

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2450-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Dia Nama	Pi	n Num	ber	Pin	Buffer	Description			
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description			
MCLR/Vpp/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.			
VPP				Р		Programming voltage input.			
RE3				I	ST	Digital input.			
OSC1/CLKI OSC1 CLKI	13	32	30		Analog Analog	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. External clock source input. Always associated with pin function OSC1. (See OSC2/CLKO pin.)			
OSC2/CLKO/RA6 OSC2	14	33	31	0		Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.			
CLKO				0		In select modes, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.			
RA6				I/O	TTL	General purpose I/O pin.			
Legend: TTL = TTL	compat	ible inp	ut		C	CMOS = CMOS compatible input or output			
ST = Schr	nitt Trig	ger inpı	ut with C	MOS le	evels l	= Input			
O = Outp	out				F	P = Power			

TABLE 1-3: PIC18F4450 PINOUT I/O DESCRIPTIONS

Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

2.2.5 INTERNAL OSCILLATOR

The PIC18F2450/4450 devices include an internal RC oscillator (INTRC) which provides a nominal 31 kHz output. INTRC is enabled if it is selected as the device clock source; it is also enabled automatically when any of the following are enabled:

- · Power-up Timer
- Fail-Safe Clock Monitor
- · Watchdog Timer
- · Two-Speed Start-up

These features are discussed in greater detail in **Section 18.0 "Special Features of the CPU"**.

2.2.5.1 Internal Oscillator Modes

When the internal oscillator is used as the microcontroller clock source, one of the other oscillator modes (External Clock or External Crystal/Resonator) must be used as the USB clock source. The choice of USB clock source is determined by the particular internal oscillator mode.

There are four distinct modes available:

- 1. INTHS mode: The USB clock is provided by the oscillator in HS mode.
- 2. INTXT mode: The USB clock is provided by the oscillator in XT mode.
- INTCKO mode: The USB clock is provided by an external clock input on OSC1/CLKI; the OSC2/ CLKO pin outputs FOSC/4.
- INTIO mode: The USB clock is provided by an external clock input on OSC1/CLKI; the OSC2/ CLKO pin functions as a digital I/O (RA6).

Of these four modes, only INTIO mode frees up an additional pin (OSC2/CLKO/RA6) for port I/O use.

2.3 Oscillator Settings for USB

When the PIC18F2450/4450 is used for USB connectivity, it must have either a 6 MHz or 48 MHz clock for USB operation, depending on whether Low-Speed or Full-Speed mode is being used. This may require some forethought in selecting an oscillator frequency and programming the device.

The full range of possible oscillator configurations compatible with USB operation is shown in Table 2-3.

2.3.1 LOW-SPEED OPERATION

The USB clock for Low-Speed mode is derived from the primary oscillator chain and not directly from the PLL. It is divided by 4 to produce the actual 6 MHz clock. Because of this, the microcontroller can only use a clock frequency of 24 MHz when the USB module is active and the controller clock source is one of the primary oscillator modes (XT, HS or EC, with or without the PLL).

This restriction does not apply if the microcontroller clock source is the secondary oscillator or internal oscillator.

2.3.2 RUNNING DIFFERENT USB AND MICROCONTROLLER CLOCKS

The USB module, in either mode, can run asynchronously with respect to the microcontroller core and other peripherals. This means that applications can use the primary oscillator for the USB clock while the microcontroller runs from a separate clock source at a lower speed. If it is necessary to run the entire application from only one clock source, full-speed operation provides a greater selection of microcontroller clock frequencies.

FIGURE 6-2: TABLE WRITE OPERATION

6.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- · EECON2 register
- TABLAT register
- · TBLPTR registers

6.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 6-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory. The FREE bit, when set, will allow a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WREN bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is							
	read as '1'. This can indicate that a write							
	operation was prematurely terminated by							
	a Reset or a write operation was							
	attempted improperly.							

