

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2450-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	mber	Pin	Buffor		
Pin Name	SPDIP, SOIC	QFN	Туре	Туре	Description	
					PORTC is a bidirectional I/O port.	
RC0/T1OSO/T1CKI RC0 T1OSO T1CKI	11	8	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1external clock input.	
RC1/T1OSI/UOE RC1 T1OSI UOE	12	9	I/O I O	ST CMOS	Digital I/O. Timer1 oscillator input. External USB transceiver OE output.	
RC2/CCP1 RC2 CCP1	13	10	I/O I/O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output.	
RC4/D-/VM RC4 D- VM	15	12	 /O 	TTL — TTL	Digital input. USB differential minus line (input/output). External USB transceiver VM input.	
RC5/D+/VP RC5 D+ VP	16	13	 /O 0	TTL — TTL	Digital input. USB differential plus line (input/output). External USB transceiver VP input.	
RC6/TX/CK RC6 TX CK	17	14	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see RX/DT).	
RC7/RX/DT RC7 RX DT	18	15	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see TX/CK).	
RE3					See MCLR/VPP/RE3 pin.	
VUSB	14	11	Ρ		Internal USB 3.3V voltage regulator. Output, positive supply for internal USB transceiver.	
Vss	8, 19	5, 16	Р		Ground reference for logic and I/O pins.	
Vdd	20	17	Р		Positive supply for logic and I/O pins.	
Legend: TTL = TTL cor ST = Schmitt	npatible Trigger	input input w	/ith CM	IOS level	CMOS = CMOS compatible input or output s I = Input	

TABLE 1-2:	PIC18F2450 PINOUT I/O DESCRIPTIONS ((CONTINUED)	ł
		/	

Ρ

0 = Output = Power

Din Nome	Pi	n Num	ber	Pin	Buffer	Description
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTC is a bidirectional I/O port.
RC0/T1OSO/T1CKI RC0 T1OSO T1CKI	15	34	32	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1 external clock input.
RC1/T1OSI/UOE RC1 T1OSI UOE	16	35	35	I/O I O	ST CMOS —	Digital I/O. Timer1 oscillator input. External USB transceiver OE output.
RC2/CCP1 RC2 CCP1	17	36	36	I/O I/O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output.
RC4/D-/VM RC4 D- VM	23	42	42	 /O 	TTL — TTL	Digital input. USB differential minus line (input/output). External USB transceiver VM input.
RC5/D+/VP RC5 D+ VP	24	43	43	 /O 	TTL — TTL	Digital input. USB differential plus line (input/output). External USB transceiver VP input.
RC6/TX/CK RC6 TX CK	25	44	44	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see RX/DT).
RC7/RX/DT RC7 RX DT	26	1	1	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see TX/CK).
Legend: TTL = TTL	compat	ible inp	ut		(CMOS = CMOS compatible input or output
ST = Schr O = Outp	nitt Trig out	ger inpı	ut with C	MOS le	evels I F	= Input P = Power

Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

Din Nome	Pi	n Numl	ber	Pin	Buffer	Description
	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTE is a bidirectional I/O port.
RE0/AN5	8	25	25			
RE0				I/O	ST	Digital I/O.
AN5				I	Analog	Analog input 5.
RE1/AN6	9	26	26			
RE1				I/O	ST	Digital I/O.
ANG		_		I	Analog	Analog input 6.
RE2/AN7	10	27	27		0 .T	
RE2				1/0	SI	Digital I/O.
				I	Analog	
RE3				_	—	See MCLR/VPP/RE3 pin.
Vss	12, 31	6, 30, 31	6, 29	Р	_	Ground reference for logic and I/O pins.
Vdd	11, 32	7, 8, 28, 29	7, 28	Ρ	_	Positive supply for logic and I/O pins.
Vusb	18	37	37	Ρ	—	Internal USB 3.3V voltage regulator output. Positive supply for internal USB transceiver.
NC/ICCK/ICPGC ⁽¹⁾	_	_	12			No Connect or dedicated ICD/ICSP™ port clock.
ICCK				I/O	ST	In-Circuit Debugger clock.
ICPGC				I/O	ST	ICSP programming clock.
NC/ICDT/ICPGD ⁽¹⁾			13			No Connect or dedicated ICD/ICSP port clock.
ICDT				I/O	ST	In-Circuit Debugger data.
ICPGD				I/O	SI	ICSP programming data.
NC/ICRST/ICVPP ⁽¹⁾	—		33			No Connect or dedicated ICD/ICSP port Reset.
ICRST					—	Master Clear (Reset) input.
				Р 	—	Programming voltage input.
NC/ICPORTS	—		34	Р	—	No Connect or 28-pin device emulation.
ICFORTS						to Vss.
NC	<u> </u>	13	_	_	_	No Connect.
Legend: TTL = TTL	compat	ible inp	ut ut with C	MOS		CMOS = CMOS compatible input or output

