

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4450-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	Pin Number		Duffer			
Pin Name	SPDIP, SOIC	QFN	Туре	Туре	Description		
					PORTA is a bidirectional I/O port.		
RA0/AN0	2	27					
RA0			I/O	TTL	Digital I/O.		
AN0			I	Analog	Analog input 0.		
RA1/AN1	3	28					
RA1			I/O	TTL	Digital I/O.		
AN1			I	Analog	Analog input 1.		
RA2/AN2/VREF-	4	1					
RA2			I/O	TTL	Digital I/O.		
AN2			I	Analog	Analog input 2.		
VREF-			I	Analog	A/D reference voltage (low) input.		
RA3/AN3/VREF+	5	2					
RA3			I/O	TTL	Digital I/O.		
AN3			I	Analog	Analog input 3.		
VREF+			I	Analog	A/D reference voltage (high) input.		
RA4/T0CKI/RCV	6	3					
RA4			I/O	ST	Digital I/O.		
TOCKI				ST	Timer0 external clock input.		
RCV			I	IIL	External USB transceiver RCV input.		
RA5/AN4/HLVDIN	7	4					
RA5			1/0		Digital I/O.		
AN4				Analog	Analog Input 4.		
			I	Analog			
RA6	—		—		See the OSC2/CLKO/RA6 pin.		
Legend: TTL = TTL cor	mpatible	input			CMOS = CMOS compatible input or output		
ST = Schmitt	Trigger	input w	/ith CM	IOS level	is I = Input		

TABLE 1-2. FIG 101 2430 FINOUT 1/0 DESCRIFTIONS (CONTINUED	TABLE 1-2:	PIC18F2450 PINOUT I/O DESCRIPTIONS (CONTINUED
--	------------	--------------------------------------	-----------

= Schmitt Trigger input with CMOS levels

ST O = Output

= Input

= Power

Ρ

Dia Nama	Pi	n Num	ber	Pin	Buffer	Description
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
MCLR/Vpp/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP				Р		Programming voltage input.
RE3				I	ST	Digital input.
OSC1/CLKI OSC1 CLKI	13	32	30		Analog Analog	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. External clock source input. Always associated with pin function OSC1. (See OSC2/CLKO pin.)
OSC2/CLKO/RA6 OSC2	14	33	31	0		Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO				0		In select modes, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6				I/O	TTL	General purpose I/O pin.
Legend: TTL = TTL	compat	ible inp	ut		C	CMOS = CMOS compatible input or output
ST = Schr	nitt Trig	ger inpı	ut with C	MOS le	evels l	= Input
O = Outp	out				F	P = Power

TABLE 1-3: PIC18F4450 PINOUT I/O DESCRIPTIONS

Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

Din Norre	Pi	n Num	ber	Pin	Buffer	Deparimine
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/AN12/INT0 RB0 AN12 INT0	33	9	8	I/O I I	TTL Analog ST	Digital I/O. Analog input 12. External interrupt 0.
RB1/AN10/INT1 RB1 AN10 INT1	34	10	9	I/O I I	TTL Analog ST	Digital I/O. Analog input 10. External interrupt 1.
RB2/AN8/INT2/VMO RB2 AN8 INT2 VMO	35	11	10	I/O I I O	TTL Analog ST —	Digital I/O. Analog input 8. External interrupt 2. External USB transceiver VMO output.
RB3/AN9/VPO RB3 AN9 VPO	36	12	11	I/O I O	TTL Analog —	Digital I/O. Analog input 9. External USB transceiver VPO output.
RB4/AN11/KBI0 RB4 AN11 KBI0	37	14	14	I/O I I	TTL Analog TTL	Digital I/O. Analog input 11. Interrupt-on-change pin.
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input Q = Output P = Power						