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY

	MOVIW	D'64/	• number of bytes in erase block
	MOVWE	COUNTER	, number of bytes in erase brock
	MOVIW	BIFFFP ADDP HICH	· noint to buffer
	MOVINE	FGDON	, point to builter
	MOVIW	BUFFFR ADDR LOW	
	MOVWE	FSROL	
	MOVIW	CODE ADDE HERE	· I and TRIPTP with the base
	MOVWE	TRI PTRII	; address of the memory block
	MOVIW	CODE ADDR HIGH	, address of the memory brock
	MOVWE	TRIPTRH	
	MOVIW	CODE ADDR LOW	
	MOVWE	TRIPTRI	
READ BLOCK	110 / 111		
112112_220011	TBLRD*+		; read into TABLAT, and inc
	MOVE	TABLAT, W	; get data
	MOVWF	POSTINCO	; store data
	DECFSZ	COUNTER	; done?
	BRA	READ BLOCK	; repeat
MODIFY WORD			, 1
	MOVLW	DATA ADDR HIGH	; point to buffer
	MOVWF	FSR0H	
	MOVLW	DATA ADDR LOW	
	MOVWF	FSR0L	
	MOVLW	NEW DATA LOW	; update buffer word
	MOVWF	POSTINCO	, 1
	MOVLW	NEW DATA HIGH	
	MOVWF	INDF0	
ERASE BLOCK			
_	MOVLW	CODE ADDR UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU —	; address of the memory block
	MOVLW	CODE ADDR HIGH	
	MOVWF	TBLPTRH —	
	MOVLW	CODE ADDR LOW	
	MOVWF	TBLPTRL	
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	D'4'	
	MOVWF	COUNTER1	
WRITE_BUFFER_I	BACK		
	MOVLW	D'16'	; number of bytes in holding register
	MOVWF	COUNTER	
WRITE_BYTE_TO	HREGS		
	MOVF	POSTINCO, W	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register.
	DECFSZ	COUNTER	; loop until buffers are full
	BRA	WRITE_WORD_TO_HREGS	

8.2 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts <u>When IPEN = 1:</u> 1 = Enables all high-priority interrupts 0 = Disables all interrupts
bit 6	 Disables all interrupts PEIE/GIEL: Peripheral Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
	<u>When IPEN = 1:</u> 1 = Enables all low-priority peripheral interrupts 0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit 1 = The INTO external interrupt occurred (must be cleared in software) 0 = The INTO external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾ 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state
N	

Note 1: A mismatch condition will continue to set this bit. Reading PORTB and waiting 1 TCY will end the mismatch condition and allow the bit to be cleared.

8.6 RCON Register

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

REGISTER 8-10: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽²⁾	R/W-0
IPEN	SBOREN	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	IPEN: Interrupt Priority Enable bit
	1 = Enable priority levels on interrupts
	0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6	SBOREN: BOR Software Enable bit ⁽¹⁾
	For details of bit operation, see Register 4-1.
bit 5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	For details of bit operation, see Register 4-1.
bit 3	TO: Watchdog Time-out Flag bit
	For details of bit operation, see Register 4-1.
bit 2	PD: Power-Down Detection Flag bit
	For details of bit operation, see Register 4-1.
bit 1	POR : Power-on Reset Status bit ⁽²⁾
	For details of bit operation, see Register 4-1.
bit 0	BOR: Brown-out Reset Status bit
	For details of bit operation, see Register 4-1.

- Note 1: If SBOREN is enabled, its Reset state is '1'; otherwise, it is '0'. See Register 4-1 for additional information.
 - 2: The actual Reset value of POR is determined by the type of device Reset. See Register 4-1 for additional information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	51
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	51
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	51
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2		TMR0IP	_	RBIP	49
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	49
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	50
UCON	_	PPBRST	SE0	PKTDIS	USBEN	RESUME	SUSPND	_	52

TABLE 9-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTB.

10.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- Dedicated 8-bit, software programmable
 prescaler
- Selectable clock source (internal or external)
- Edge select for external clock
- · Interrupt on overflow

The T0CON register (Register 10-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 10-1. Figure 10-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 10-1: T0CON: TIMER0 CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

Legend:				
R = Readat	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	TMR00	I: Timer0 On/Off Control bit		
	1 = Enat	oles Timer0		
	0 = Stop:	s Timer0		
bit 6	T08BIT:	Timer0 8-Bit/16-Bit Control bi	t	
	1 = Time	r0 is configured as an 8-bit tir	mer/counter	
	0 = Time	r0 is configured as a 16-bit tir	mer/counter	
bit 5	TOCS: Ti	mer0 Clock Source Select bit	t	
	1 = Tran	sition on T0CKI pin		
	0 = Inter	nal instruction cycle clock (CL	_KO)	
bit 4	TOSE: Ti	mer0 Source Edge Select bit		
	1 = Incre	ment on high-to-low transition	n on T0CKI pin	
	0 = Incre	ment on low-to-high transition	n on T0CKI pin	
bit 3	PSA: Tin	ner0 Prescaler Assignment bi	t	
	1 = TIme	er0 prescaler is not assigned.	Timer0 clock input bypasses	prescaler.
	0 = Time	r0 prescaler is assigned. Tim	er0 clock input comes from p	rescaler output.
bit 2-0	T0PS2:T	OPS0: Timer0 Prescaler Sele	ect bits	
	111 = 1 ::	256 Prescale value		
	110 = 1 :	128 Prescale value		
	101 = 1 :	64 Prescale value		
	100 = 1:	32 Prescale value		
	011 = 1:	10 Flescale value		
	001 = 1:	4 Prescale value		
	000 = 1:	2 Prescale value		