PIC18F4450 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-3**:

Р

= Input = Power

0 = Output

Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

2.2.1 OSCILLATOR MODES AND USB OPERATION

Because of the unique requirements of the USB module, a different approach to clock operation is necessary. In previous PIC[®] microcontrollers, all core and peripheral clocks were driven by a single oscillator source; the usual sources were primary, secondary or the internal oscillator. With PIC18F2450/4450 devices, the primary oscillator becomes part of the USB module and cannot be associated to any other clock source. Thus, the USB module must be clocked from the primary clock source; however, the microcontroller core and other peripherals can be separately clocked from the secondary or internal oscillators as before.

Because of the timing requirements imposed by USB, an internal clock of either 6 MHz or 48 MHz is required while the USB module is enabled. Fortunately, the microcontroller and other peripherals are not required to run at this clock speed when using the primary oscillator. There are numerous options to achieve the USB module clock requirement and still provide flexibility for clocking the rest of the device from the primary oscillator source. These are detailed in **Section 2.3 "Oscillator Settings for USB"**.

FIGURE 2-1: PIC18F2450/4450 CLOCK DIAGRAM

5.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 5-1) contains the Stack Pointer value, the STKFUL (Stack Full) status bit and the STKUNF (Stack Underflow) status bit. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 18.1 "Configuration Bits"** for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and the STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note:	Returning a value of zero to the PC on an
	underflow has the effect of vectoring the
	program to the Reset vector, where the
	stack conditions can be verified and
	appropriate actions can be taken. This is
	not the same as a Reset, as the contents
	of the SFRs are not affected.

