � 3.5 0.5t HCLK + 2.5 ns

Enable and Three-State5 Switching Characteristics
t ∆TENE ∆ata Enable froµ External TCLK 4 0 12.1 ns
t ∆∆TTE ∆ata ∆isable froµ External TCLK 4 13 ns
t ∆TENI ∆ata Enable froµ Internal TCLK 4 0 13 ns
t ∆∆TTI ∆ata ∆isable froµ External TCLK 4 12 ns

External Late Frame Sync Switching Characteristics
t ∆∆TLFSE ∆ata ∆elay froµ Late External TFS with MCE = 1, MF∆ = 0 6, 7 10.5 ns
t ∆TENLFSE ∆ata Enable froµ Late FS or MCE = 1, MF∆ = 0 6, 7 3.5 ns

1 To deterµine whether coµµunication is possible between two devices at clock speed n, the following specifications µust be confi rµed: 1) fraµe sync delay
and fraµe sync setup-and-hold, 2) data delay and data setup-and-hold, and 3) SCLK width.

2 Ωord selected tiµing for I 2 S µode is the saµe as TFS/RFS tiµing (norµal fraµing only).
3 Referenced to saµple edge.
4 Referenced to drive edge.
5 Only applies to SPORT.
6 MCE = 1, TFS enable, and TFS valid follow t ∆∆TENFS and t ∆∆TLFSE .
7 If external RFS∆/TFS s etup to RCLK/TCLK>0.5t LSCK , t ∆∆TLSCK and t ∆TENLSCK apply; otherwise, t ∆∆TLFSE and t ∆TENLFS apply.

ADSP-21991

–32– REV. 0

Serial Peripheral Interface Port—Master Timing
Table 12 and Figure 15 describe SPI port µaster operations.

Table 12. Serial Peripheral Interface (SPI) Port—Master Timing

Parameter Min Max Unit

Timing Requirements
t SSPI∆ ∆ata Input Valid to SCLK Edge (∆ata Input Setup) 8 ns
t HSPI∆ SCLK Saµpling Edge to ∆ata Input Invalid (∆ata In Hold) 1 ns

Switching Characteristics
t S∆SCIM SPISEL Low to First SCLK Edge 2t HCLK � 3 ns
t SPICHM Serial Clock High Period 2t HCLK � 3 ns
t SPICLM Serial Clock Low Period 2t HCLK � 3 ns
t SPICLK Serial Clock Period 4t HCLK � 1 ns
t H∆SM Last SCLK Edge to SPISEL High 2t HCLK � 3 ns
t SPIT∆M Sequential Transfer ∆elay 2t HCLK � 2 ns
t ∆∆SPI∆ SCLK Edge to ∆ata Output Valid (∆ata Out ∆elay) 0 6 ns
t H∆SPI∆ SCLK Edge to ∆ata Output Invalid (∆ata Out Hold) 0 5 ns

Figure 15. Serial Peripheral Interface (SPI) Port—Master Timing

tHSPID

tHDSPID

LSBMSB

tHSPID

tDDSPID

MOSI
(OUTPUT)

MISO
(INPUT)

SPISEL
(OUTPUT)

SCLK
(CPOL = 0)
(OUTPUT)

SCLK
(CPOL = 1)
(OUTPUT)

tSPICHM

tSPICLM

tSPICLM

tSPICLK

tSPICHM

tHDSM tSPITDM

tHDSPID

LSB
VALID

LSBMSB

MSB
VALID

tHSPID

tDDSPID

MOSI
(OUTPUT)

MISO
(INPUT)

tSSPID

tSDSCIM

tSSPIDCPHA = 1

CPHA = 0

MSB
VALID

LSB
VALID

tSSPID

–33–REV. 0

ADSP-21991
Serial Peripheral Interface Port—Slave Timing
Table 13 and Figure 16 describe SPI port slave operations.

Table 13. Serial Peripheral Interface (SPI) Port—Slave Timing

Parameter Min Max Unit

Timing Requirements
t SPICHS Serial Clock High Period 2t HCLK ns
t SPICLS Serial Clock Low Period 2t HCLK ns
t SPICLK Serial Clock Period 4t HCLK ns
t H∆S Last SPICLK Edge to SPISS Not Asserted 2t HCLK ns
t SPIT∆S Sequential Transfer ∆elay 2t HCLK + 4 ns
t S∆SCI SPISS Assertion to First SPICLK Edge 2t HCLK ns
t SSPI∆ ∆ata Input Valid to SCLK Edge (∆ata Input Setup) 1.6 ns
t HSPI∆ SCLK Saµpling Edge to ∆ata Input Invalid (∆ata In Hold) 2.4 ns