TABLE 1-3: PIC18F4450 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

Din Nome	Pi	n Numl	ber	Pin	Buffer	Description
	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTE is a bidirectional I/O port.
RE0/AN5	8	25	25			
RE0				I/O	ST	Digital I/O.
AN5				I	Analog	Analog input 5.
RE1/AN6	9	26	26			
RE1				I/O	ST	Digital I/O.
ANG		_		I	Analog	Analog input 6.
RE2/AN7	10	27	27		0 .T	
RE2				1/0	SI	Digital I/O.
				I	Analog	
RE3				_	—	See MCLR/VPP/RE3 pin.
Vss	12, 31	6, 30, 31	6, 29	Р	_	Ground reference for logic and I/O pins.
Vdd	11, 32	7, 8, 28, 29	7, 28	Ρ	_	Positive supply for logic and I/O pins.
Vusb	18	37	37	Ρ	—	Internal USB 3.3V voltage regulator output. Positive supply for internal USB transceiver.
NC/ICCK/ICPGC ⁽¹⁾	_	_	12			No Connect or dedicated ICD/ICSP™ port clock.
ICCK				I/O	ST	In-Circuit Debugger clock.
ICPGC				I/O	ST	ICSP programming clock.
NC/ICDT/ICPGD ⁽¹⁾			13			No Connect or dedicated ICD/ICSP port clock.
ICDT				I/O	ST	In-Circuit Debugger data.
ICPGD				I/O	SI	ICSP programming data.
NC/ICRST/ICVPP ⁽¹⁾	—		33			No Connect or dedicated ICD/ICSP port Reset.
ICRST					—	Master Clear (Reset) input.
				Р 	—	Programming voltage input.
NC/ICPORTS	—		34	Р	—	No Connect or 28-pin device emulation.
ICFORTS						to Vss.
NC	<u> </u>	13	_	_	_	No Connect.
Legend: TTL = TTL	compat	ible inp	ut ut with C	MOS		CMOS = CMOS compatible input or output

PIC18F4450 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-3**:

Р

= Input = Power

0 = Output

Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

PIC18F2450/4450

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt		
UEP9	2450	4450	0 0000	0 0000	u uuuu		
UEP8	2450	4450	0 0000	0 0000	u uuuu		
UEP7	2450	4450	0 0000	0 0000	u uuuu		
UEP6	2450	4450	0 0000	0 0000	u uuuu		
UEP5	2450	4450	0 0000	0 0000	u uuuu		
UEP4	2450	4450	0 0000	0 0000	u uuuu		
UEP3	2450	4450	0 0000	0 0000	u uuuu		
UEP2	2450	4450	0 0000	0 0000	u uuuu		
UEP1	2450	4450	0 0000	0 0000	u uuuu		
UEP0	2450	4450	0 0000	0 0000	u uuuu		
UCFG	2450	4450	00-0 0000	00-0 0000	uu-u uuuu		
UADDR	2450	4450	-000 0000	-000 0000	-uuu uuuu		
UCON	2450	4450	-0x0 0x0-	-0x0 0x0-	-uuu uuu-		
USTAT	2450	4450	-XXX XXX-	-XXX XXX-	-uuu uuu-		
UEIE	2450	4450	00 0000	00 0000	uu uuuu		
UEIR	2450	4450	00 0000	00 0000	uu uuuu		
UIE	2450	4450	-000 0000	-000 0000	-uuu uuuu		
UIR	2450	4450	-000 0000	-000 0000	-uuu uuuu		
UFRMH	2450	4450	xxx	xxx	uuu		
UFRML	2450	4450	XXXX XXXX	XXXX XXXX	นนนน นนนน		

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

4: See Table 4-3 for Reset value for specific condition.

5: PORTA<6>, LATA<6> and TRISA<6> are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6.5 Writing to Flash Program Memory

The minimum programming block is 8 words or 16 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 16 holding registers used by the table writes for programming.

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 16 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 16 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 16 holding registers before executing a write operation.

6.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the Row Erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write 16 bytes into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - clear the CFGS bit to access program memory; set WREN to enable byte writes.
- 8. Disable interrupts.
- 9. Write 55h to EECON2.

- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Repeat steps 6 through 14 once more to write 64 bytes.
- 15. Verify the memory (table read).

This procedure will require about 8 ms to update one row of 64 bytes of memory. An example of the required code is given in Example 6-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 16 bytes in the holding register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	51
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	51
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	51
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2		TMR0IP	_	RBIP	49
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	49
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	50
UCON	_	PPBRST	SE0	PKTDIS	USBEN	RESUME	SUSPND	_	52

TABLE 9-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTB.

