EXFL

Microchip Technology - PIC18LF4450T-1/ML Datasheet

Details

Product Status

Core Processor

Core Size

Speed

Connectivity
Peripherals

Number of I/O

Program Memory Size
Program Memory Type
EEPROM Size

RAM Size

Voltage - Supply (Vcc/Vdd)
Data Converters
Oscillator Type
Operating Temperature
Mounting Type
Package / Case

Supplier Device Package

Purchase URL

Email: info@E-XFL.COM

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Active

PIC

8-Bit

48MHz

UART/USART, USB
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
34

16KB (8K x 16)

FLASH

768 x 8

2V ~ 5.5V

A/D 13x10b

Internal

-40°C ~ 85°C (TA)
Surface Mount
44-VQFN Exposed Pad
44-QFN (8x8)

https://www.e-xfl.com/product-detail/microchip-technology/pic181f4450t-i-ml

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf4450t-i-ml-4429761
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F2450/4450

5.4.3.1 FSR Registers and the

INDF Operand

At the core of Indirect Addressing are three sets of
registers: FSR0O, FSR1 and FSR2. Each represents a
pair of 8-bit registers: FSRnH and FSRnL. The four
upper bits of the FSRnH register are not used, so each
FSR pair holds a 12-bit value. This represents a value
that can address the entire range of the data memory
in a linear fashion. The FSR register pairs, then, serve
as pointers to data memory locations.

Indirect Addressing is accomplished with a set of
Indirect File Operands, INDFO through INDF2. These
can be thought of as “virtual” registers; they are

mapped in the SFR space but are not physically
implemented. Reading or writing to a particular INDF
register actually accesses its corresponding FSR
register pair. A read from INDF1, for example, reads
the data at the address indicated by FSR1H:FSR1L.
Instructions that use the INDF registers as operands
actually use the contents of their corresponding FSR as
a pointer to the instruction’s target. The INDF operand
is just a convenient way of using the pointer.

Because Indirect Addressing uses a full 12-bit address,
data RAM banking is not necessary. Thus, the current
contents of the BSR and the Access RAM bit have no
effect on determining the target address.

FIGURE 5-7: INDIRECT ADDRESSING
000h
Using an instruction with one of the ADDWF, INDF1, 1 Bank 0
indirect addressing registers as the 100h
operand.... Bank 1
200h
Bank 2
] 300h
...uses the 12-bit address stored in FSR1H:FSR1L
the. FSR pair associated with that 7 0 7 0
register....
1110 1]11{0j0j1f{1|0fo0
x| [<[r [[a]o] [3]3[o]o[2]3]o[o] J ks L
. J N through N
Bank 13
...to determine the data memory
location to be used in that operation.
In this case, the FSR1 pair contains EOOh
ECCh. This means the contents of > Bank 14
location ECCh will be added to that FOOh
of the W register and stored back in Bank 15
ECCh. FFFh
Data Memory

DS39760D-page 68

© 2008 Microchip Technology Inc.

PIC18F2450/4450

6.5 Writing to Flash Program Memory

The minimum programming block is 8 words or
16 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding
registers needed to program the Flash memory. There
are 16 holding registers used by the table writes for
programming.

Since the Table Latch (TABLAT) is only a single byte, the
TBLWT instruction may need to be executed 16 times for
each programming operation. All of the table write oper-
ations will essentially be short writes because only the
holding registers are written. At the end of updating the
16 holding registers, the EECON1 register must be
written to in order to start the programming operation
with a long write.

FIGURE 6-5:

TABLE WRITES TO FLASH PROGRAM MEMORY

The long write is necessary for programming the
internal Flash. Instruction execution is halted while in a
long write cycle. The long write will be terminated by
the internal programming timer.

The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range
of the device.

Note: The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may be
modified, provided that the change does not
attempt to change any bit froma ‘0’ toa ‘1’.
When modifying individual bytes, it is not
necessary to load all 16 holding registers
before executing a write operation.

TABLAT
Write Register

Program Memory

6.5.1 FLASH PROGRAM MEMORY WRITE
SEQUENCE

The sequence of events for programming an internal

program memory location should be:

1. Read 64 bytes into RAM.

2. Update data values in RAM as necessary.

3. Load Table Pointer register with address being
erased.

4. Execute the Row Erase procedure.

5. Load Table Pointer register with address of first
byte being written.

6. Write 16 bytes into the holding registers with
auto-increment.

7. Setthe EECON1 register for the write operation:
» clear the CFGS bit to access program memory;
» set WREN to enable byte writes.

8. Disable interrupts.

9. Write 55h to EECONZ2.

10. Write 0AAh to EECON2.
11. Set the WR bit. This will begin the write cycle.

12. The CPU will stall for duration of the write (about
2 ms using internal timer).

13. Re-enable interrupts.

14. Repeat steps 6 through 14 once more to write
64 bytes.

15. Verify the memory (table read).

This procedure will require about 8 ms to update one

row of 64 bytes of memory. An example of the required
code is given in Example 6-3.

Note: Before setting the WR bit, the Table
Pointer address needs to be within the
intended address range of the 16 bytes in

the holding register.

© 2008 Microchip Technology Inc.