5.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

REGISTER 5-1: STKPTR: STACK POINTER REGISTER

R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STKUNF ⁽¹⁾	—	SP4	SP3	SP2	SP1	SP0
						bit 0
	C = Clearable	bit				
oit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
STKFUL: Sta	ck Full Flag bit	(1)				
1 = Stack bec	ame full or ove	rflowed				
0 = Stack has	not become fu	Ill or overflowe	ed			
STKUNF: Sta	ck Underflow F	lag bit ⁽¹⁾				
1 = Stack und	erflow occurre	d				
0 = Stack und	lerflow did not	occur				
Unimplement	ted: Read as '	0'				
SP4:SP0: Sta	ick Pointer Loc	ation bits				
	R/C-0 STKUNF ⁽¹⁾ STKUNF ⁽¹⁾ OR STKFUL: Sta 1 = Stack bec 0 = Stack has STKUNF: Sta 1 = Stack und 0 = Stack und Unimplemen SP4:SP0: Sta	R/C-0 U-0 STKUNF ⁽¹⁾ — C = Clearable Dit W = Writable OR '1' = Bit is set STKFUL: Stack Full Flag bit 1 = Stack became full or over 0 = Stack has not become full STKUNF: Stack Underflow F 1 = Stack underflow occurrer 0 = Stack underflow did not of Unimplemented: Read as 'n SP4:SP0: Stack Pointer Loc	R/C-0 U-0 R/W-0 STKUNF ⁽¹⁾ — SP4 C = Clearable bit bit W = Writable bit OR '1' = Bit is set STKFUL: Stack Full Flag bit ⁽¹⁾ 1 = Stack became full or overflowed 0 = Stack has not become full or overflowed 0 = Stack underflow occurred 0 = Stack underflow cocurred 0 = Stack underflow occurred 0 = Stack underflow otid not occur Unimplemented: Read as '0' SP4:SP0: Stack Pointer Location bits	R/C-0 U-0 R/W-0 R/W-0 STKUNF ⁽¹⁾ — SP4 SP3 C = Clearable bit bit W = Writable bit U = Unimpler OR '1' = Bit is set '0' = Bit is cle STKFUL: Stack Full Flag bit ⁽¹⁾ 1 = Stack became full or overflowed 0 = Stack has not become full or overflowed STKUNF: Stack Underflow Flag bit ⁽¹⁾ 1 = Stack underflow occurred 0 = Stack underflow occurred 0 = Stack underflow did not occur Unimplemented: Read as '0' SP4:SP0: Stack Pointer Location bits	R/C-0 U-0 R/W-0 R/W-0 R/W-0 STKUNF ⁽¹⁾ — SP4 SP3 SP2 C = Clearable bit bit W = Writable bit U = Unimplemented bit, read OR '1' = Bit is set '0' = Bit is cleared STKFUL: Stack Full Flag bit ⁽¹⁾ 1 = Stack became full or overflowed 0 = Stack has not become full or overflowed STKUNF: Stack Underflow Flag bit ⁽¹⁾ 1 = Stack underflow occurred 0 = Stack underflow occurred 0 = Stack underflow did not occur Unimplemented: Read as '0' SP4:SP0: Stack Pointer Location bits	R/C-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 STKUNF ⁽¹⁾ — SP4 SP3 SP2 SP1 C = Clearable bit bit W = Writable bit U = Unimplemented bit, read as '0' OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr STKFUL: Stack Full Flag bit ⁽¹⁾ 1 = Stack became full or overflowed STKUNF: Stack Underflow Flag bit ⁽¹⁾ 1 = Stack underflow occurred Stack underflow occurred Stack underflow occurred 0 = Stack underflow did not occur Unimplemented: Read as '0' SP4:SP0: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

5.1.2.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow condition will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by user software or a Power-on Reset.

5.1.3 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers to provide a "fast return" option for interrupts. Each stack is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 5-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 5-1: FAST REGISTER STACK CODE EXAMPLE

CALL	SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1	• RETURN, FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

5.1.4 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

5.1.4.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 5-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 5-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET,	W
	CALL	TABLE	
ORG	nn00h		
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	

5.1.4.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 6.1 "Table Reads and Table Writes".

5.3.3 ACCESS BANK

While the use of the BSR, with an embedded 8-bit address, allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from or written to the wrong location. This can be disastrous if a GPR is the intended target of an operation but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 96 bytes of memory (00h-5Fh) in Bank 0 and the last 160 bytes of memory (60h-FFh) in Block 15. The lower half is known as the "Access RAM" and is composed of GPRs. The upper half is where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figure 5-5).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0',

however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle without updating the BSR first. For 8-bit addresses of 60h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 60h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 5.6.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

5.3.4 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

6.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable, during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 16 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A Bulk Erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

6.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and place it into the data RAM space. Figure 6-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 6.5 "Writing to Flash Program Memory"**. Figure 6-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word-aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word-aligned.

FIGURE 6-1: TABLE READ OPERATION

14.2.4 USB ENDPOINT CONTROL

Each of the 16 possible bidirectional endpoints has its own independent control register, UEPn (where 'n' represents the endpoint number). Each register has an identical complement of control bits. The prototype is shown in Register 14-4.

The EPHSHK bit (UEPn<4>) controls handshaking for the endpoint; setting this bit enables USB handshaking. Typically, this bit is always set except when using isochronous endpoints.

The EPCONDIS bit (UEPn<3>) is used to enable or disable USB control operations (SETUP) through the endpoint. Clearing this bit enables SETUP transactions. Note that the corresponding EPINEN and EPOUTEN bits must be set to enable IN and OUT transactions. For Endpoint 0, this bit should always be cleared since the USB specifications identify Endpoint 0 as the default control endpoint.