NOTES:

11.3.3 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 11-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high-speed circuit must be located near the oscillator (such as the CCP1 pin in Output Compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as shown in Figure 11-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

FIGURE 11-4: OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING

11.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

11.5 Resetting Timer1 Using the CCP Special Event Trigger

If the CCP module is configured in Compare mode to generate a Special Event Trigger (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1. The trigger from CCP1 will also start an A/D conversion if the A/D module is enabled (see **Section 13.3.4 "Special Event Trigger"** for more information).

The module must be configured as either a timer or a synchronous counter to take advantage of this feature. When used this way, the CCPRH:CCPRL register pair effectively becomes a period register for Timer1.

If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note:	The Special Event Triggers from the CCP1
	module will not set the TMR1IF interrupt
	flag bit (PIR1<0>).

11.6 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 11.3 "Timer1 Oscillator**") gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 11-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine which increments the seconds counter by one. Additional counters for minutes and hours are incremented as the previous counter overflows.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1) as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

13.1 CCP Module Configuration

The Capture/Compare/PWM module is associated with a control register (generically, CCP1CON) and a data register (CCPR1). The data register, in turn, is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). All registers are both readable and writable.

13.1.1 CCP MODULE AND TIMER RESOURCES

The CCP module utilizes Timer1 or Timer2, depending on the mode selected. Timer1 is available to the module in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 13-1:CCP MODE – TIMERRESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

In Timer1 in Asynchronous Counter mode, the capture operation will not work.

13.2 Capture Mode

In Capture mode, the CCPR1H:CCPR1L register pair captures the 16-bit value of the TMR1 register when an event occurs on the corresponding CCP1 pin. An event is defined as one of the following:

- · every falling edge
- · every rising edge
- · every 4th rising edge
- · every 16th rising edge

The event is selected by the mode select bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit, CCP1IF, is set; it must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

13.2.1 CCP1 PIN CONFIGURATION

In Capture mode, the CCP1 pin should be configured as an input by setting the corresponding TRIS direction bit.

Note:	If RC2/CCP1 is configured as an output, a
	write to the port can cause a capture
	condition.

13.2.2 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit clear to avoid false interrupts. The interrupt flag bit, CCP1IF, should also be cleared following any such change in operating mode.

13.2.3 CCP PRESCALER

There are four prescaler settings in Capture mode. They are specified as part of the operating mode selected by the mode select bits (CCP1M3:CCP1M0). Whenever the CCP module is turned off or Capture mode is disabled, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 13-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 13-1: CHANGING BETWEEN CAPTURE PRESCALERS (CCP1 SHOWN)

CLRF	CCP1CON	; Turn CCP module o	ff
MOVLW	NEW_CAPT_PS	; Load WREG with th	ıe
		; new prescaler mod	le
		; value and CCP \ensuremath{ON}	
MOVWF	CCP1CON	; Load CCP1CON with	l
		; this value	