14.2.3 USB STATUS REGISTER (USTAT)

The USB Status register reports the transaction status within the SIE. When the SIE issues a USB transfer complete interrupt, USTAT should be read to determine the status of the transfer. USTAT contains the transfer endpoint number, direction and Ping-Pong Buffer Pointer value (if used).

Note:	The data in the USB Status register is valid	
	only when the TRNIF interrupt flag is	
	asserted.	

The USTAT register is actually a read window into a four-byte status FIFO, maintained by the SIE. It allows the microcontroller to process one transfer while the SIE processes additional endpoints (Figure 14-4). When the SIE completes using a buffer for reading or writing data, it updates the USTAT register. If another USB transfer is performed before a transaction complete interrupt is serviced, the SIE will store the status of the next transfer into the status FIFO.

Clearing the transfer complete flag bit, TRNIF, causes the SIE to advance the FIFO. If the next data in the FIFO holding register is valid, the SIE will reassert the interrupt within 6 TCY of clearing TRNIF. If no additional data is present, TRNIF will remain clear; USTAT data will no longer be reliable.

Note: If an endpoint request is received while the USTAT FIFO is full, the SIE will automatically issue a NAK back to the host.

REGISTER 14-3: USTAT: USB STATUS REGISTER

U-0	R-x	R-x	R-x	R-x	R-x	R-x	U-0
—	ENDP3	ENDP2	ENDP1	ENDP0	DIR	PPBI ⁽¹⁾	
bit 7						• • • • • • • • • • • • • • • • • • • •	bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 7	Unimplemen	ted: Read as ')'				
bit 6-3	ENDP3:END	P0: Encoded N	umber of Las	t Endpoint Acti	vity bits		
	(represents th	e number of th	e BDT update	ed by the last L	JSB transfer)		
	1111 = Endpo	pint 15					
	1110 = Endpo	Dint 14					
	 0001 = Endo o	aint 1					
	0000 = Endpo	pint 0					
bit 2	DIR: Last BD	Direction Indic	ator bit				
	1 = The last tr	ransaction was	an IN token				
	0 = The last tr	ransaction was	an OUT or S	ETUP token			
bit 1	PPBI: Ping-Pong BD Pointer Indicator bit ⁽¹⁾						
	1 = The last tr	ransaction was	to the ODD E	3D bank			
	0 = The last tr	ransaction was	to the EVEN	BD bank			
bit 0	Unimplemen	ted: Read as ')'				

Note 1: This bit is only valid for endpoints with available EVEN and ODD BD registers.

14.5 USB Interrupts

The USB module can generate multiple interrupt conditions. To accommodate all of these interrupt sources, the module is provided with its own interrupt logic structure, similar to that of the microcontroller. USB interrupts are enabled with one set of control registers and trapped with a separate set of flag registers. All sources are funneled into a single USB interrupt request, USBIF (PIR2<5>), in the microcontroller's interrupt logic.

Figure 14-8 shows the interrupt logic for the USB module. There are two layers of interrupt registers in the USB module. The top level consists of overall USB status interrupts; these are enabled and flagged in the UIE and UIR registers, respectively. The second level consists of USB error conditions, which are enabled and flagged in the UEIR and UEIE registers. An interrupt condition in any of these triggers a USB Error Interrupt Flag (UERRIF) in the top level.

Interrupts may be used to trap routine events in a USB transaction. Figure 14-9 shows some common events within a USB frame and their corresponding interrupts.

FIGURE 14-8: USB INTERRUPT LOGIC FUNNEL

14.5.1 USB INTERRUPT STATUS REGISTER (UIR)

The USB Interrupt Status register (Register 14-7) contains the flag bits for each of the USB status interrupt sources. Each of these sources has a corresponding interrupt enable bit in the UIE register. All of the USB status flags are ORed together to generate the USBIF interrupt flag for the microcontroller's interrupt funnel.

Once an interrupt bit has been set by the SIE, it must be cleared by software by writing a '0'. The flag bits can also be set in software which can aid in firmware debugging. When the USB module is in the Low-Power Suspend mode (UCON<1> = 1), the SIE does not get clocked. When in this state, the SIE cannot process packets, and therefore, cannot detect new interrupt conditions other than the Activity Detect Interrupt, Flag ACTVIF. The ACTVIF bit is typically used by USB firmware to detect when the microcontroller should bring the USB module out of the Low-Power Suspend mode (UCON<1> = 0).