The EPOUTEN bit (UEPn<2>) is used to enable or disable USB OUT transactions from the host. Setting this bit enables OUT transactions. Similarly, the EPINEN bit (UEPn<1>) enables or disables USB IN transactions from the host.

The EPSTALL bit (UEPn<0>) is used to indicate a STALL condition for the endpoint. If a STALL is issued on a particular endpoint, the EPSTALL bit for that endpoint pair will be set by the SIE. This bit remains set until it is cleared through firmware, or until the SIE is reset.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL ⁽¹⁾
bit 7							bit 0

REGISTER 14-4: UEPn: USB ENDPOINT n CONTROL REGISTER (UEP0 THROUGH UEP15)

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-5	Unimple	mented: Read as '0'		
bit 4	EPHSH	C: Endpoint Handshake Enablight	ble bit	
	1 = Endr	ooint handshake enabled		
	0 = Endp	ooint handshake disabled (ty	pically used for isochronous e	ndpoints)
bit 3	EPCON	DIS: Bidirectional Endpoint C	ontrol bit	
	If EPOU	TEN = 1 and EPINEN = 1:		
	1 = Disa	ble Endpoint n from control tr	ransfers; only IN and OUT trai	nsfers allowed
	0 = Enat	ole Endpoint n for control (SE	TUP) transfers; IN and OUT t	transfers also allowed
bit 2	EPOUTE	EN: Endpoint Output Enable	bit	
	1 = Endr	point n output enabled		
	0 = End	point n output disabled		
bit 1	EPINEN	: Endpoint Input Enable bit		
	1 = Endr	point n input enabled		
	0 = End	point n input disabled		
bit 0	EPSTAL	L: Endpoint Stall Indicator bi	t	
	1 = Endr	point n has issued one or mo	re STALL packets	
	0 = Endr	point n has not issued any ST	ALL packets	

14.5.3 USB ERROR INTERRUPT STATUS REGISTER (UEIR)

The USB Error Interrupt Status register (Register 14-9) contains the flag bits for each of the error sources within the USB peripheral. Each of these sources is controlled by a corresponding interrupt enable bit in the UEIE register. All of the USB error flags are ORed together to generate the USB Error Interrupt Flag (UERRIF) at the top level of the interrupt logic.

Each error bit is set as soon as the error condition is detected. Thus, the interrupt will typically not correspond with the end of a token being processed.

Once an interrupt bit has been set by the SIE, it must be cleared by software by writing a '0'.

REGISTER 14-9: UEIR: USB ERROR INTERRUPT STATUS REGISTER

R/C-0	U-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
BTSEF	—	—	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF
bit 7							bit 0

Legend:								
R = Readable bit		C = Clearable bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	BTSEF: Bit St	uff Error Flag bit						
	1 = A bit stuff 0 = No bit stu	error has been detected						
bit 6-5	Unimplement	ted: Read as '0'						
bit 4	BTOEF: Bus	Turnaround Time-out Error	Flag bit					
	 1 = Bus turnaround time-out has occurred (more than 16 bit times of Idle from previous EOP elaps 0 = No bus turnaround time-out 							
bit 3	DFN8EF: Dat	a Field Size Error Flag bit						
	1 = The data 0 = The data	field was not an integral nu field was an integral numbe	mber of bytes er of bytes					
bit 2	CRC16EF: CI	RC16 Failure Flag bit						
	1 = The CRC16 failed							
	0 = The CRC	16 passed						
bit 1	CRC5EF: CRC5 Host Error Flag bit							
	1 = The toker 0 = The toker	n packet was rejected due t n packet was accepted	o a CRC5 error					
bit 0	PIDEF: PID C	heck Failure Flag bit						
	1 = PID chec	k failed						
	0 = PID chec	k passed						

FIGURE 15-7: ASYNCHRONOUS RECEPTION

TABLE 15-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	_	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	51
PIE1	_	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	51
IPR1	—	ADIP	RCIP	TXIP	—	CCP1IP	TMR2IP	TMR1IP	51
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
RCREG	EUSART F	Receive Reg	ister						50
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	EUSART Baud Rate Generator Register High Byte							50	
SPBRG	EUSART E	Baud Rate G	enerator Re	gister Low	Byte				50