DS39760D-page 79

PIC18F2450/4450

REGISTER 8-7: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2
R/W-0 uU-0 R/W-0 uU-0 uU-0 R/W-0 uU-0 uU-0
OSCFIE — USBIE — — HLVDIE — —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1" = Bit is set ‘0’ = Bit is cleared

X = Bit is unknown

bit 7

bit 6
bit 5

bit 4-3
bit 2

bit 1-0

OSCFIE: Oscillator Fail Interrupt Enable bit
1 = Enabled

0 = Disabled

Unimplemented: Read as ‘0’

USBIE: USB Interrupt Enable bit

1 = Enabled

0 = Disabled

Unimplemented: Read as ‘0’

HLVDIE: High/Low-Voltage Detect Interrupt Enable bit
1 = Enabled

0 = Disabled

Unimplemented: Read as ‘0’

© 2008 Microchip Technology Inc.

DS39760D-page 93

PIC18F2450/4450

TABLE 15-3: BAUD RATES FOR ASYNCHRONOUS MODES
SYNC =0, BRGH = 0, BRG16 = 0
BRﬁ: Fosc = 40.000 MHz Fosc = 20.000 MHz Fosc = 10.000 MHz Fosc = 8.000 MHz
(K) Actual % SPBRG | Actual % SPBRG | Actual % SPBRG | Actual % SPBRG
Rate Error value Rate Error value Rate Error value Rate Error value
(K) (decimal) (K) (decimal) (K) (decimal) (K) (decimal)
0.3 — — — — — — — — — — — —
1.2 — — — 1.221 1.73 255 1.202 0.16 129 1.201 -0.16 103
24 2.441 1.73 255 2.404 0.16 129 2.404 0.16 64 2.403 -0.16 51
9.6 9.615 0.16 64 9.766 1.73 31 9.766 1.73 15 9.615 -0.16 12
19.2 19.531 1.73 31 19.531 1.73 15 19.531 1.73 — — —
57.6 56.818 -1.36 10 62.500 8.51 4 52.083 -9.58 2 — — —
115.2 | 125.000 8.51 4 104.167 -9.58 2 78.125 -32.18 — — —
SYNC =0, BRGH = 0, BRG16 = 0
BRﬁ: Fosc = 4.000 MHz Fosc = 2.000 MHz Fosc = 1.000 MHz
(K) Actual o SPBRG | Actual % SPBRG | Actual % SPBRG
Rate Error value Rate Error value Rate Error value
(K) (decimal) (K) (decimal) (K) (decimal)
0.3 0.300 0.16 207 0.300 -0.16 103 0.300 -0.16 51
1.2 1.202 0.16 51 1.201 -0.16 25 1.201 -0.16 12
24 2.404 0.16 25 2.403 -0.16 12 — — —
9.6 8.929 -6.99 6 — — — — — —
19.2 20.833 8.51 2 — — — — — —
57.6 62.500 8.51 0 — — — — — —
115.2 | 62.500 -45.75 0 — — — — — —
SYNC =0, BRGH =1, BRG16 = 0
BRﬁ: Fosc = 40.000 MHz Fosc = 20.000 MHz Fosc = 10.000 MHz Fosc = 8.000 MHz
(K) Actual % SPBRG | Actual % SPBRG | Actual % SPBRG | Actual % SPBRG
Rate Error value Rate Error value Rate Error value Rate Error value
(K) (decimal) (K) (decimal) (K) (decimal) (K) (decimal)
0.3 — — — — — — — — — — — —
1.2 — — — — — — — — — — — —
24 — — — — — — 2.441 1.73 255 2.403 -0.16 207
9.6 9.766 1.73 255 9.615 0.16 129 9.615 0.16 64 9.615 -0.16 51
19.2 19.231 0.16 129 19.231 0.16 64 19.531 1.73 31 19.230 -0.16 25
57.6 58.140 0.94 42 56.818 -1.36 21 56.818 -1.36 10 55.555 3.55 8
115.2 | 113.636 -1.36 21 113.636 -1.36 10 125.000 8.51 4 — — —
SYNC =0, BRGH =1, BRG16 =0
BR‘:$E Fosc = 4.000 MHz Fosc = 2.000 MHz Fosc = 1.000 MHz
(K) Actual o SPBRG | Actual % SPBRG | Actual % SPBRG
Rate Error value Rate Error value Rate Error value
(K) (decimal) (K) (decimal) (K) (decimal)
0.3 — — — — — — 0.300 -0.16 207
1.2 1.202 0.16 207 1.201 -0.16 103 1.201 -0.16 51
2.4 2.404 0.16 103 2.403 -0.16 51 2.403 -0.16 25
9.6 9.615 0.16 25 9.615 -0.16 12 — — —
19.2 19.231 0.16 12 — — — — — —
57.6 62.500 8.51 3 — — — — — —
115.2 | 125.000 8.51 1 — — — — — —

© 2008 Microchip Technology Inc.

DS39760D-page 159

PIC18F2450/4450

15.2.2 EUSART ASYNCHRONOUS

RECEIVER

The receiver block diagram is shown in Figure 15-6.
The data is received on the RX pin and drives the data To set up an Asynchronous Reception with Address
recovery block. The data recovery block is actually a Detect Enable:

high-speed shifter operating at x16 times the baud rate, 1. Initialize the SPBRGH:SPBRG registers for the
V\{hereas the main receive serial shifter operates at the appropriate baud rate. Set or clear the BRGH
bit rate or at Fosc. This mode would typically be used

15.2.3 SETTING UP 9-BIT MODE WITH

ADDRESS DETECT
This mode would typically be used in RS-485 systems.

in RS-232 systems.

and BRG16 bits, as required, to achieve the
desired baud rate.