REGISTER 14-7: UIR: USB INTERRUPT STATUS REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R/W-0
—	SOFIF	STALLIF	IDLEIF ⁽¹⁾	TRNIF ⁽²⁾	ACTVIF ⁽³⁾	UERRIF ⁽⁴⁾	URSTIF
bit 7							bit 0

Legend:									
R = Readable	e bit W = Writable bit	U = Unimplemented bit, r	ead as '0'						
-n = Value at	POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7	Unimplemented: Read as '0'								
bit 6	SOFIF: Start-of-Frame Token Interr	rupt bit							
	 1 = A Start-of-Frame token receive 0 = No Start-of-Frame token received 	ed by the SIE ved by the SIE							
bit 5	STALLIF: A STALL Handshake Inte	errupt bit							
	 1 = A STALL handshake was sent by the SIE 0 = A STALL handshake has not been sent 								
bit 4	IDLEIF: Idle Detect Interrupt bit ⁽¹⁾								
	1 = Idle condition detected (consta 0 = No Idle condition detected	ant Idle state of 3 ms or more)							
bit 3	TRNIF: Transaction Complete Inter	rrupt bit ⁽²⁾							
	1 = Processing of pending transac0 = Processing of pending transac	tion is complete; read USTAT regi tion is not complete or no transac	ster for endpoint information tion is pending						
bit 2	ACTVIF: Bus Activity Detect Interru	upt bit ⁽³⁾							
	1 = Activity on the D+/D- lines was	detected							
	0 = No activity detected on the D+.	/D-lines							
bit 1	UERRIF: USB Error Condition Intel								
	 1 = An unmasked error condition r 0 = No unmasked error condition r 	has occurred.							
bit 0	URSTIF: USB Reset Interrupt bit								
	1 = Valid USB Reset occurred; 00	h is loaded into UADDR register							
	0 = No USB Reset has occurred								
Note 1: Or	ice an Idle state is detected, the user	may want to place the USB modu	le in Suspend mode.						
2: Cle	earing this bit will cause the USTAT F	IFO to advance (valid only for IN,	OUT and SETUP tokens).						

- **3:** This bit is typically unmasked only following the detection of a UIDLE interrupt event.
- 4: Only error conditions enabled through the UEIE register will set this bit. This bit is a status bit only and cannot be set or cleared by the user.

14.5.2 USB INTERRUPT ENABLE REGISTER (UIE)

The USB Interrupt Enable register (Register 14-8) contains the enable bits for the USB status interrupt sources. Setting any of these bits will enable the respective interrupt source in the UIR register.

The values in this register only affect the propagation of an interrupt condition to the microcontroller's interrupt logic. The flag bits are still set by their interrupt conditions, allowing them to be polled and serviced without actually generating an interrupt.

REGISTER 14-8: UIE: USB INTERRUPT ENABLE REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	SOFIE	STALLIE	IDLEIE	TRNIE	ACTVIE	UERRIE	URSTIE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	SOFIE: Start-of-Frame Token Interrupt Enable bit
	1 = Start-of-Frame token interrupt enabled0 = Start-of-Frame token interrupt disabled
bit 5	STALLIE: STALL Handshake Interrupt Enable bit
	1 = STALL interrupt enabled0 = STALL interrupt disabled
bit 4	IDLEIE: Idle Detect Interrupt Enable bit
	1 = Idle detect interrupt enabled0 = Idle detect interrupt disabled
bit 3	TRNIE: Transaction Complete Interrupt Enable bit
	1 = Transaction interrupt enabled0 = Transaction interrupt disabled
bit 2	ACTVIE: Bus Activity Detect Interrupt Enable bit
	1 = Bus activity detect interrupt enabled
	0 = Bus activity detect interrupt disabled
bit 1	UERRIE: USB Error Interrupt Enable bit
	1 = USB error interrupt enabled
	0 = USB error interrupt disabled
bit 0	URSTIE: USB Reset Interrupt Enable bit
	1 = USB Reset interrupt enabled
	U – USB Reset interrupt disabled

15.1 Baud Rate Generator (BRG)

The BRG is a dedicated, 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit (BAUDCON<3>) selects 16-bit mode.

