

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4450t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.4.3.1 FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers: FSRnH and FSRnL. The four upper bits of the FSRnH register are not used, so each FSR pair holds a 12-bit value. This represents a value that can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect Addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers; they are mapped in the SFR space but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because Indirect Addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.

FIGURE 5-7: INDIRECT ADDRESSING

6.5 Writing to Flash Program Memory

The minimum programming block is 8 words or 16 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 16 holding registers used by the table writes for programming.

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 16 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 16 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 16 holding registers before executing a write operation.

6.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the Row Erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write 16 bytes into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - clear the CFGS bit to access program memory; set WREN to enable byte writes.
- 8. Disable interrupts.
- 9. Write 55h to EECON2.

- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Repeat steps 6 through 14 once more to write 64 bytes.
- 15. Verify the memory (table read).

This procedure will require about 8 ms to update one row of 64 bytes of memory. An example of the required code is given in Example 6-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 16 bytes in the holding register.

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0
OSCFIE	—	USBIE	—	—	HLVDIE	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	OSCFIE: Osc	illator Fail Inter	rupt Enable b	oit			
	1 = Enabled						
	0 = Disabled						
bit 6	Unimplemen	ted: Read as '	כ'				
bit 5	USBIE: USB	Interrupt Enabl	e bit				
	1 = Enabled						
	0 = Disabled						
bit 4-3	Unimplemen	ted: Read as '	o'				
bit 2	HLVDIE: High	n/Low-Voltage [Detect Interrup	pt Enable bit			
	1 = Enabled						
	0 = Disabled						
bit 1-0	Unimplemen	ted: Read as ')'				

REGISTER 8-7: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

		SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fosc	= 40.000) MHz	Fosc	= 20.000) MHz	Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_						_			_		
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	—	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_

TABLE 15-3: BAUD RATES FOR ASYNCHRONOUS MODES

			S	YNC = 0, E	BRGH = (), BRG16 =	0			
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51	
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12	
2.4	2.404	0.16	25	2.403	-0.16	12	—	_	_	
9.6	8.929	-6.99	6	—	_	_	—	_	_	
19.2	20.833	8.51	2	—	_	_	—	_	_	
57.6	62.500	8.51	0	—	_	_	—	_	_	
115.2	62.500	-45.75	0	_	—	—	_		—	

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc	= 40.000) MHz	Fosc	= 20.000) MHz	Fosc	= 10.000) MHz	Fos	c = 8.000	MHz	
(K) ^A	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	_									_			
1.2	—	—	—	—	—	—	—		—	—	—	—	
2.4	—	—	—	—	—	—	2.441	1.73	255	2.403	-0.16	207	
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_	

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fose	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz						
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	_	_		_	_	_	0.300	-0.16	207				
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51				
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25				
9.6	9.615	0.16	25	9.615	-0.16	12	—	—	—				
19.2	19.231	0.16	12	—	_	_	—	_	_				
57.6	62.500	8.51	3	—	_	_	—	_	_				
115.2	125.000	8.51	1	_		_	_		_				

© 2008 Microchip Technology Inc.

15.2.2 EUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 15-6. The data is received on the RX pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an Asynchronous Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCIE.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. Enable the reception by setting bit, CREN.
- Flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCIE, was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

15.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

FIGURE 15-6: EUSART RECEIVE BLOCK DIAGRAM

18.3 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period, from oscillator start-up to code execution, by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the primary oscillator mode is XT, HS, XTPLL or HSPLL (Crystal-Based modes). Other sources do not require an Oscillator Start-up Timer delay; for these, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode.

Because the OSCCON register is cleared on Reset events, the INTRC clock is used directly at its base frequency. In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

18.3.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Start-up, the device still obeys the normal command sequences for entering power-managed modes, including serial SLEEP instructions (refer to **Section 3.1.4 "Multiple Sleep Commands"**). In practice, this means that user code can change the SCS1:SCS0 bit settings or issue SLEEP instructions before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the device clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the clock. Otherwise, the internal oscillator is providing the clock during wake-up from Reset or Sleep mode.