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

15.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

15.4.1 EUSART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep mode.

If two words are written to the TXREG register and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit, TXIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit, TXIF, will now be set.
- e) If enable bit, TXIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	—	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	51
PIE1	—	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	51
IPR1	—	ADIP	RCIP	TXIP	—	CCP1IP	TMR2IP	TMR1IP	51
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
TXREG	EUSART T	ransmit Reg	ister						51
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	EUSART Baud Rate Generator Register High Byte						50		
SPBRG	EUSART E	Baud Rate Ge	enerator Re	gister Low E	Byte				50

TABLE 15-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	_		WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN
bit 7		•				•	bit 0
Legend:							
R = Readable	bit	P = Programr	nable bit	U = Unimpler	nented bit, read	as '0'	
-n = Value wh	en device is un	programmed		u = Unchang	ed from progran	nmed state	
		0					
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-1	WDTPS3:WD	TPS0: Watcho	loa Timer Pos	tscale Select b	oits		
	1111 = 1:32.7	768					
	1110 = 1:16.3	384					
	1101 = 1:8,19	92					
	1100 = 1:4,09	96					
	1011 = 1:2,04	48					
	1010 = 1:1,02	24					
	1001 = 1:512						
	1000 = 1:256	i					
	0111 = 1:128						
	0110 = 1:64						
	0101 = 1:32						
	0100 = 1:16						
	0011 = 1:8						
	0010 = 1.4						
	0001 = 1.2						
h:+ 0			a a la la la it				
DITU	WDIEN: Wat	chaog Timer E	nable bit				
	1 = WDT ena	bled		OMPTEN	、		
	0 = WDI disa	abled (control is	s placed on the	e SWDTEN bit)		

REGISTER 18-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

18.5.2 CONFIGURATION REGISTER PROTECTION

The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In normal execution mode, the WRTC bit is readable only. WRTC can only be written via ICSP operation or an external programmer.

18.6 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are both readable and writable during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected.

18.7 In-Circuit Serial Programming

PIC18F2450/4450 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

18.8 In-Circuit Debugger

When the DEBUG Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 18-4 shows which resources are required by the background debugger.

ΤΔRI F 18-4·	DEBUGGER	RESOURCES
TADLL 10-4.	DEDOGOEIX	IL SOUNCES

I/O pins:	RB6, RB7
Stack:	2 levels
Program Memory:	512 bytes
Data Memory:	10 bytes

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP/RE3, VDD, VSS, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

18.9 Special ICPORT Features (Designated Packages Only)

Under specific circumstances, the No Connect (NC) pins of PIC18F4450 devices in 44-pin TQFP packages can provide additional functionality. These features are controlled by device Configuration bits and are available only in this package type and pin count.

18.9.1 DEDICATED ICD/ICSP PORT

The 44-pin TQFP devices can use NC pins to provide an alternate port for In-Circuit Debugging (ICD) and In-Circuit Serial Programming (ICSP). These pins are collectively known as the dedicated ICSP/ICD port, since they are not shared with any other function of the device.

When implemented, the dedicated port activates three NC pins to provide an alternate device Reset, data and clock ports. None of these ports overlap with standard I/O pins, making the I/O pins available to the user's application.

The dedicated ICSP/ICD port is enabled by setting the ICPRT Configuration bit. The port functions the same way as the legacy ICSP/ICD port on RB6/RB7. Table 18-5 identifies the functionally equivalent pins for ICSP and ICD purposes.