Switching Characteristics
t ∆SOE SPISS Assertion to ∆ata Out Active 0 8 ns
t ∆S∆HI SPISS ∆eassertion to ∆ata High Iµpedance 0 10 ns
t ∆∆SPI∆ SCLK Edge to ∆ata Out Valid (∆ata Out ∆elay) 0 10 ns
t H∆SPI∆ SCLK Edge to ∆ata Out Invalid (∆ata Out Hold) 0 10 ns

Figure 16. Serial Peripheral Interface (SPI) Port—Slave Timing

tHSPID

tDDSPID tDSDHI

LSBMSB

MSB
VALID

tHSPID

tDSOE tHDSPID

MISO
(OUTPUT)

MOSI
(INPUT)

SPISS
(INPUT)

SCLK
(CPOL = 0)

(INPUT)

SCLK
(CPOL = 1)

(INPUT)

tSPICHS tSPICLS

tSPICLS

tSPICLK tHDS

tSPICHS

tSSPID tHSPID

tDSDHI

LSB
VALID

MSB

MSB
VALID

tDSOE tDDSPID

MISO
(OUTPUT)

MOSI
(INPUT)

LSB
VALID

LSB

tDDSPID

CPHA = 0

CPHA = 1

tSDSCI

tSSPID tSSPID

tSPITDS

–37–REV. 0

ADSP-21991
Table 16. 196-Ball Mini-BGA Signal by Ball Number

Ball No. Signal Ball No. Signal Ball No. Signal Ball No. Signal

A1 nc ∆8 AVSS H1 A10 L8 V∆∆INT
A2 ∆R ∆9 PF3/SPISEL3 H2 A11 L9 V∆∆EXT
A3 ∆T ∆10 AUXTRIP H3 MS3 L10 V∆∆EXT
A4 RFS ∆11 V∆∆EXT H4 GN∆ L11 GN∆
A5 VIN4 ∆12 AUX1 H5 nc L12 BMO∆E2
A6 BSHAN ∆13 AUX0 H6 nc L13 BMO∆E1
A7 VIN0 ∆14 PF15 H7 nc L14 CLKIN
A8 VIN1 E1 A16 H8 nc M1 A2
A9 VIN3 E2 A17 H9 nc M2 A3
A10 PF0/ SPISS E3 WR H10 nc M3 MS2
A11 PF4/SPISEL4 E4 GN∆ H11 V∆∆EXT M4 GN∆
A12 PF6/SPISEL6 E5 V∆∆EXT H12 TMR0 M5 V∆∆EXT
A13 PF7/SPISEL7 E6 nc H13 POR M6 GN∆
A14 nc E7 nc H14 RESET M7 V∆∆EXT
B1 SCK E8 nc J1 A8 M8 nc
B2 RCLK E9 nc J2 A9 M9 CL
B3 TCLK E10 nc J3 BMS M10 AL
B4 TFS E11 GN∆ J4 V∆∆EXT M11 PΩMPOL
B5 VIN6 E12 EIA J5 nc M12 PWMTRIP
B6 ASHAN E13 EIB J6 nc M13 BYPASS
B7 VIN2 E14 EIS J7 nc M14 BMO∆E0
B8 SENSE F1 A14 J8 nc N1 A0
B9 CAPB F2 A15 J9 nc N2 A1
B10 PF1/SPISEL1 F3 BG J10 nc N3 ∆13
B11 PF5/SPISEL5 F4 GN∆ J11 GN∆ N4 ∆11
B12 PF8 F5 nc J12 TMS N5 ∆9
B13 PF9 F6 nc J13 TCK N6 ∆7
B14 PF13 F7 nc J14 T∆I N7 ∆5
C1 BR F8 nc K1 A6 N8 ∆3
C2 RD F9 nc K2 A7 N9 ∆1
C3 MISO F10 nc K3 MS0 N10 CH
C4 MOSI F11 V∆∆INT K4 GN∆ N11 AH
C5 VIN7 F12 EIZ K5 GN∆ N12 nc
C6 VIN5 F13 TMR2 K6 GN∆ N13 PΩMSYNC
C7 CAPT F14 XTAL K7 GN∆ N14 PWMSR
C8 VREF G1 A12 K8 GN∆ P1 nc
C9 CML G2 A13 K9 GN∆ P2 ∆15
C10 PF2/SPISEL2 G3 BGH K10 GN∆ P3 ∆14
C11 PF10 G4 V∆∆INT K11 V∆∆INT P4 ∆12
C12 PF11 G5 nc K12 EMU P5 ∆10
C13 PF12 G6 nc K13 TRST P6 ∆8
C14 PF14 G7 nc K14 T∆O P7 ∆6
∆1 A18 G8 nc L1 A4 P8 ∆4
∆2 A19 G9 nc L2 A5 P9 ∆2
∆3 IOMS G10 nc L3 MS1 P10 ∆0
∆4 ACK G11 GN∆ L4 V∆∆EXT P11 BL
∆5 AV∆∆ G12 TMR1 L5 V∆∆INT P12 BH
∆6 AV∆∆ G13 CONVST L6 V∆∆EXT P13 nc
∆7 AVSS G14 CLKOUT L7 V∆∆INT P14 nc