To set up an Asynchronous Reception: 2. Enable the asynchronous serial port by clearing

1. Initialize the SPBRGH:SPBRG registers for the the SYNC bit and setting the SPEN bit.
appropriate baud rate. Set or clear the BRGH 3. If interrupts are required, set the RCEN bit and
and BRG16 bits, as required, to achieve the select the desired priority level with the RCIP bit.
desired baud rate. 4. Set the RX9 bit to enable 9-bit reception.

2. Enable the asynchronous serial port by clearing 5. Set the ADDEN bit to enable address detect.
bit, SYNC, and setting bit, SPEN. 6. Enable reception by setting the CREN bit.

3. Ifinterrupts are desired, set enable bit, RCIE. 7. The RCIF bit will be set when reception is

4. If 9-bit reception is desired, set bit, RX9. complete. The interrupt will be Acknowledged if

5. Enable the reception by setting bit, CREN. the RCIE and GIE bits are set.

6. Flag bit, RCIF, will be set when reception is 8. Read the RCSTA register to determine if any
complete and an interrupt will be generated if error occurred during reception, as well as read
enable bit, RCIE, was set. bit 9 of data (if applicable).

7. Read the RCSTA register to get the ninth bit (if 9. Read RCREG to determine if the device is being
enabled) and determine if any error occurred addressed.
during reception. 10. If any error occurred, clear the CREN bit.

8. Read the 8-bit received data by reading the 11. If the device has been addressed, clear the

RCREG register.

9. If any error occurred, clear the error by clearing
enable bit, CREN.

10. If using interrupts, ensure that the GIE and PEIE
bits in the INTCON register (INTCON<7:6>) are
set.

ADDEN bit to allow all received data into the
receive buffer and interrupt the CPU.

FIGURE 15-6: EUSART RECEIVE BLOCK DIAGRAM

CREN

x64 Baud Rate CLK

+64 .
BRG16|——{ SPBRGH | SPBRG | —— or RSR Register ___LSb
________________ %01,.6 7 LAY 1 0| Start
Baud Rate Generator +4
Pin Buffer Data
and Control Recovery
RX RX9D RCREG Register
FIFO
SPEN
8
Interrupt RCIF Data Bus
RCIE

© 2008 Microchip Technology Inc. DS39760D-page 165

PIC18F2450/4450

18.3 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the
latency period, from oscillator start-up to code
execution, by allowing the microcontroller to use the
INTRC oscillator as a clock source until the primary
clock source is available. It is enabled by setting the
IESO Configuration bit.

Two-Speed Start-up should be enabled only if the
primary oscillator mode is XT, HS, XTPLL or HSPLL
(Crystal-Based modes). Other sources do not require an
Oscillator Start-up Timer delay; for these, Two-Speed
Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode
cause the device to configure itself to run from the
internal oscillator as the clock source, following the
time-out of the Power-up Timer after a Power-on Reset
is enabled. This allows almost immediate code
execution while the primary oscillator starts and the
OST is running. Once the OST times out, the device
automatically switches to PRI_RUN mode.

Because the OSCCON register is cleared on Reset
events, the INTRC clock is used directly at its base
frequency.

In all other power-managed modes, Two-Speed Start-up
is not used. The device will be clocked by the currently
selected clock source until the primary clock source
becomes available. The setting of the IESO bit is
ignored.

18.3.1 SPECIAL CONSIDERATIONS FOR

USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Start-up,
the device still obeys the normal command sequences
for entering power-managed modes, including serial
SLEEP instructions (refer to Section 3.1.4 “Multiple
Sleep Commands”). In practice, this means that user
code can change the SCS1:SCSO0 bit settings or issue
SLEEP instructions before the OST times out. This would
allow an application to briefly wake-up, perform routine
“housekeeping” tasks and return to Sleep before the
device starts to operate from the primary oscillator.

User code can also check if the primary clock source is
currently providing the device clocking by checking the
status of the OSTS bit (OSCCON<3>). If the bit is set,
the primary oscillator is providing the clock. Otherwise,
the internal oscillator is providing the clock during
wake-up from Reset or Sleep mode.

FIGURE 18-2: TIMING TRANSITION FOR TWO-SPEED START-UP (INTRC TO HSPLL)
Ql | Q| a3 ; 4 Ql--------- - = Q2|Q3|Q4] Q1| Q2| Q3
|NTRC 1 1 1 1 1 ! 1 1 1 1 1
0OSC1
, !) T Lo it
A SR
PLL Clock . - ! '
Output : ! ' ' oo A e
! Clock O
'/—\‘_/—_/—_y__:/—\ © Tramsion Ll
CPU Clock . ! ! .] /__/__/__J__/__/—_/—_
Clock X T . X \ T K K . ' . .
Program - \ : y
Counter PC. X PC+2 PC +4 Y _PC+6
Wake from Interrupt Event OSTS bit Set
Note 1: TosT = 1024 Tosc; TPLL = 2 ms (approx). These intervals are not shown to scale.

© 2008 Microchip Technology Inc.