FIGURE 13-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
UTEYE	E UOEMON ⁽¹⁾	—	UPUEN ^(2,3)	UTRDIS ⁽²⁾	FSEN ⁽²⁾	PPB1	PPB0
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	UTEYE: USB	Eye Pattern Te	est Enable bit				
	1 = Eye patte	ern test enabled	b				
	0 = Eye patte	ern test disable	d				
bit 6	UOEMON: US	SB OE Monitor	Enable bit ⁽¹⁾				
	1 = UOE sign	nal active; it ind	licates interval	s during which	n the D+/D- line	s are driving	
			- 1				
bit 5	Unimplemen	ted: Read as	0′ —	2 3)			
bit 4	UPUEN: USB	On-Chip Pull-	up Enable bit	2,3)		. 	
	1 = On-chip p 0 = On-chip p	ull-up enabled	(pull-up on D+	· with FSEN =	1 or D- with FS	SEN = 0)	
hit 3		Chin Transcoiv	or Disable hit	2)			
DIL 3	1 = On - chin tr	ansceiver disa	bled: digital tra	, ansceiver inter	face enabled		
	0 = On-chip tr	ansceiver activ	/e				
bit 2	FSEN: Full-Sp	peed Enable bi	t(2)				
	1 = Full-speed	d device: contro	ols transceiver	edge rates; r	equires input cl	ock at 48 MHz	
	0 = Low-spee	d device: contr	ols transceive	r edge rates; r	equires input cl	ock at 6 MHz	
bit 1-0	PPB1:PPB0:	Ping-Pong But	ffers Configura	ition bits			
	11 = Enabled	for all endpoin	ts except End	point 0			
	10 = EVEN/O	DD ping-pong	buffers enable	ed for all endpo	pints		
	01 = EVEN/O 00 = EVEN/O	DD ping-pong	buffers disable	1 for OUT End	point U		
Note 1:	If UTRDIS is set, the	ne UOE signal	will be active i	ndependent o	f the UOEMON	bit setting.	
2:	The UPUEN, UTR	DIS and FSEN	bits should ne	ever be change	ed while the US	B module is en	abled. These
	values must be pre	econfigured prid	or to enabling	the module.			

REGISTER 14-2: UCFG: USB CONFIGURATION REGISTER

3: This bit is only valid when the on-chip transceiver is active (UTRDIS = 0); otherwise, it is ignored.

There are 6 signals from the module to communicate with and control an external transceiver:

- VM: Input from the single-ended D- line
- VP: Input from the single-ended D+ line
- RCV: Input from the differential receiver
- · VMO: Output to the differential line driver
- VPO: Output to the differential line driver
- UOE: Output enable

The VPO and VMO signals are outputs from the SIE to the external transceiver. The RCV signal is the output from the external transceiver to the SIE; it represents the differential signals from the serial bus translated into a single pulse train. The VM and VP signals are used to report conditions on the serial bus to the SIE that can't be captured with the RCV signal. The combinations of states of these signals and their interpretation are listed in Table 14-1 and Table 14-2.

15.3 EUSART Synchronous Master Mode

The Synchronous Master mode is entered by setting the CSRC bit (TXSTA<7>). In this mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit, SYNC (TXSTA<4>). In addition, enable bit, SPEN (RCSTA<7>), is set in order to configure the TX and RX pins to CK (clock) and DT (data) lines, respectively.

The Master mode indicates that the processor transmits the master clock on the CK line. Clock polarity is selected with the SCKP bit (BAUDCON<4>). Setting SCKP sets the Idle state on CK as high, while clearing the bit sets the Idle state as low. This option is provided to support Microwire devices with this module.

15.3.1 EUSART SYNCHRONOUS MASTER TRANSMISSION

The EUSART transmitter block diagram is shown in Figure 15-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCYCLE), the TXREG register is empty and the TXIF flag bit (PIR1<4>) is set. The interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXIE (PIE1<4>). TXIF is set regardless of the state of enable bit, TXIE; it cannot be cleared in software. It will reset only when new data is loaded into the TXREG register.

While flag bit, TXIF, indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit so the user must poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 15-11: SYNCHRONOUS TRANSMISSION