FIGURE 18-2: TIMING TRANSITION FOR TWO-SPEED START-UP (INTRC TO HSPLL)

ADI	OWFC	ADD W an	d Carry bit to	o f	ANI)LW	1
Syn	tax:	ADDWFC	f {,d {,a}}		Syn	tax:	/
Оре	erands:	$0 \leq f \leq 255$			Ope	erands:	(
		d ∈ [0,1]			Ope	eration:	(
~		a ∈ [0,1]			Stat	us Affected:	1
Ope	eration:	(W) + (†) +	$(C) \rightarrow dest$		Enc	oding:	Γ
Stat	us Affected:	N, OV, C, E	DC, Z		Des	cription:	-
Enc	oding:	0010	00da ff	ff ffff			8
Des	cription:	Add W, the	Carry flag and	d data memory	Wor	ds:	
		placed in V	// u is 0, uie V. lf'd'is '1', t	he result is	Сус	les:	
		placed in d	ata memory lo	ocation 'f'.	Q	Cycle Activity:	
		If 'a' is '0', t	he Access Ba	nk is selected.		Q1	
		GPR bank	(default).			Decode	Re
		If 'a' is '0' a	ind the extend	led instruction			
		set is enab	led, this instru	ction operates	_		
		in indexed mode wher	Literal Offset	Addressing Fh) See	<u>Exa</u>	mple:	2
		Section 19	.2.3 "Byte-O	riented and		Before Instru	ictior
		Bit-Oriente	ed Instruction	ns in Indexed		After Instruct	ion
		Literal Off	set Mode" for	details.		W	=
Wor	ds:	1					
Сус	les:	1					
Q(Cycle Activity:						
	Q1	Q2	Q3	Q4	1		
	Decode	Read	Process	Write to			
		register T	Data	destination	J		
Fva	mnle [.]	ADDWEC	PEC 0	1			
	Before Instruc	tion	100, 0,	-			
	Carry bit	= 1					
	REG	= 02h					
	After Instruction	- 4011 on					
	Carry bit	= 0					
	REG W	= 02h = 50h					

ANDLW	AND Litera	al with W			
Syntax:	ANDLW	k			
Operands:	$0 \le k \le 255$	i			
Operation:	(W) .AND.	$k \rightarrow W$			
Status Affected:	N, Z				
Encoding:	0000	1011	kkk	k	kkkk
Description:	The conter 8-bit literal	its of W a 'k'. The re	re AN esult i	Ded s pla	with the aced in W
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3			Q4
Decode	Read literal 'k'	Proce Data	ss 1	Wr	ite to W
Example:	ANDLW	05Fh			
Before Instruc W After Instructio	tion = A3h				
W	= 03h				

ΒZ		Branch if Z	ero	
Synta	ax:	BZ n		
Oper	ands:	-128 ≤ n ≤ 1	27	
Oper	ation:	if Zero bit is (PC) + 2 + 2	'1', 2n → PC	
Statu	is Affected:	None		
Enco	oding:	1110	0000 nni	nn nnnn
Desc	ription:	If the Zero t will branch. The 2's con added to the incrementer instruction, PC + 2 + 2r two-cycle in	bit is '1', then t nplement num e PC. Since th d to fetch the n the new addre n. This instruct estruction.	the program ber '2n' is e PC will have next ess will be tion is then a
Word	ds:	1		
Cycle	es:	1(2)		
Q C If Ju	ycle Activity: Imp:			
	Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	Write to PC
	No	No	No	No
	operation	operation	operation	operation
lf No	o Jump:			
	Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	No operation
<u>Exan</u>	nple:	HERE	BZ Jump	
	Before Instruc	tion		
	PC After Instructio	= ado	dress (HERE))
	If Zoro	= 1:		
	II Zelu	- ,		
	If Zero	= ade	dress (Jump))