DS39760D-page 205

PIC18F2450/4450

ADDWFC ADD W and Carry bit to f ANDLW AND Literal with W
Syntax: ADDWFC f{,d{,a}} Syntax: ANDLW k
Operands: 0<f<255 Operands: 0<k<255

d<[01] Operation: (W) .AND. k > W

ae[01]

: Status Affected: N, Z
Operation: (W) + (f) + (C) — dest
Encoding: 0000 1011 kkkk kkkk
Status Affected: N, OV, C, DC, Z neoding | | | | |
E L Description: The contents of W are ANDed with the
ncoding: | 0010 [ooda | £ree | sege | 8-bit literal *k’. The result is placed in W.

Description: Add W, the Carry flag and data memory Words: 1

location ‘f'. If ‘d’ is ‘0’, the result is '

placed in W. If ‘d’ is ‘1", the result is Cycles: 1

placed in data memory location ‘f’. Q Cycle Activity:

If ‘a’is ‘0’, the Access Bank is selected.

.) Q1 Q2 Q3 Q4
If‘a’is ‘1’, the BSR is used to select the Decod Read literal b Write 1o W
GPR bank (default). ecode ea ‘ ’ltera rocess rite to
If ‘a’ is ‘0’ and the extended instruction k Data

set is enabled, this instruction operates
in Indexed Literal Offset Addressing Example: ANDLW 05Fh
mode whenever f <95 (5Fh). See

Section 19.2.3 “Byte-Oriented and Before Instruction

Bit-Oriented Instructions in Indexed w) = ASh
Literal Offset Mode” for details After Instruction
' w = 03h
Words: 1
Cycles: 1
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode Read Process Write to
register ‘f Data destination
Example: ADDWEC REG, 0, 1
Before Instruction
Carry bit = 1
REG = 02h
w = 4Dh
After Instruction
Carry bit = 0
REG = 02h
w = 50h

DS39760D-page 220 © 2008 Microchip Technology Inc.

PIC18F2450/4450

BZ Branch if Zero
Syntax: BZ n
Operands: -128 <n<127
Operation: if Zero bit is ‘1,
(PC)+2+2n— PC
Status Affected: None
Encoding: ‘ 1110 | 0000 ‘ nnnn | nnnn ‘
Description: If the Zero bit is ‘1’, then the program
will branch.
The 2’'s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.
Words: 1
Cycles: 1(2)
Q Cycle Activity:
If Jump:
Q1 Q2 Q3 Q4
Decode Read literal Process Write to PC
‘n’ Data
No No No No
operation operation operation operation
If No Jump:
Q1 Q2 Q3 Q4
Decode Read literal Process No
‘n’ Data operation
Example: HERE BZ Jump
Before Instruction
PC = address (HERE)
After Instruction
If Zero = 1
PC = address (Jump)
If Zero = 0
PC = address (HERE + 2)

CALL Subroutine Call

Syntax: CALL k{s}

Operands: 0<k<1048575
s € [0,1]

Operation: (PC)+4 > TOS,
k — PC<20:1>;
ifs=1,
(W) > WS,
(STATUS) — STATUSS,
(BSR) —» BSRS

Status Affected: None

Encoding:

1st word (k<7:0>)
2nd word(k<19:8>)

1110 | 110s
1111 | kqgkkk

kokkk
kkkk

kkkkg
kkkkg

Description: Subroutine call of entire 2-Mbyte
memory range. First, return address
(PC + 4) is pushed onto the return
stack. If 's’ = 1, the W, STATUS and
BSR
registers are also pushed into their
respective shadow registers, WS,
STATUSS and BSRS. If ‘s’ = 0, no
update occurs (default). Then, the
20-bit value ‘K’ is loaded into PC<20:1>.
CALL is a two-cycle instruction.
Words: 2
Cycles: 2
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode Read literal | Push PC to | Read literal
‘k'<7:0>, stack 'k'<19:8>,
Write to PC
No No No No
operation operation operation operation
Example: HERE CALL THERE,1
Before Instruction
PC = address (HERE)
After Instruction
PC = address (THERE)
TOS = address (HERE + 4)
WS = W
BSRS = BSR
STATUSS = STATUS

DS39760D-page 228

© 2008 Microchip Technology Inc.