TABLE 18-5: EQUIVALENT PINS FOR LEGACY AND DEDICATED ICD/ICSP™ PORTS

Pin M	lame	Din	
Legacy Port	Dedicated Port	Туре	Pin Function
MCLR/VPP/ RE3	NC/ICRST/ ICVPP	Р	Device Reset and Programming Enable
RB6/KBI2/ PGC	NC/ICCK/ ICPGC	I	Serial Clock
RB7/KBI3/ PGD	NC/ICDT/ ICPGD	I/O	Serial Data

Legend: I = Input, O = Output, P = Power

PIC18F2450/4450

BNOV Branch if Not Overflow								
Synta	ax:	BNOV n						
Operands: $-128 \le n \le 127$								
Oper	ation:	if Overflow (PC) + 2 + 2	bit is '0', 2n → PC					
Statu	is Affected:	None						
Enco	oding:	1110	0101 nr	nn	nnnn			
Desc	ription:	If the Overfl program wil The 2's con added to the incrementer instruction, PC + 2 + 2r two-cycle in	If the Overflow bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction					
Word	ls:	1	1					
Cycle	es:	1(2)						
Q C If Ju	ycle Activity: imp:							
	Q1	Q2	Q3	-	Q4			
	Decode	Read literal 'n'	Process Data	Wri	te to PC			
	No operation	No operation	No operation	op	No peration			
lf No	o Jump:		•					
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Process Data	op	No peration			
<u>Exan</u>	nple:	HERE	BNOV Jump)				
Before Instruction PC = address (HERE) After Instruction								
If Overflow = 0; PC = address (Jump) If Overflow = 1; PC = address (HERE + 2)								

BNZ		Branch if N	lot Zero				
Synta	ax:	BNZ n					
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$				
Oper	ation:	if Zero bit is (PC) + 2 + 2	if Zero bit is '0', (PC) + 2 + 2n \rightarrow PC				
Statu	s Affected:	None					
Enco	oding:	1110	0001 nn	nn nnnn			
Desc	ription:	If the Zero bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will hav incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Word	ls:	1					
Cvcle	es:	1(2)					
Q C If Ju	ycle Activity: imp:	02	03	04			
	Decode	Q2 Read literal	Process	Write to PC			
	Decoue	'n'	Data				
	No	No	No	No			
	operation	operation	operation	operation			
lf No	o Jump:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal	Process	No			
		'n'	Data	operation			
<u>Exan</u>	nple:	HERE	BNZ Jump	0			
	Before Instruc	tion = od	droce (TEDE	,			
After Instruction If Zero = 0:							
	PC	= ad	dress (Jump))			
	IT Zero PC	= 1; = ad	dress (HERE	+ 2)			

PIC18F2450/4450

INCF	SZ	Increment	f, Skip if 0						
Synta	ax:	INCFSZ f	{,d {,a}}						
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Oper	ation:	(f) + 1 \rightarrow de skip if result	est, t = 0						
Statu	s Affected:	None							
Enco	ding:	0011	0011 11da ffff ffff						
Desc	escription: The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'. (default) If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, makin it a two-cycle instruction. If 'a' is '0', the Access Bank is selecter If 'a' is '1', the BSR is used to select th GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 19.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed								
Word	ls [.]	1							
Cycle	es: vole Activity	1(2) Note: 3 cyc by a	cles if skip and 2-word instru	d followed ction.					
QU	Q1	Q2	Q3	Q4					
	Decode	Read	Process	Write to					
lf sk	ip [.]	regioter i	Dulu	destinution					
	Q1	Q2	Q3	Q4					
	No	No	No	No					
	operation	operation	operation	operation					
lf sk	ip and followe	d by 2-word in	struction:						
	Q1	Q2	Q3	Q4					
	No	No	No	No					
	operation	operation	operation	operation					
	No	No	No	No					
	operation	operation	operation	operation					
<u>Exan</u>	nple:	HERE I NZERO : ZERO :	INCFSZ CN	NT, 1, 0					
	Before Instruc PC	tion = Address	G (HERE)						
	CNT If CNT PC If CNT PC If CNT PC	= CNT + 1 = 0; = Address ≠ 0; = Address	1 G (ZERO) G (NZERO)						