CALL		S	ubroutin	e Call			
Syntax:		C	ALL k{,	s}			
Operands	:	0 s	≤ k ≤ 104 ∈ [0,1]	18575			
Operation	:	(F k if (V (S (B	$PC) + 4 - \rightarrow PC < 2$ s = 1, V) \rightarrow WS STATUS) SSR) \rightarrow E	→ TOS, 0:1>; → STATU 3SRS	JSS,		
Status Affe	ected:	N	one				
Encoding: 1st word (2nd word(k<7:0>) k<19:8>)		1110 1111	110s k ₁₉ kkk	k ₇ k kk}	kk ck	kkkk ₀ kkkk ₈
Descriptio	n:	Si m (F st B; re S re S 20 20 C2	ubroutine emory ra PC + 4) is ack. If 's' SR gisters a spective TATUSS odate occ D-bit valu ALL is a f	e call of en inge. Firs pushed (= 1, the ' re also pu shadow n and BSR curs (defa e 'k' is loa	ntire 2 t, return onto th W, ST ushed registe S. If 's nult). T inded in instru	-Mby rn ac ne re ATU into ers, V s' = 0 then, nto P ctior	vte Idress turn S and their VS, 0, no the C<20:1>.
Words:		2					
Cvcles:		2					
Q Cycle /	Activity [.]						
G 0 / 0.0 /	Q1		Q2	Q3	3		Q4
De	ecode	Rea 'k'	ad literal <7:0>,	Push P stac	C to k	Rea 'k'• Wri	ad literal <19:8>, te to PC
	No		No	No			No
ope	eration	ор	eration	operat	ion	ор	eration
Example:		HI	ERE	CALL	THE	RE,1	L
Befoi	re Instruc PC	tion =	addree	c (uron)		
After	Instructio	n –	auures	o (neke	,		
,	PC TOS WS BSRS STATUSS	= = = = =	addres addres W BSR STATU	S (THER S (HERE	E) + 4)	

DAW	,	Decimal Ac	djust W Regis	ter	DEC	F	Decrement	f	
Synta	ax:	DAW			Synta	ax:	DECF f{,d	l {,a}}	
Oper	ands:	None			Oper	ands:	$0 \leq f \leq 255$		
Oper	ation:	lf [W<3:0> > (W<3:0>) +	> 9] or [DC = 1 6 → W<3:0>;] then,			d ∈ [0,1] a ∈ [0,1]		
		else,			Oper	ation:	$(f) - 1 \rightarrow de$	st	
		(W<3:0>) →	→ W<3:0>		Statu	s Affected:	C, DC, N, C	V, Z	
		If [W<7:4> +	+ DC > 9] or [(C = 1] then,	Enco	ding:	0000	01da ff	ff ffff
		(W<7:4>) +	$6 + DC \rightarrow W^{<}$:7:4>;	Desc	ription:	Decrement	register 'f'. If '	d' is '0', the
		(W<7:4>) +	$DC \rightarrow W < 7:4$	>			result is sto	red in W. If 'd' red back in re	is 1, the dister 'f'
Statu	s Affected:	C					(default).		9.000
Enco	ding:	0000	0000 000	00 0111			lf 'a' is '0', th lf 'a' is '1', th	ne Access Bai ne BSR is use	nk is selected. d to select the
Desc	ription:	DAW adjusts	s the 8-bit valu	e in W,			GPR bank (default).	
		resulting from	m the earlier a	ddition of two			If 'a' is '0' a	nd the extend	ed instruction
		and produce	es a correct pa	cked BCD			in Indexed I	Literal Offset A	Addressing
		result.					mode when	ever f ≤ 95 (5	Fh). See
Word	ls:	1					Section 19.	.2.3 "Byte-Or	iented and
Cycle	es:	1					Literal Offs	et Mode" for	details.
QC	ycle Activity:				Word	ls:	1		
	Q1	Q2	Q3	Q4	Cycle	25.	1		
	Decode	Read	Process	Write	0 0	vcle Activity			
		register W	Data	W		Q1	Q2	Q3	Q4
Exan	nple 1:	DAW				Decode	Read	Process	Write to
	Before Instruc	tion					register 'f'	Data	destination
	W	= A5h			_				
	C DC	= 0 = 0			Exan	nple:	DECF (CNT, 1, 0	
	After Instruction	on				Before Instruc	tion		
	W	= 05h				Z	= 0		
	DC	= 0				After Instruction	on		
Fxan	nole 2 [.]					CNT Z	= 00h = 1		
<u></u>	Before Instruc	tion							
	W	= CEh							
	C DC	= 0 = 0							
	After Instruction	on							
	W	= 34h = 1							
	DC	= 0							