PIC18F2450/4450

DAW Decimal Adjust W Register DECF Decrement f
Syntax: DAW Syntax: DECF f{d {,a}}
Operands: None Operands: 0<f<255
Operation: If [W<3:0> > 9] or [DC = 1] then, de [0’1]
(W<3:0>) + 6 — W<3:0>; ae[01]
else, Operation: (f)— 1 — dest
(W<3:02) > W<3:0> Status Affected: C, DC, N, OV, Z
If [W<7:4> + DC > 9] or [C = 1] then, Encoding: ‘ 0000 | 0lda ‘ ffff | ffff ‘
(W<7:4>) + 6 + DC > W<7:4>; Description: Decrement register ‘f'. If ‘d’ is ‘0", the
else, result is stored in W. If 'd” is ‘1’, the
(W<7:4>) + DC — W<7:4> result is stored back in register ‘f
Status Affected: C (default).
Encoding: If ‘a’ is ‘0, the Access Bank is selected.
ncoding: ‘ 0000 | 0000 ‘ 0000 | o111 ‘ If ‘@’ is ‘1’, the BSR is used to select the
Description: DAW adjusts the 8-bit value in W, GPR bank (default).
resulting from the earlier addition of two If ‘a’ is ‘0’ and the extended instruction
variables (each in packed BCD format) set is enabled, this instruction operates
and produces a correct packed BCD in Indexed Literal Offset Addressing
result. mode whenever f <95 (5Fh). See
Words: 1 Sf-)ctio_n 19.2.3 “Byte-_Orier_!ted and
Bit-Oriented Instructions in Indexed
Cycles: 1 Literal Offset Mode” for details.
Q Cycle Activity: Words: 1
Q1 Q2 Q3 Q4 Cycles: 1
Decode Read Process Write Cvale Activity:
register W Data W Q Cycle Activity:
Q1 Q2 Q3 Q4
Example 1: DAW Decode Read Process Write to
register ‘f’ Data destination
Before Instruction
w = A5h
C = 0 Example: DECF CNT, 1, 0
DC = 0 .
. Before Instruction
After Instruction
— CNT = 01h
w = 05h =
- 4 0
C = 1 .
DC = 0 After Instruction
CNT = 00h
Example 2: z = 1
Before Instruction
w = CEh
C = 0
DC = 0
After Instruction
w = 34h
C = 1
DC = 0

DS39760D-page 232 © 2008 Microchip Technology Inc.

PIC18F2450/4450

TBLRD Table Read TBLRD Table Read (Continued)
Syntax: TBLRD (*; *+; *-; +%) Example 1: TBLRD *+ ;
Operands: None Before Instruction
. . . TABLAT = 55h
Operation: if TBLRD *, TBLPTR = 00A356h
(Prog Mem (TBLPTR)) — TABLAT, MEMORY (00A356h) = 34h
TBLPTR — No Change; After Instruction
if TBLRD *+, TABLAT = 34h
(Prog Mem (TBLPTR)) — TABLAT, TBLPTR = 00A357h
(TBLPTR) + 1 > TBLPTR; £ e 2- TBLRD 4%
if TBLRD *-, =xampe s _ T
(Prog Mem (TBLPTR)) — TABLAT, Before Instruction
(TBLPTR) — 1 - TBLPTR; TABLAT = AAh
if TBLRD +* TBLPTR = 01A357h
' MEMORY (01A357h) = 12h
(TBLPTR) + 1 —» TBLPTR, MEMORY (01A358h) = 34h
(Prog Mem (TBLPTR)) — TABLAT After Instruction
Status Affected: N TABLAT = 34h
alus Atlected: Tone TBLPTR = 01A358h
Encoding: 0000 0000 0000 10nn
nn=0 *
=1 *H
:2 * |
=3 +%*
Description: This instruction is used to read the contents

of Program Memory (P.M.). To address the
program memory, a pointer called Table
Pointer (TBLPTR) is used.
The TBLPTR (a 21-bit pointer) points to
each byte in the program memory. TBLPTR
has a 2-Mbyte address range.
TBLPTR<0> = 0: Least Significant Byte of
Program Memory Word
TBLPTR<0> = 1: Most Significant Byte of
Program Memory Word
The TBLRD instruction can modify the value
of TBLPTR as follows:
* no change
+ post-increment
» post-decrement
* pre-increment

Words: 1
Cycles: 2
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode No No No
operation operation operation
No No operation No No operation
operation |(Read Program | operation (Write
Memory) TABLAT)

© 2008 Microchip Technology Inc. DS39760D-page 251

PIC18F2450/4450

19.2.3 BYTE-ORIENTED AND
BIT-ORIENTED INSTRUCTIONS IN
INDEXED LITERAL OFFSET MODE

Note: Enabling the PIC18 instruction set
extension may cause legacy applications
to behave erratically or fail entirely.

In addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset Addressing mode (Section 5.6.1
“Indexed Addressing with Literal Offset”). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses
embedded in opcodes are treated as literal memory
locations: either as a location in the Access Bank
(fa’=0) or in a GPR bank designated by the BSR
(‘a’ = 1). When the extended instruction set is enabled
and ‘a’ = 0, however, a file register argument of 5Fh or
less is interpreted as an offset from the pointer value in
FSR2 and not as a literal address. For practical
purposes, this means that all instructions that use the
Access RAM bit as an argument — that is, all byte-
oriented and bit-oriented instructions, or almost half of
the core PIC18 instructions — may behave differently
when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating backward
compatible code. If this technique is used, it may be
necessary to save the value of FSR2 and restore it
when moving back and forth between C and assembly
routines in order to preserve the Stack Pointer. Users
must also keep in mind the syntax requirements of the
extended instruction set (see Section 19.2.3.1
“Extended Instruction Syntax with Standard PIC18
Commands”).

Although the Indexed Literal Offset Addressing mode
can be very useful for dynamic stack and pointer
manipulation, it can also be very annoying if a simple
arithmetic operation is carried out on the wrong
register. Users who are accustomed to the PIC18
programming must keep in mind that, when the
extended instruction set is enabled, register addresses
of 5Fh or less are used for Indexed Literal Offset
Addressing.

Representative examples of typical byte-oriented and
bit-oriented instructions in the Indexed Literal Offset
Addressing mode are provided on the following page to
show how execution is affected. The operand
conditions shown in the examples are applicable to all
instructions of these types.