REGISTER 16-2: ADCON1: A/D CONTROL REGISTER 1

U-0	U-0		R/W-	0	R/W	/-0	R/W	/ ₋₀ (1)	R	/W ⁽¹⁾		R/W	(1)	R/	W ⁽¹⁾
—	_		VCFC	61	VCF	G0	PCI	=G3	P	CFG2		PCF	G1	PC	FG0
bit 7															bit
Legend:										,		(0)			
R = Readab	ble bit	W	/ = vvrit	able b	t		0 = 0	nimple	mente	d bit, re	ead as	· '0'			
-n = Value a	at POR	'1	' = Bit i	s set			.0, = B	lit is cle	eared		X	= Bit is	s unkn	lown	
h:1 7 C	Unimala			l == (0)											
	Unimplen	nentec	1: Read		c										
DIT 5			Refere	ence C	ontigur	ation	DIT (VRE	EF- SOU	rce)						
	1 = VREF- 0 = VSS	(AN2)													
bit 4		/oltage	Refere	ence C	onficiur	ation	bit (VR	=F+ 501	irce)						
~	1 = VRFF+	- (AN3))		Singu	adon	~~~ \ V 1 \L	_, . 500							
	0 = VDD	,,	/												
bit 3-0	PCFG3:P	CFG0:	A/D P	ort Coi	nfigurat	tion C	ontrol b	oits:							
	PCEC2	2	-	0			(3)	(3)	(2)	İ .					
	PCFG3.	AN1	AN1	AN1	AN9	AN8	AN7	ANG	AN5	AN4	AN3	AN2	AN1	ANO	
	0000 (1)	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	Α	Α	Α	
	0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0010	А	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	А	А	
	0011	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0100	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0101	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0110	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	А	Α	
	0111(1)	D	D	D	D	D	Α	Α	Α	Α	Α	А	А	А	
	1000	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	
	1001	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	А	
	1010	D	D	D	D	D	D	D	D	А	Α	А	А	А	
	1011	D	D	D	D	D	D	D	D	D	Α	А	А	А	
	1100	D	D	D	D	D	D	D	D	D	D	А	А	А	
	1101	D	D	D	D	D	D	D	D	D	D	D	А	A	
	1110	D	D	D	D	D	D	D	D	D	D	D	D	A	
	1111	D	D	D	D	D	D	D	D	D	D	D	D	D	
	A = Analo	og inpu	ıt				D = Di	gital I/0	C						

- **Note 1:** The POR value of the PCFG bits depends on the value of the PBADEN Configuration bit. When PBADEN = 1, PCFG<3:0> = 0000; when PBADEN = 0, PCFG<3:0> = 0111.
 - 2: AN5 through AN7 are available only on 40/44-pin devices.

17.5 Applications

In many applications, the ability to detect a drop below or rise above a particular threshold is desirable. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 17-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and perform a controlled shutdown before the device voltage exits the valid operating range at TB. The HLVD, thus, would give the application a time window, represented by the difference between TA and TB, to safely exit.

REGISTER 18-1: CONFIG1L: CONFIGURATION REGISTER 1 LOW (BYTE ADDRESS 300000h)

U-0	U-0	R/P-0	R/P-0	R/P-0	R/P-1	R/P-1	R/P-1
	_	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0
bit 7							bit 0
Legend:							
R = Readable	bit	P = Programr	nable bit	U = Unimpler	nented bit, read	as '0'	
-n = Value wh	en device is unp	programmed		u = Unchange	ed from progran	nmed state	
bit 7-6	Unimplement	ted: Read as '	0'				
bit 5	USBDIV: USE	3 Clock Selecti	on bit (used ir	n Full-Speed U	SB mode only; I	UCFG:FSEN =	1)
	1 = USB clock	k source come	s from the 96	MHz PLL divid	ed by 2		
	0 = USB clock	< source come	s directly from	the primary of	scillator block w	ith no postscale	9
bit 4-3	CPUDIV1:CP	UDIV0: Syster	n Clock Posts	caler Selection	bits		
	For XT, HS, E	C and ECIO C	scillator mode	es:			
	11 = Primary	oscillator divid	ed by 4 to der	ive system cloo	CK		
	10 = Primary	oscillator divid	ed by 3 to der	ive system cloc	sk sk		
	00 = Primary	oscillator used	directly for sy	stem clock (nc	postscaler)		
	For XTPLL, H	SPLL, ECPLL	and ECPIO C	scillator mode	s:		
	11 = 96 MHz	PLL divided by	6 to derive s	ystem clock	_		
	10 = 96 MHz	PLL divided by	4 to derive s	ystem clock			
	01 = 96 MHz	PLL divided by	3 to derive s	ystem clock			
	00 = 96 MHZ	PLL divided by	/ 2 to derive s	ystem clock			
bit 2-0	PLLDIV2:PLL	DIVO: PLL Pre	escaler Select	ion bits			
	111 = Divide	by 12 (48 MHz	oscillator inpi	ut)			
	101 = Divide I	by 10 (40 MHz (scillator input	ul)			
	100 = Divide	by 5 (20 MHz (oscillator input	t)			
	011 = Divide	by 4 (16 MHz d	oscillator input	t)			
	010 = Divide	by 3 (12 MHz (oscillator input	t)			
	001 = Divide	by 2 (8 MHz os	scillator input)				
	000 = No pres	scale (4 MHz c	scillator input	drives PLL dire	ectly)		