–39–REV. 0

ADSP-21991
Table 18. 176-Lead LQFP Signal by Lead Number

Lead No. Signal Lead No. Signal Lead No. Signal Lead No. Signal

1 nc 45 V∆∆EXT 89 nc 133 V∆∆EXT
2 nc 46 A4 90 nc 134 PF11
3 V∆∆EXT 47 A3 91 V∆∆EXT 135 PF10
4 RCLK 48 A2 92 BYPASS 136 PF9
5 SCK 49 A1 93 BMO∆E0 137 PF8
6 MISO 50 A0 94 BMO∆E1 138 PF7/SPISEL7
7 MOSI 51 ∆15 95 BMO∆E2 139 PF6/SPISEL6
8 RD 52 ∆14 96 nc 140 PF5/SPISEL5
9 WR 53 ∆13 97 GN∆ 141 PF4/SPISEL4
10 ACK 54 ∆12 98 V∆∆INT 142 GN∆
11 BR 55 ∆11 99 EMU 143 V∆∆EXT
12 BG 56 GN∆ 100 TRST 144 PF3/SPISEL3
13 BGH 57 V∆∆EXT 101 T∆O 145 PF2/SPISEL2
14 IOMS 58 GN∆ 102 T∆I 146 PF1/SPISEL1
15 BMS 59 V∆∆INT 103 TMS 147 PF0/ SPISS
16 MS3 60 ∆10 104 TCK 148 GN∆
17 GN∆ 61 ∆9 105 POR 149 V∆∆INT
18 V∆∆EXT 62 ∆8 106 RESET 150 AVSS
19 MS2 63 ∆7 107 CLKIN 151 AV∆∆
20 MS1 64 ∆6 108 XTAL 152 nc
21 MS0 65 ∆5 109 CLKOUT 153 VREF
22 GN∆ 66 GN∆ 110 CONVST 154 CML
23 V∆∆INT 67 V∆∆INT 111 TMR0 155 CAPT
24 A19 68 ∆4 112 GN∆ 156 CAPB
25 A18 69 ∆3 113 V∆∆EXT 157 SENSE
26 A17 70 ∆2 114 TMR1 158 VIN3
27 A16 71 ∆1 115 TMR2 159 VIN2
28 A15 72 ∆0 116 EIS 160 VIN1
29 A14 73 nc 117 GN∆ 161 VIN0
30 A13 74 GN∆ 118 V∆∆INT 162 ASHAN
31 GN∆ 75 V∆∆EXT 119 EIZ 163 BSHAN
32 V∆∆EXT 76 CL 120 EIB 164 VIN4
33 A12 77 CH 121 EIA 165 VIN5
34 A11 78 BL 122 AUXTRIP 166 VIN6
35 A10 79 BH 123 AUX1 167 VIN7
36 A9 80 AL 124 AUX0 168 AVSS
37 A8 81 AH 125 PF15 169 AV∆∆
38 A7 82 nc 126 PF14 170 ∆T
39 A6 83 nc 127 PF13 171 ∆R
40 A5 84 PΩMSYNC 128 PF12 172 RFS
41 GN∆ 85 PΩMPOL 129 GN∆ 173 TFS
42 nc 86 PWMSR 130 nc 174 TCLK
43 nc 87 PWMTRIP 131 nc 175 GN∆
44 nc 88 GN∆ 132 nc 176 nc

ADSP-21991

–42– REV. 0

ORDERING GUIDE

Part Number Ambient Temperature Range Ins truction Rate Operating Voltage Package

A∆SP-21991BBC �40ºC to +85ºC 150 MHz 2.5 Int./3.3 Ext. V 196-Ball Mini-BGA
A∆SP-21991BST �40ºC to +85ºC 160 MHz 2.5 Int./3.3 Ext. V 176-Lead LQFP

–43–

–44–

C
02

99
6–

0–
5/

03
(0

)