19.2.3.1 Extended Instruction Syntax with
Standard PIC18 Commands

When the extended instruction set is enabled, the file
register argument, ‘f', in the standard byte-oriented and
bit-oriented commands is replaced with the literal offset
value, ‘k’. As already noted, this occurs only when ‘f’ is
less than or equal to 5Fh. When an offset value is used,
it must be indicated by square brackets (‘[]’). As with
the extended instructions, the use of brackets indicates
to the compiler that the value is to be interpreted as an
index or an offset. Omitting the brackets, or using a
value greater than 5Fh within brackets, will generate an
error in the MPASM Assembler.

If the index argument is properly bracketed for Indexed
Literal Offset Addressing mode, the Access RAM
argument is never specified; it will automatically be
assumed to be ‘0’. This is in contrast to standard
operation (extended instruction set disabled) when ‘a’
is set on the basis of the target address. Declaring the
Access RAM bit in this mode will also generate an error
in the MPASM Assembler.

The destination argument, ‘d’, functions as before.

In the latest versions of the MPASM assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option, /vy, or the PE directive in the
source listing.

19.2.4 CONSIDERATIONS WHEN
ENABLING THE EXTENDED
INSTRUCTION SET

It is important to note that the extensions to the
instruction set may not be beneficial to all users. In
particular, users who are not writing code that uses a
software stack may not benefit from using the
extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications
written to the PIC18 assembler. This is because
instructions in the legacy code may attempt to address
registers in the Access Bank below 5Fh. Since these
addresses are interpreted as literal offsets to FSR2
when the instruction set extension is enabled, the
application may read or write to the wrong data
addresses.

When porting an application to the PIC18F2450/4450,
it is very important to consider the type of code. A large,
re-entrant application that is written in ‘C’ and would
benefit from efficient compilation will do well when
using the instruction set extensions. Legacy applica-
tions that heavily use the Access Bank will most likely
not benefit from using the extended instruction set.

DS39760D-page 260

© 2008 Microchip Technology Inc.

PIC18F2450/4450

20.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal
macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code and COFF files for
debugging.

The MPASM Assembler features include:

« Integration into MPLAB IDE projects

» User-defined macros to streamline
assembly code

+ Conditional assembly for multi-purpose
source files

+ Directives that allow complete control over the
assembly process

20.3 MPLAB C18 and MPLAB C30
C Compilers

The MPLAB C18 and MPLAB C30 Code Development
Systems are complete ANSI C compilers for
Microchip’s PIC18 and PIC24 families of microcontrol-
lers and the dsPIC30 and dsPIC33 family of digital sig-
nal controllers. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use not found with other compilers.

For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.

20.4 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler and the
MPLAB C18 C Compiler. It can link relocatable objects
from precompiled libraries, using directives from a
linker script.

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.

The object linker/library features include:

« Efficient linking of single libraries instead of many
smaller files

» Enhanced code maintainability by grouping
related modules together

* Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

20.5 MPLAB ASM30 Assembler, Linker
and Librarian

MPLAB ASM30 Assembler produces relocatable
machine code from symbolic assembly language for
dsPIC30F devices. MPLAB C30 C Compiler uses the
assembler to produce its object file. The assembler
generates relocatable object files that can then be
archived or linked with other relocatable object files and
archives to create an executable file. Notable features
of the assembler include:

» Support for the entire dsPIC30F instruction set
 Support for fixed-point and floating-point data
+ Command line interface

* Rich directive set

* Flexible macro language

* MPLAB IDE compatibility

20.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC® DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on 1/0, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports
symbolic debugging using the MPLAB C18 and
MPLAB C30 C Compilers, and the MPASM and
MPLAB ASM30 Assemblers. The software simulator
offers the flexibility to develop and debug code outside
of the hardware laboratory environment, making it an
excellent, economical software development tool.

DS39760D-page 264

© 2008 Microchip Technology Inc.

PIC18F2450/4450

FIGURE 21-1: PIC18F2450/4450 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

6.0V
5.5V
5.0V PIC18F2450/4450
4.5V
4.0V
3.5V

3.0V
2.5V

|
|
|
|
2.0V |
|
|
|
|

4.2V

Voltage

Frequency

FIGURE 21-2: PIC18LF2450/4450 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

6.0V
5.5V

5.0V PIC18LF2450/4450
4.5V

4.0V
3.5V

3.0V
2.5V

2.0V~

-4.2v

Voltage

Frequency

For 2.0V < VDD < 4.2V: FMAX = (16.36 MHz/V) (VDDAPPMIN — 2.0V) + 4 MHz
For 4.2V <VDD: FMAX = 48 MHz

Note: VDDAPPMIN is the minimum voltage of the PIC® device in the application.

DS39760D-page 268 © 2008 Microchip Technology Inc.