Table Read (Continued)

TBL	RD	Table Read						
Synta	ax:	TBLRD (*; *	*+; *	-; +*)				
Oper	ands:	None						
Oper	ation:	if TBLRD *, (Prog Mem TBLPTR – N if TBLRD *+ (Prog Mem (TBLPTR) + if TBLRD *-, (Prog Mem (TBLPTR) - if TBLRD +* (TBLPTR) + (Prog Mem	(TBI No C , (TBI (TBI , 1 – , (TBI	_PTR) :hange _PTR) → TBLI _PTR) → TBLI → TBLI _PTR)	$) \rightarrow TA$ \Rightarrow ; $) \rightarrow TA$ $\Rightarrow TR;$ $) \rightarrow TA$ $\Rightarrow TR;$ $\Rightarrow TR,$ $) \rightarrow TA$	ABLA ABLA ABLA	т, Т, Т, Т	
Statu	s Affected:	None						
Enco	ding:	0000	01	000	000	00	10nr nn=0 =1 =2 =3	1 *+ *- +*
Desc	ription:	This instruct of Program program me Pointer (TBI The TBLPTI each byte in has a 2-Mby TBLPTR<0 TBLPTR<0 TBLPTR<0 The TBLRD of TBLPTR • no chang • post-increi	ion i Men PTI R (a the the a)> = instr e e men e men men	is used nory (F y, a po R) is u 21-bit progra ddres: 0: Lea Pro uction blows: nt ent	d to rea P.M.). ⁻ pinter o sed. pointe am me s rang ust Sign gram I can m	ad thi To ad callec er) po mory e. nificar Memo nodify	e conter dress th I Table wints to 7. TBLP ⁻ nt Byte o ory Word t Byte o ory Word the val	nts ne TR of d f d ue
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2		C 	3		Q4	
	Decode	No operation		N opera	o ation	op	No peration	
	No	No operatio	n	N	0	No	operatic	n

Example 1: TBLRD *+ ; Before Instruction TABLAT TBLPTR MEMORY (00A356h) 55h 00A356h = = = 34h After Instruction TABLAT 34h 00A357h = TBLPTR = Example 2: TBLRD +* ; Before Instruction TABLAT = AAh

TBLRD

TBLPTR	=	01A357h
MEMORY (01A357h)	=	12h
MEMORY (01A358h)	=	34h
After Instruction TABLAT TBLPTR	= =	34h 01A358h

operation

(Read Program

Memory)

operation

(Write

TÀBLAT)

19.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling	the	PIC18	3 inst	ruction	set
	extension	may	cause	legacy	applica	tions
	to behave	errat	ically or	fail en	tirely.	

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (**Section 5.6.1** "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank ('a' = 0) or in a GPR bank designated by the BSR ('a' = 1). When the extended instruction set is enabled and 'a' = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byteoriented and bit-oriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 19.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

19.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM Assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing mode, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASM assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_{y}$, or the PE directive in the source listing.