The SPBRGH:SPBRG register pair controls the period of a free-running timer. In Asynchronous mode, bits BRGH (TXSTA<2>) and BRG16 (BAUDCON<3>) also control the baud rate. In Synchronous mode, BRGH is ignored. Table 15-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 15-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 15-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 15-2. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

15.1.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRG register pair.

15.1.2 SAMPLING

The data on the RX pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

	TABLE 15-1:	BAUD RATE FORMULAS
--	-------------	--------------------

Configuration Bits		its		Boud Boto Formula	
SYNC	BRG16	BRGH	BRG/EUSART Mode	Dauu Rate Forniula	
0	0	0	8-Bit/Asynchronous	Fosc/[64 (n + 1)]	
0	0	1	8-Bit/Asynchronous	$E_{000}/[16(p+1)]$	
0	1	0	16-Bit/Asynchronous	FOSC/[10 (11 + 1)]	
0	1	1	16-Bit/Asynchronous		
1	0	х	8-Bit/Synchronous	Fosc/[4 (n + 1)]	
1	1	x	16-Bit/Synchronous		

Legend: x = Don't care, n = Value of SPBRGH:SPBRG register pair

16.6 A/D Conversions

Figure 16-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 16-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT2:ACQT0 bits are set to '010' and selecting a 4 TAD acquisition time before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

16.7 Discharge

The discharge phase is used to initialize the value of the capacitor array. The array is discharged before every sample. This feature helps to optimize the unitygain amplifier as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measurement values.

FIGURE 16-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 16-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	_		WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN
bit 7		•				•	bit 0
Legend:							
R = Readable	bit	P = Programr	nable bit	U = Unimpler	nented bit, read	as '0'	
-n = Value wh	en device is un	programmed		u = Unchang	ed from progran	nmed state	
		0					
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-1	WDTPS3:WD	TPS0: Watcho	loa Timer Pos	tscale Select b	oits		
	1111 = 1:32.7	768					
	1110 = 1:16.3	384					
	1101 = 1:8,19	92					
	1100 = 1:4,09	96					
	1011 = 1:2,04	48					
	1010 = 1:1,02	24					
	1001 = 1:512						
	1000 = 1:256	i					
	0111 = 1:128						
	0110 = 1:64						
	0101 = 1:32						
	0100 = 1:16						
	0011 = 1:8						
	0010 = 1.4						
	0001 = 1.2						
h:+ 0			a a la la la it				
DITU	WDIEN: Wat	chaog Timer E	nable bit				
	1 = WDT ena	bled		OMPTEN	、		
	0 = WDI disa	abled (control is	s placed on the	e SWDTEN bit)		

REGISTER 18-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

REGISTER 18-9: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)

U-0	U-0	U-0	U-0	U-0	U-0	R/C-1	R/C-1
—	—		—	—		WRT1	WRT0
bit 7							bit 0
Legend:							
R = Readable I	bit	C = Clearable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value when device is unprogrammed u = Unchanged from programmed state							
bit 7-2	Unimplement	ted: Read as '	D'				
bit 1	WRT1: Write	Protection bit					
	1 = Block 1 (0	02000-003FFF	h) is not write	e-protected			
	0 = Block 1 (002000-003FFFh) is write-protected						
bit 0	WRT0: Write	Protection bit					
	1 = Block 0 (0	00800-001FFF	h) or (001000	0-001FFFh) is	not write-protect	ed	
	0 = Block 0 (000800-001FFFh) or (001000-001FFFh) is write-protected						

REGISTER 18-10: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

U-0	R/C-1	R-1	U-0	U-0	U-0	U-0	U-0
—	WRTB	WRTC ⁽¹⁾	_	_	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when d	evice is unprogrammed	u = Unchanged from programmed state
bit 7 Ur	nimplemented: Read as '0'	

bit 6	WRTB: Boot Block Write Protection bit
	1 = Boot block (000000-0007FFh) or (000000-000FFFh) is not write-protected
	0 = Boot block (000000-0007FFh) or (000000-000FFFh) is write-protected
bit 5	WRTC: Configuration Register Write Protection bit ⁽¹⁾
	1 = Configuration registers (300000-3000FFh) are not write-protected
	0 = Configuration registers (300000-3000FFh) are write-protected
bit 4-0	Unimplemented: Read as '0'

Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.