PIC18F2450/4450

TABLE 21-1:

MEMORY PROGRAMMING REQUIREMENTS

DC Characteristics

Standard Operating Conditions (unless otherwise stated)

Operating temperature

-40°C < TA < +85°C for industrial

P:lrgm Sym Characteristic Min Typt Max | Units Conditions
Internal Program Memory
Programming Specifications(!)
D110 |ViHH |Voltage on MCLR/VPP/RES pin 9.00 — 13.25 V [(Note 2)
D113 |IbbP |Supply Current during — — 10 mA
Programming
Program Flash Memory
D130 |EP Cell Endurance 10K 100K — E/W |-40°C to +85°C
D131 |VPR |VDD for Read VMIN — 5.5 V [VMIN = Minimum operating
voltage
D132 |VIE VDD for Block Erase 45 — 55 V |Using ICSP™ port
D132A |Viw VDD for Externally Timed Erase 3.0 — 5.5 V |Using ICSP port
or Write
D132B |VPEW |VDD for Self-Timed Write VMIN — 5.5 V' [VMIN = Minimum operating
voltage
D133 |TE ICSP™ Block Erase Cycle Time — 4 — ms |VDD > 4.5V
D133A |Tiw ICSP Erase or Write Cycle Time 1 — — ms [VDD > 4.5V
(externally timed)
D133A |Tiw Self-Timed Write Cycle Time — 2 — ms
D134 |TReTD |Characteristic Retention 40 100 — Year |Provided no other
specifications are violated
1 Datain “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.
Note 1: These specifications are for programming the on-chip program memory through the use of table write
instructions.
2: Required only if Single-Supply Programming is disabled.

DS39760D-page 280

© 2008 Microchip Technology Inc.

PIC18F2450/4450

FIGURE 21-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND
POWER-UP TIMER TIMING

o
<~

VDD

MCLR l N /
Internal r
POR

'« 33—

Y
o~

w

o
NS
I~

Y
o~

PWRT . .
Time-out ! 32 . ,
T : &«
Oscillator ' . &
Time-out

Internal : .
Reset \ f
Watchdog : ; (,(,
Timer ' \ .
Reset ' -— 31 .* /

1/O pins I > /
Note: Refer to Figure 21-4 for load conditions. .
FIGURE 21-8: BROWN-OUT RESET TIMING
VDD BVDD ______ I—l
35
' ' VBGAP = 1.2V

VIRVST / |

Enable Internal :
Reference Voltage | |
! |

I

Internal Reference
Voltage Stable ~—— 36 —]

TABLE 21-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Par‘;'zm. Symbol Characteristic Min Typ Max Units Conditions
30 TmcL |MCLR Pulse Width (low) 2 — — ps
31 TwDT |Watchdog Timer Time-out Period — 4.00 4.6 ms
(no postscaler)
32 Tost |Oscillator Start-up Timer Period 1024 Tosc| — | 1024 Tosc| — |Tosc = OSC1 period
33 TPWRT |Power-up Timer Period — 65.5 75 ms
34 Tioz |1/O High-Impedance from MCLR — 2 — us
Low or Watchdog Timer Reset
35 TBOR |Brown-out Reset Pulse Width 200 — — pus | VDD < BvDD (see D005)
36 TIRvVST |Time for Internal Reference — 20 50 us
Voltage to become Stable
37 TLVD Low-Voltage Detect Pulse Width 200 — — pus |VDD < VLVD
38 Tcsb |CPU Start-up Time 5 — 10 us
39 TioBsT |Time for INTRC to Stabilize — 1 — ms

DS39760D-page 288 © 2008 Microchip Technology Inc.

PIC18F2450/4450

FIGURE 21-10: CAPTURE/COMPARE/PWM TIMINGS (CCP MODULE)

CCP1

(Capture Mode)—m

50 L 51 —=! .

CCP1 % : 2 3’;

(Compare or PWM Mode)

Note: Refer to Figure 21-4 for load conditions.

TABLE 21-12: CAPTURE/COMPARE/PWM REQUIREMENTS

Pilr:m Symbol Characteristic Min Max Units Conditions
50 TeclL CCP1 Input No prescaler 0.5Tey + 20 — ns
Low Time With PIC18FXXXX 10 — ns
prescaler | p|C18LFXXXX 20 — ns |VDD=2.0V
51 TecH CCP1 Input No prescaler 0.5Tey + 20 — ns
High Time With PIC18FXXXX 10 — ns
prescaler | p|C18LFXXXX 20 — ns |VDD=2.0V
52 TecP CCP1 Input Period 3 Tcy +40 — ns |N =prescale
N value (1, 4 or 16)
53 TccR CCP1 Output Fall Time PIC18FXXXX — 25 ns
PIC18LFXXXX — 45 ns |VDD=2.0V
54 TecF CCP1 Output Fall Time PIC18FXXXX — 25 ns
PIC18LFXXXX — 45 ns |VDD=2.0V

DS39760D-page 290 © 2008 Microchip Technology Inc.

PIC18F2450/4450

40-Lead Plastic Dual In-Line (P) — 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
N
e Y e N e N e Y Y Yt N e Y e Y Y Y e N e Y e Y Y e Y e N e |
NOTE 1

= RN

T
23

L8[N [R Oy Oy O [y O [[Oy O [O [A [Oy O g |

Notes:

E
I
| |
— || C
eB
Units INCHES

Dimension Limits MIN NOM MAX
Number of Pins N 40
Pitch e .100 BSC
Top to Seating Plane A - - .250
Molded Package Thickness A2 125 - .195
Base to Seating Plane A1 .015 - -
Shoulder to Shoulder Width E .590 - .625
Molded Package Width E1 485 - .580
Overall Length D 1.980 - 2.095
Tip to Seating Plane L 115 - .200
Lead Thickness .008 - .015
Upper Lead Width b1 .030 - .070
Lower Lead Width b .014 - .023
Overall Row Spacing § eB - - .700

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

© 2008 Microchip Technology Inc.