19.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18F2450/4450, it is very important to consider the type of code. A large, re-entrant application that is written in 'C' and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

20.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

20.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

20.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

20.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

20.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

DC Cha	racteris	stics Standard Operating Conditions (unless otherwise Operating temperature -40 °C \leq TA \leq +85 °C for industry of the temperature -40 °C \leq TA \leq +85 °C for industry of the temperature -40 °C \leq TA \leq +85 °C for industry of temperature -40 °C \leq +85 °C for industry of temperature -40 °C \leq +85 °C for industry of temperature -40 °C \leq +85 °C for industry of temperature -40 °C \leq +85 °C for industry of temperature -40 °C \leq +85 °C for industry of temperature -40 °C \leq +85					unless otherwise stated) ∖ ≤ +85°C for industrial
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Internal Program Memory Programming Specifications ⁽¹⁾					
D110	VIHH	Voltage on MCLR/VPP/RE3 pin	9.00	—	13.25	V	(Note 2)
D113	IDDP	Supply Current during Programming	—	—	10	mA	
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	100K	_	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	Vmin	—	5.5	V	Vмın = Minimum operating voltage
D132	VIE	VDD for Block Erase	4.5	—	5.5	V	Using ICSP™ port
D132A	Viw	VDD for Externally Timed Erase or Write	3.0	—	5.5	V	Using ICSP port
D132B	Vpew	VDD for Self-Timed Write	VMIN	—	5.5	V	VMIN = Minimum operating voltage
D133	TIE	ICSP™ Block Erase Cycle Time	_	4	_	ms	VDD > 4.5V
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	—	—	ms	VDD > 4.5V
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms	
D134	TRETD	Characteristic Retention	40	100		Year	Provided no other specifications are violated

TABLE 21-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Required only if Single-Supply Programming is disabled.

FIGURE 21-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 21-8: BROWN-OUT RESET TIMING

TABLE 21-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2		_	μS	
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	—	4.00	4.6	ms	
32	Tost	Oscillator Start-up Timer Period	1024 Tosc		1024 Tosc	_	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	—	65.5	75	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200	_	—	μS	$VDD \le BVDD$ (see D005)
36	TIRVST	Time for Internal Reference Voltage to become Stable	—	20	50	μS	
37	Tlvd	Low-Voltage Detect Pulse Width	200	_	—	μS	$V\text{DD} \leq V\text{LVD}$
38	TCSD	CPU Start-up Time	5	—	10	μS	
39	TIOBST	Time for INTRC to Stabilize		1		ms	

FIGURE 21-10: CAPTURE/COMPARE/PWM TIMINGS (CCP MODULE)

TADIE 24 42.	CADTUDE/COMDADE/DWM DEOLUDEMENTS
IADLE ZI-IZ.	CAFIURE/CUNIFARE/FWIM REQUIREMENTS

Param No.	Symbol	Characteristic		c	Min	Мах	Units	Conditions
50	TccL	CCP1 Input	No prescale	er	0.5 TCY + 20	_	ns	
		Low Time	With	PIC18FXXXX	10	_	ns	
			prescaler	PIC18LFXXXX	20		ns	VDD = 2.0V
51	TccH	cH CCP1 Input No prescale		er	0.5 Tcy + 20	_	ns	
	High Time	High Time	With	PIC18FXXXX	10		ns	
			prescaler	PIC18LFXXXX	20		ns	VDD = 2.0V
52	TccP	CCP1 Input Perio	CCP1 Input Period		<u>3 Tcy + 40</u> N		ns	N = prescale value (1, 4 or 16)
53	TccR	CCP1 Output Fa	ll Time	PIC18FXXXX		25	ns	
				PIC18LFXXXX	_	45	ns	VDD = 2.0V
54	TccF	CCP1 Output Fa	II Time	PIC18FXXXX		25	ns	
				PIC18LFXXXX		45	ns	VDD = 2.0V

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	N		40		
Pitch	е		.100 BSC		
Top to Seating Plane	А	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.590	-	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	с	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	-	.023	
Overall Row Spacing §	eB	-	-	.700	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	ETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

APPENDIX A: REVISION HISTORY

Revision A (January 2006)

Original data sheet for PIC18F2450/4450 devices.