PIC18F2450/4450

ADD	WF	ADD W to Indexed (Indexed Literal Offset mode)							
Synta	ax:	ADDWF	[k] {,d}						
Operands:		$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq k \leq 95 \\ d \ \in \ [0,1] \end{array}$						
Operation:		(W) + ((FS	R2) + k) -	\rightarrow dest					
Status Affected:		N, OV, C, [DC, Z						
Enco	oding:	0010	01d0	kkkk	kkkk				
Description:		The contert contents of FSR2, offs If 'd' is '0', ' is '1', the re register 'f'	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).						
Words:		1	1						
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read 'k'	Proce Data	ess V a des	Vrite to stination				
<u>Exan</u>	nple:	ADDWF	[OFST]	,0					
Before Instruction W OFST FSR2 Contents of 0A2Ch After Instruction W Contents of 0A2Ch		ion = = = = n = =	17h 2Ch 0A00h 20h 37h 20h	ı					

BSF		Bit Set In (Indexed	Bit Set Indexed (Indexed Literal Offset mode)							
Synta	ax:	BSF [k],	BSF [k], b							
Operands:		$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$							
Oper	ation:	$1 \rightarrow ((FS))$	$1 \rightarrow ((FSR2) + k) < b >$							
Statu	s Affected:	None	None							
Enco	ding:	1000		bbb0 kk		ck	kkkk			
Desc	ription:	Bit 'b' of th offset by	Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set.							
Word	ls:	1	1							
Cycle	es:	1	1							
QC	ycle Activity:									
	Q1	Q2		Q3			Q4			
	Decode	Read register 'f'		Process Data		W des	/rite to stination			
Exan	nple:	BSF	[FLAG_O	FST]	, 7				
Before Instruction										
	FLAG_O FSR2	+SI =	=	0Ah 0A00h	I					
	Contents of 0A0Ah	-	=	55h						
	After Instructio	on								
	Contents of 0A0Ah	. =	=	D5h						

SET	F	Set Indexed (Indexed Literal Offset mode)								
Synta	ax:	SETF [k]	SETF [k]							
Oper	ands:	$0 \le k \le 95$	$0 \le k \le 95$							
Oper	ration:	$FFh \rightarrow ((Fi))$	$FFh \rightarrow ((FSR2) + k)$							
Statu	is Affected:	None	None							
Enco	oding:	0110	1000	1000 kkkk						
Description:		The conter FSR2, offs	The contents of the register indicated by FSR2, offset by 'k', are set to FFh.							
Word	ds:	1	1							
Cycle	es:	1	1							
QC	ycle Activity:									
	Q1	Q2	Q3	5	Q4					
	Decode	Read 'k'	Proce Data	ess a re	Write egister					
Exan	nple:	SETF	SETF [OFST]							
	Before Instruc	tion = 20	h							

OFST	=	2Ch
FSR2	=	0A00h
Contents		
of 0A2Ch	=	00h
After Instruction		
Contents		
of 0A2Ch	=	FFh

21.2 DC Characteristics: Power-Down and Supply Current PIC18F2450/4450 (Industrial) PIC18LF2450/4450 (Industrial) (Continued)