DS39760D-page 301

PIC18F2450/4450

44-Lead Plastic Thin Quad Flatpack (PT) — 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

C1

INENNEAD
[

L

ﬁwjriDDDDDDDDD[:

[SILK SCREEN

JHoOUBOUOE
S| SR) B

RECOMMENDED LAND PATTERN

- LUODO0RODOE—=-

Units MILLIMETERS

Dimension Limits| MIN_ | NOM | MAX
Contact Pitch E 0.80 BSC
Contact Pad Spacing C1 11.40
Contact Pad Spacing C2 11.40
Contact Pad Width (X44) X1 0.55
Contact Pad Length (X44) Y1 1.50
Distance Between Pads G 0.25

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

© 2008 Microchip Technology Inc. DS39760D-page 303

PIC18F2450/4450

APPENDIX A: REVISION HISTORY

Revision A (January 2006)
Original data sheet for PIC18F2450/4450 devices.

Revision B (January 2007)

Example 11-1 and Figure 14-1 have been updated,
Section 14.5.1.1 “Bus Activity Detect Interrupt Bit
(ACTVIF)” and Section 14.2.2.3 “Internal Pull-up
Resistors” have been added, the Electrical Specifi-
cations in Section 21.0 “Electrical Characteris-
tics” have been updated, the package diagrams in
Section 22.2 “Package Details” have been updated
and there have been minor corrections to the data
sheet text.

Revision C (August 2007)

The Electrical Specifications in Section 21.2 “DC
Characteristics: Power-Down and Supply Current”
have been updated and the package diagrams in
Section 22.2 “Package Details” have been updated.

Revision D (March 2008)

Minor edits to Section 14.0 “Universal Serial Bus
(USB)”, Section 16.0 “10-Bit Analog-to-Digital
Converter (A/D) Module”, Section 18.0 “Special
Features of the CPU” and Section 21.0 “Electrical
Characteristics”.

© 2008 Microchip Technology Inc.

DS39760D-page 307

PIC18F2450/4450

SyNtax ...ooceeciiiiieeiee ..255
Use with MPLAB IDE Tools 262
External Clock INpUtccoooiiiiiiiii i 26
F
Fail-Safe Clock Monitorcccccvveiieiiiiiiiiieeee. 191, 206
Exiting Operationccecveiiiiiieiieee e 206
Interrupts in Power-Managed Modes 207
POR or Wake-up From Sleep
WDT During Oscillator Failure ...
Fast Register Stackcccocveveninnn.
Firmware InStructionsccccooiiiiiiii e
Flash Program Memorycccoceiiiiiiiiiiiciieee e
Associated Registers .
Control Registerscccoieiieiiiniinieeeee e
EECON1 and EECON2
TABLAT (Table Latch) Registercccovueeennes 76
TBLPTR (Table Pointer) Registerc.......... 76
Erase Sequence
Erasing ..oocoeeoiiiie e
Operation During Code-Protectc.cccooovrvernnenenn.
Protection Against Spurious Writes
REAAING ..o
Table Pointer
Boundaries Based on Operationccc.cc..... 76
Table Pointer Boundariesccocccoiiiiiiiiiininns
Table Reads and Table Writes
Unexpected Termination of Write .
Write Sequencecccccceeeevviiinnnns
Write VErIfY oo
WIAtING TO oo
FSCM. See Fail-Safe Clock Monitor.
G
(1 2 1 S 234
H
Hardware MUltiplier ... 83
Introduction ... 83
OPEratioN ...ccoieeeiiieie e 83
Performance Comparisoncccccoeveevenienieenneeene. 83
High/Low-Voltage Detectccceeeiiiiiiniiiiieieee 185
Applications
Associated Registerscccccooiiiiiiiniiniiiicee, 189
CharacteristiCsccccviiiiieiiieee e 282
Current Consumptioncccceveeiiiiiiiieee e 187
Effects of a Resetcccoeiiiiiiiiie e 189
Operation
During Sleep
SEEUP e
Start-up Time

Typical Application
HLVD. See High/Low-Voltage Detect.

O POMS .o
ID Locations
Idle Modes ...
INCF e e e
INCFSZ ...t
In-Circuit Debuggerccccoevevenennn.
In-Circuit Serial Programming (ICSP)
Indexed Literal Offset Addressing

and Standard PIC18 Instructionsc.ccccoveeenen. 260
Indexed Literal Offset Modec.ooeeiiiiiciiiiiiis 260
Indirect Addressing .
INFSINZ ...
Initialization Conditions for all Registersc....... 49-52
Instruction Cyclecccooiiiiiiiiiii e 57

Clocking Schemeoccoviiiiiiiiiiie e 57

Flow/Pipelining

Instruction Setccccveiiiiiiii

ADDWEF ..ottt e
ADDWEF (Indexed Literal Offset mode) ...
ADDWEFC ...

CPFSEQ
CPFSGT ...
CPFSLT
DAW oo
DCFSNZ ...

GOTO e
INCF
INCFSZ ...
INFSNZ ...
IORLW ...
IORWF ...

© 2008 Microchip Technology Inc.

DS39760D-page 313