MOV	'LW	Move Lite	eral to W			
Synta	ax:	MOVLW	k			
Oper	ands:	$0 \le k \le 25$	5			
Oper	ration:	$k\toW$				
Statu	is Affected:	None				
Enco	oding:	0000	1110	kkk	ĸk	kkkk
Desc	cription:	The 8-bit	iteral 'k' is	loade	ed in	to W.
Word	ds:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3	6		Q4
	Decode	Read literal 'k'	Proce Data	ss a	Wr	ite to W
				-		
Exan	nple:	MOVLW	5Ah			
	After Instructio	on = 5Ah				

MOVWF	Move W to f
Syntax:	MOVWF f {,a}
Operands:	$0 \le f \le 255$ $a \in [0,1]$
Operation:	$(W) \to f$
Status Affected:	None
Encoding:	0110 111a ffff ffff
Description:	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 19.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	ReadProcessWriteregister 'f'Dataregister 'f'
Example: Before Instruct W REG After Instructio W REG	MOVWF REG, 0 = 4Fh = FFh n = 4Fh = 4Fh

SUB	LW		Subtrac	÷t ۱	N from L	itera	l	
Synta	ax:		SUBLW	ł	(
Oper	ands:		$0 \le k \le 2$	255	5			
Oper	ation:		k – (W) -	\rightarrow	W			
Statu	s Affected:		N, OV, C	C, I	DC, Z			
Enco	ding:		0000		1000	kkk	k	kkkk
Desc	ription		W is sub literal 'k'	otra T	acted fror he result	n the is pla	8-bi aced	it I in W.
Word	s:		1					
Cycle	es:		1					
QC	ycle Activity:							
	Q1		Q2		Q3			Q4
	Decode	li	Read iteral 'k'		Proces Data	SS	Wr	ite to W
<u>Exan</u>	<u>nple 1:</u>		SUBLW	C	2h			
	Before Instruc W C	tion = =	01h ?					
	After Instructic W C Z N	n = = =	01h 1 0 0	;	result is p	ositiv	e	
Exan	<u> 1ple 2:</u>		SUBLW	C	2h			
	Before Instruc W C	tion = =	02h ?					
	After Instructic W C Z N	n = = =	00h 1 1 0	;	result is z	ero		
Exan	<u>nple 3:</u>		SUBLW	C	2h			
	Before Instruc W C After Instructic	tion = = n	03h ?		(2'a aami		(nt)	
	C Z N	=	0 0 1	;	result is r	negati	ve	