PIC18LF2450/4450 (Industrial)		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
PIC18F2450/4450 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Тур	Max	Units	Conditions						
	Supply Current (IDD) ⁽²⁾									
	PIC18LF2450/4450	50	130	μΑ	-40°C		Fosc = 1 MHz			
		50	120	μA	+25°C	VDD = 2.0V				
		50	115	μA	+85°C					
	PIC18LF2450/4450	75	270	μA	-40°C					
		80	250	μA	+25°C	VDD = 3.0V	(PRI_IDLE mode,			
		80	240	μA	+85°C		EC oscillator)			
	All devices	150	480	μA	-40°C					
		150	450	μA	+25°C	VDD = 5.0V				
		150	430	μA	+85°C					
	PIC18LF2450/4450	190	475	μA	-40°C	VDD = 2.0V	Fosc = 4 MHz (PRI_IDLE mode, EC oscillator)			
		195	450	μA	+25°C					
		200	430	μA	+85°C					
	PIC18LF2450/4450	295	900	μA	-40°C					
		300	850	μA	+25°C	VDD = 3.0V				
		310	810	μA	+85°C					
	All devices	560	1.5	mA	-40°C					
		570	1.4	mA	+25°C	VDD = 5.0V				
		580	1.3	mA	+85°C					
	All devices	4.4	16	mA	-40°C					
		4.5	16	mA	+25°C	VDD = 4.2V				
		4.6	16	mA	+85°C		FOSC = 40 MHZ			
	All devices	5.5	18	mA	-40°C		EC oscillator)			
		5.6	18	mA	+25°C	VDD = 5.0V				
		5.8	18	mA	+85°C	VDD = 4.2V				
	All devices	8.0	18	mA	-40°C					
		8.1	18	mA	+25°C					
		8.2	18	mA	+85°C		FOSC = 48 MHZ (PRI IDI E mode			
	All devices	9.8	21	mA	-40°C		EC oscillator)			
		10.0	21	mA	+25°C	VDD = 5.0V	· · · · · ,			
		10.5	21	mA	+85°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $\frac{OSC1}{MCLR}$ = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or Vss; $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

21.2 DC Characteristics: Power-Down and Supply Current PIC18F2450/4450 (Industrial) PIC18LF2450/4450 (Industrial) (Continued)

PIC18LF2450/4450 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F2450/4450 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param No.	Device	Тур	Мах	Units	Conditions				
	Supply Current (IDD) ⁽²⁾								
	PIC18LF2450/4450	13	40	μA	-40°C		Fosc = 32 kHz ⁽³⁾ (SEC_RUN mode, Timer1 as clock)		
		15	40	μA	+25°C	VDD = 2.0V			
		17	40	μA	+85°C				
	PIC18LF2450/4450	40	76	μA	-40°C				
		32	70	μA	+25°C	VDD = 3.0V			
		25	67	μA	+85°C				
	All devices	100	150	μA	-40°C				
		80	150	μA	+25°C	VDD = 5.0V			
		70	150	μA	+85°C				
	PIC18LF2450/4450	5.6	12	μA	-40°C		Fosc = 32 kHz ⁽³⁾ (SEC_IDLE mode,		
		7.0	12	μA	+25°C	VDD = 2.0V			
		8.3	12	μA	+85°C				
	PIC18LF2450/4450	6.5	15	μA	-40°C				
		8.0	15	μA	+25°C	VDD = 3.0V			
		9.5	15	μA	+85°C		Timer1 as clock)		
	All devices	8.7	25	μA	-40°C				
		10.2	25	μA	+25°C	VDD = 5.0V			
		13.0	36	μA	+85°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

PIC18F2450/4450

TABLE 21-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Operatir	ng temp	erature $-40^{\circ}C \le TA \le +8$	5°C for industrial					
Param No.	Sym	Charact	Min	Тур	Max	Units	Conditions	
D420		HLVD Voltage on VDD Transition High-to-Low	HLVDL<3:0> = 0000	2.06	2.17	2.28	V	
			HLVDL<3:0> = 0001	2.12	2.23	2.34	V	
			HLVDL<3:0> = 0010	2.24	2.36	2.48	V	
			HLVDL<3:0> = 0011	2.32	2.44	2.56	V	
			HLVDL<3:0> = 0100	2.47	2.60	2.73	V	
			HLVDL<3:0> = 0101	2.65	2.79	2.93	V	
			HLVDL<3:0> = 0110	2.74	2.89	3.04	V	
			HLVDL<3:0> = 0111	2.96	3.12	3.28	V	
			HLVDL<3:0> = 1000	3.22	3.39	3.56	V	
			HLVDL<3:0> = 1001	3.37	3.55	3.73	V	
			HLVDL<3:0> = 1010	3.52	3.71	3.90	V	
			HLVDL<3:0> = 1011	3.70	3.90	4.10	V	
			HLVDL<3:0> = 1100	3.90	4.11	4.32	V	
			HLVDL<3:0> = 1101	4.11	4.33	4.55	V	
			HLVDL<3:0> = 1110	4.36	4.59	4.82	V	

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial

Package Marking Information (Continued)

40-Lead PDIP

44-Lead TQFP

Example

PIC18F4450-I/Pe3 0810017 MICROCHIP

Example

44-Lead QFN

Example