INFS	NZ	Increment f, Skip if Not 0					
Synta	ax:	INFSNZ f	{,d {,a}}				
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Operation: (f) + 1 \rightarrow dest, skip if result $\neq 0$							
Statu	is Affected:	None					
Enco	oding:	0100	10da ffi	ff ffff			
Desc	ription:	tion: The contents of register 'f' are					
Word	ds: es:	incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 19.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. 1					
		by	a 2-word instr	ruction.			
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read	Process	Write to			
lf sk	ip:	register i	Data	destination			
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
lf sk	ip and followe	d by 2-word in:	struction:	<u>.</u>			
	Q1	Q2	Q3	Q4			
	N0 operation	N0 operation	N0 operation	N0 operation			
	No	No	No	No			
	operation	operation	operation	operation			
<u>Exar</u>	nple:	HERE I ZERO NZERO	INFSNZ REG	, 1, 0			
	Before Instruc	tion	(11222)				
	After Instruction	= Address	(HERE)				
	REG	= REG + 1	1				
	If REG PC	≠ 0; = Address	(NZERO)				
	If REG	= 0; = Addrood	(7EDO)				
	10	- Auuress	, (ABRU)				

PIC18F2450/4450

MULLW	Multiply Literal with W			MULWF	Multiply W with f			
Syntax:	MULLW	k		Syntax:	MULWF f {,a}			
Operands:	$0 \le k \le 255$			Operands:	$0 \leq f \leq 255$			
Operation:	(W) x k \rightarrow PRODH:PRODL				a ∈ [0,1]			
Status Affected:	fected: None			Operation:	(W) x (f) \rightarrow PRODH:PRODL			
Encoding:	ing: 0000 1101 kkkk kkkk			Status Affected:	None			
Description: An unsigned multiplication is carried		Encoding:	0000	001a ff	ff ffff			
out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this operation. A zero result is possible but not detected.			Description: An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is					
Words:	1				result is p	ossible but no	t detected.	
Cycles:	1				If 'a' is '0',	the Access B	ank is	
Q Cycle Activity:					selected.	lf 'a' is '1', the	BSR is used	
Q1	Q2	Q3	Q4		If 'a' is '0'	and the extend	ded instruction	
Example:	MULLW	Data 0C4h	Write registers PRODH: PRODL		set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 19.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			
W	= E2	2h		Words:	1			
PRODH	= ?			Cycles:	1			
After Instruction	on .			Q Cycle Activity:				
W PRODH	= E2	2h		Q1	Q2	Q3	Q4	
PRODL	= 08	h		Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL	
				Example: MULWF REG, 1 Before Instruction W = C4h REG = B5h PRODH = ? PRODL = ?				

= = =

C4h B5h 8Ah 94h

After Instruction

W REG PRODH PRODL

21.2 DC Characteristics: Power-Down and Supply Current PIC18F2450/4450 (Industrial) PIC18LF2450/4450 (Industrial) (Continued)

PIC18LF2450/4450 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC18F24 (Indust	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param No.	Device	Тур	Max	Units	Conditions			
	USB and Related Module Differential Currents (∆I∪SBx, ∆IPLL, ∆I∪REG)							
∆lusbx v	USB Module with On-Chip Transceiver	8.0	14.5	mA	+25°C	VDD = 3.3V		
		12.4	20	mA	+25°C	VDD = 5.0V		
Δ IPLL	96 MHz PLL	1.2	3.0	mA	+25°C	VDD = 3.3V		
	(Oscillator Module)	1.2	4.8	mA	+25°C	VDD = 5.0V		
∆lureg	USB Internal Voltage Regulator	80	125	μA	+25°C	VDD = 5.0V	USB Idle, UCON <suspnd> = 1</suspnd>	

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

21.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 21-5 apply to all timing specifications unless otherwise noted. Figure 21-4 specifies the load conditions for the timing specifications.

Note: Because of space limitations, the generic terms "PIC18FXXXX" and "PIC18LFXXXX" are used throughout this section to refer to the PIC18F2450/4450 and PIC18LF2450/4450 families of devices specifically and only those devices.

TABLE 21-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial Operating voltage VDD range as described in DC spec Section 21.1 and Section 21.3				
	LF parts operate for industrial temperatures only.				

FIGURE 21-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A