SUB	WF	Subtrac	t W from f	
Synt	ax:	SUBWF	f {,d {,a}}	
Oper	ands:	$0 \le f \le 2$	55	
		d ∈ [0,1] a ∈ [0,1]		
Oper	ation:	(f) – (W)	→ dest	
Statu	is Affected:	N, OV, C	C, DC, Z	
Enco	oding:	0101	11da ff	ff ffff
Desc	cription:	Subtract	W from register	r 'f' (2's
		complen result is	nent method). If stored in W If 'c	'd' is '0', the
		result is	stored back in r	egister 'f'
		(default))' the Access B	ank is
		selected	I. If 'a' is '1', the	BSR is used
		to select	the GPR bank	(default).
		set is en	abled, this instru	uction
		operates	s in Indexed Lite	ral Offset
		f \leq 95 (5	Fh). See Sectio	ever n 19.2.3
		"Byte-O	riented and Bit-	Oriented
		Instruct Mode" f	ons in Indexed	Literal Offset
Word	ds:	1		
Cycle	es:	1		
QC	ycle Activity:			
	01	00	02	04
	Q1	QZ	<u></u>	Q4
	Decode	Read register 'f'	Process Data	Write to destination
Exar	Decode	Read register 'f'	Process Data	Write to destination
Exar	Decode nple 1: Before Instruc	Read register 'f' SUBWF tion	Process Data REG, 1, 0	Write to destination
<u>Exar</u>	Decode nple 1: Before Instruc REG W	Read register 'f' SUBWF tion = 3 = 2	REG, 1, 0	Write to destination
Exar	Decode nple 1: Before Instruc REG W C After Instructic	C2 Read register 'f' SUBWF tion = 3 = 2 = ?	REG, 1, 0	Write to destination
<u>Exar</u>	Decode nple 1: Before Instruc REG W C After Instructio WG	U2 Read register 'f' SUBWF tion = 2 = 2 = 2 = 2 = 2 = 2 = 2	REG, 1, 0	Write to destination
Exar	Decode nple 1: Before Instruc REG W C After Instructio REG W C 2	U2 Read register 'f' SUBWF tion = 3 = 2 = ? on = 1 = 2 = 1 = 2	REG, 1, 0	Write to destination
Exar	Decode nple 1: Before Instruc REG W C After Instructio REG W C Z N	U2 Read register 'f' SUBWF tion = 2 = 2 = 0n = 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 2 2 2 2 2 <tr< td=""><td>REG, 1, 0</td><td>Write to destination</td></tr<>	REG, 1, 0	Write to destination
<u>Exar</u>	Decode nple 1: Before Instruct REG W C After Instruction REG W C After Instruction N N nple 2:	U2 Read register 'f' SUBWF tion = 2 3 2 3 2 3 3 3 4 5 4 5 5 5 5 5 6 6 5 6 5 6 6 6 7 7	REG, 0, 0	Write to destination
Exar Exar	Decode nple 1: Before Instruc REG W C After Instructio REG W C Z N nple 2: Before Instruc	U2 Read register 'f' SUBWF tion = 2 = 2 = 0 = 0 SUBWF	REG, 0, 0	Write to destination
Exar Exar	Decode nple 1: Before Instruct REG W C After Instruction REG W C Z N nple 2: Before Instruct REG W C C C C C C C C C C C C C	U2 Read register 'f' SUBWF tion = 2 = 2 = 0 = 0 SUBWF tion = 0 SUBWF tion = 2 2 2 2 2 2 2 2	REG, 0, 0	Write to destination
<u>Exar</u>	Decode nple 1: Before Instruc REG W C After Instructio REG W C Z N nple 2: Before Instruct REG W C After Instruction REG W C After Instruction REG M C After Instruction REG After Instruction After Instruction REG After Instruction After Instruction Afte	Q2 Read register 'f' SUBWF tion = 2 = 2 = 0 SUBWF tion = 0 SUBWF tion = 2 = 0 SUBWF tion = 2 = 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	result is positive REG, 0, 0	Write to destination
<u>Exar</u>	Decode nple 1: Before Instruct REG W C After Instructio REG W C Z N nple 2: Before Instruct REG W C After Instructio REG W C	U2 Read register 'f' SUBWF tion = 2 = 0 = 0 SUBWF tion = 2 = 0 SUBWF tion = 2 = 0 SUBWF tion = 2 = 0 SUBWF	result is positive	Write to destination
<u>Exar</u>	Decode nple 1: Before Instruct REG W C After Instruction W C Z N nple 2: Before Instruct REG W C After Instruction REG W C After Instruction REG W C Z After Instruction REG W C Z Z	Read register 'f' SUBWF tion = 2 = 2 = 2 = 0 = 0 SUBWF tion = 0 SUBWF tion = 2 = 0 SUBWF tion = 0 SUBWF	result is positive REG, 0, 0	Write to destination
<u>Exar</u>	Decode nple 1: Before Instruct REG W C After Instruction REG W C Z N nple 2: Before Instruction REG W C After Instruction REG W C After Instruction REG W C N N N N N N N N N N N N N	Q2 Read register 'f' SUBWF tion = 1 = 2 = 1 = 2 = 0 SUBWF tion = 2 = 0 SUBWF tion = 2 = 2 = 2 = 0 = 1 = 0 = 1 = 1 = 1	result is positive REG, 0, 0	Write to destination
Exar Exar	Decode nple 1: Before Instruct REG W C After Instruction W C Z N nple 2: Before Instruct REG W C After Instruction REG W C After Instruction REG W C Z N N After Instruction REG W C Z N N REG W C Z N N After Instruction REG W C Z N N N N N N N N N N N N N	U2 Read register 'f' SUBWF tion = 2 = 2 = 0 = 0 SUBWF tion = 0 SUBWF tion = 0 SUBWF tion = 0 SUBWF	result is positive REG, 0, 0 REG, 1, 0	Write to destination
Exar Exar	Decode nple 1: Before Instruct REG W C After Instruction REG W C Z N nple 2: Before Instruction REG W C After Instruction REG W C Z N N Before Instruction REG W C Z N N Before Instruction REG W C Z N N Before Instruction REG W C Z N N Before Instruction REG W C Z N N N Before Instruction REG W C Z N N N N N N N N N N N N N	Q2 Read register 'f' SUBWF tion = 2 = 2 = 1 = 2 = 0 SUBWF tion 2 = 0 SUBWF ion 2 = 0 SUBWF tion 2 = 0 SUBWF	US Process Data REG, 1, 0 result is positive REG, 0, 0 result is zero REG, 1, 0	Write to destination
Exar Exar	Decode nple 1: Before Instruct REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C C After Instruction REG W C C After Instruction REG W C C After Instruction REG W C C After Instruction REG W C C C After Instruction REG W C C C C After Instruction REG W C C C C After Instruction REG W C C C C After Instruction REG W C C C C C After Instruction REG W C C C C C C C C C C C C C	Q2 Read register 'f' SUBWF tion = 1 = 2 = 1 = 2 = 0 SUBWF 1 tion 2 = 0 SUBWF 1 = 0 SUBWF 1 = 0 SUBWF 1 = 0 SUBWF 1 = 1 = 1 = 2	US Process Data REG, 1, 0 result is positive REG, 0, 0 result is zero REG, 1, 0	Write to destination
Exar Exar	Decode nple 1: Before Instruct REG W C After Instruction REG W C Z N nple 2: Before Instruction REG W C After Instruction REG W C	Q2 Read register 'f' SUBWF tion = 1 = 2 = 1 = 1 = 0 SUBWF tion = 2 = 0 SUBWF 1 tion = 1 = 0 SUBWF 1 = 0 SUBWF 1 = 2 = 1 = 0 SUBWF 1 = 2 = 1 = 2 = 7 = 7	Process Data REG, 1, 0 result is positive REG, 0, 0 result is zero REG, 1, 0	Write to destination
Exar Exar	Decode nple 1: Before Instruct REG W C After Instruction REG W C Z N nple 2: Before Instruction REG W C After Instruction REG W C C After Instruction REG W C C	Q2 Read register 'f' SUBWF tion = 2 = 2 = 2 = 1 = 0 SUBWF 0 tion 2 = 2 = 0 SUBWF 0 tion 2 = 0 SUBWF 0 = 0 SUBWF 0 SUBWF 0 SUBWF 0 SUBWF 0 SUBWF 0 SUBWF 0	result is positive REG, 1, 0 REG, 1, 0 REG, 0, 0 result is zero REG, 1, 0 (2's complement result is positive	t)
Exar Exar	Decode nple 1: Before Instruct REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C Z N N N N N N N N N N N N N	Q2 Read register 'f' SUBWF tion = 2 = 1 = 2 = 0 SUBWF tion = 2 = 0 SUBWF 1 tion = 1 = 0 SUBWF 1 = 0 SUBWF 1 = 1 = 0 SUBWF 1 = 0 SUBWF 1 = 0 SUBWF 1 = 0 = 0 = 0 = 0 = 0 = 0	US Process Data REG, 1, 0 result is positive REG, 0, 0 result is zero REG, 1, 0 (2's complement result is negative	t)