Revision B (January 2007)

Example 11-1 and Figure 14-1 have been updated, Section 14.5.1.1 "Bus Activity Detect Interrupt Bit (ACTVIF)" and Section 14.2.2.3 "Internal Pull-up Resistors" have been added, the Electrical Specifications in Section 21.0 "Electrical Characteristics" have been updated, the package diagrams in Section 22.2 "Package Details" have been updated and there have been minor corrections to the data sheet text.

Revision C (August 2007)

The Electrical Specifications in Section 21.2 "DC Characteristics: Power-Down and Supply Current" have been updated and the package diagrams in Section 22.2 "Package Details" have been updated.

Revision D (March 2008)

Minor edits to Section 14.0 "Universal Serial Bus (USB)", Section 16.0 "10-Bit Analog-to-Digital Converter (A/D) Module", Section 18.0 "Special Features of the CPU" and Section 21.0 "Electrical Characteristics".

Extended Instruction Set	255
ADDFSR	256
ADDULNK	256
CALLW	257
Considerations for Use	260
MOVSF	257
MOVSS	258
PUSHL	258
SUBFSR	259
SUBULNK	259
Syntax	255
Use with MPLAB IDE Tools	262
External Clock Input	26

F

Fail-Safe Clock Monitor	191, 206
Exiting Operation	
Interrupts in Power-Managed Modes	
POR or Wake-up From Sleep	
WDT During Oscillator Failure	
Fast Register Stack	56
Firmware Instructions	
Flash Program Memory	73
Associated Registers	81
Control Registers	74
EECON1 and EECON2	74
TABLAT (Table Latch) Register	76
TBLPTR (Table Pointer) Register	76
Erase Sequence	78
Erasing	78
Operation During Code-Protect	81
Protection Against Spurious Writes	
Reading	77
Table Pointer	
Boundaries Based on Operation	76
Table Pointer Boundaries	76
Table Reads and Table Writes	73
Unexpected Termination of Write	81
Write Sequence	79
Write Verify	81
Writing To	79
FSCM. See Fail-Safe Clock Monitor.	

G

Н

Hardware Multiplier	83
Introduction	83
Operation	83
Performance Comparison	
High/Low-Voltage Detect	
Applications	
Associated Registers	
Characteristics	
Current Consumption	
Effects of a Reset	
Operation	
During Sleep	
Setup	
Start-up Time	
Typical Application	
HLVD. See High/Low-Voltage Detect.	

I

•	
I/O Ports	
ID Locations	191 211
Idle Modes	37
	234
In-Circuit Debugger	211
In-Circuit Serial Programming (ICSP)	191, 211
Indexed Literal Offset Addressing	
and Standard PIC18 Instructions	260
Indexed Literal Offset Mode	260
Indiract Addressing	200
INFSNZ	235
Initialization Conditions for all Registers	49–52
Instruction Cycle	57
Clocking Scheme	57
Flow/Pipelining	57
Instruction Set	
ADDLW	219
ADDWF	219
ADDWF (Indexed Literal Offset mode)	261
ADDWEC	220
	220
ANDVVF	
BC	221
BCF	222
BN	222
BNC	223
DNN	220
DININ	
BNOV	224
BNZ	224
BOV	227
BRA	225
BSF	225
BSE (Indexed Literal Offset mode)	261
BIFSC	
BTFSS	226
BTG	227
BZ	228
CALL	228
	220
COMF	230
CPFSEQ	230
CPFSGT	231
CPESI T	231
	222
	202
DECF	232
DECFSZ	233
General Format	215
GOTO	234
	234
INFSNZ	235
IORLW	236
IORWF	236
LFSR	237
MOVE	227
	201
	238
MOVLB	238
MOVLW	239