TABLE 21-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
Param No.	Sym	Characteristic			Тур	Max	Units	Conditions	
D420		HLVD Voltage on VDD Transition High-to-Low	HLVDL<3:0> = 0000	2.06	2.17	2.28	V		
			HLVDL<3:0> = 0001	2.12	2.23	2.34	V		
			HLVDL<3:0> = 0010	2.24	2.36	2.48	V		
			HLVDL<3:0> = 0011	2.32	2.44	2.56	V		
			HLVDL<3:0> = 0100	2.47	2.60	2.73	V		
			HLVDL<3:0> = 0101	2.65	2.79	2.93	V		
			HLVDL<3:0> = 0110	2.74	2.89	3.04	V		
			HLVDL<3:0> = 0111	2.96	3.12	3.28	V		
			HLVDL<3:0> = 1000	3.22	3.39	3.56	V		
			HLVDL<3:0> = 1001	3.37	3.55	3.73	V		
			HLVDL<3:0> = 1010	3.52	3.71	3.90	V		
			HLVDL<3:0> = 1011	3.70	3.90	4.10	V		
			HLVDL<3:0> = 1100	3.90	4.11	4.32	V		
			HLVDL<3:0> = 1101	4.11	4.33	4.55	V		
			HLVDL<3:0> = 1110	4.36	4.59	4.82	V		

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	44				
Pitch	е	0.65 BSC				
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.30	6.45	6.80		
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.30	6.45	6.80		
Contact Width	b	0.25	0.30	0.38		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	_	_		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B