
E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - Microcontroller,</u> <u>Microprocessor, FPGA Modules</u>

Embedded - Microcontroller, Microprocessor, and FPGA Modules are fundamental components in modern electronic systems, offering a wide range of functionalities and capabilities. Microcontrollers are compact integrated circuits designed to execute specific control tasks within an embedded system. They typically include a processor, memory, and input/output peripherals on a single chip. Microprocessors, on the other hand, are more powerful processing units used in complex computing tasks, often requiring external memory and peripherals. FPGAs (Field Programmable Gate Arrays) are highly flexible devices that can be configured by the user to perform specific logic functions, making them invaluable in applications requiring customization and adaptability.

Applications of Embedded - Microcontroller,

Details

Product Status	Obsolete
Module/Board Type	MCU, Ethernet Core
Core Processor	eZ80F91
Co-Processor	-
Speed	50MHz
Flash Size	256KB (Internal), 1MB (External)
RAM Size	8KB (Internal), 512KB (External)
Connector Type	Header 2x30
Size / Dimension	2.5" x 3.1" (63.5mm x 78.7mm)
Operating Temperature	0°C ~ 70°C
Purchase URL	https://www.e-xfl.com/product-detail/zilog/ez80f915050modg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ilog ₁₃

							(a)
Table 2	Pin	Identification	on	the	e/80+91	Device	(Continued)
		lacintinoution		the		Device	(Continued)

LQFP Pin No	BGA Pin No	Symbol	Function	Signal Direction	Description
78	K12	PD5	GPIO Port D	Bidirectional	This pin is used for GPIO. It is individually programmed as input or output and is also used individually a an interrupt input. Each Port D pin, when programmed as output is selected to be an open-drain or oper source output. Port D is multiplexed with one UART.
		DSRO	Data Set Ready	Input, Active Lov	 Modematus signal to the UART. This signal is multiplexed with PD5.
79	K11	PD6	GPIO Port D	Bidirectional	This pin is used for GPIO. It is individually programmed as input or output and is also used individually as an interrupt input. Each Port D pin, when programmed as output is selected to be an open-drain or open source output. Port D is multiplexed with one UART.
		DCDO	Data Carrier Detect	Input, Active Lov	 Modematus signal to the UART. This signal is multiplexed with PD6.
80	H8	PD7	GPIO Port D	Bidirectional	This pin is used for GPIO. It is individually programmed as input or output and is also used individually as an interrupt input. Each Port D pin, when programmed as output is selected to be an open-drain or open source output. Port D is multiplexed with one UART.
		RIO	Ring Indicator	Input, Active Lo	ow Modem status signal to the UART. This signal is multiplexed with PD7.
81	J11	V _{DD}	Power Supply		Power Supply.
82	J12	Vss	Ground		Ground.
83	J10	LOOP_FILT	PLL Loop Filter	Analog	Loop Filter pin for the Analog PLL.
84	G7	PLL_V_{SS}	Ground		Ground for Analog PLL.
85	H12	Хоит	System Clock Oscillator Output	Output	This pin is the output of the onboar crystal oscillator. We used, a crystal must be connected between Xand X_{OUT} .

Address (hex)	Mnemonic	Name	Reset (hex)	CPU Access	Page No
003F	EMAC_FIAD	EMAC PHY Unit Select Address Register	00	R/W	316
0040	EMAC_PTMR	EMAC TransmiPolling Timer Register	00	R/W	316
0041	EMAC_RST	EMAC Reset Control Register	20	R/W	317
0042	EMAC_TLBP_L	EMAC Transmit Lower Boundary Pointer Low Byte	00	R/W	318
0043	EMAC_TLBP_H	EMAC Transmit Lower Boundary Pointer High Byte	00	R/W	318
0044	EMAC_BP_L	EMAC BoundaryPointer Low Byte	00	R/W	319
0045	EMAC_BP_H	EMAC BoundaryPointer High Byte	CO	R/W	319
0046	EMAC_BP_U	EMAC BoundaryPointer Upper Byte	FF	R/W	319
0047	EMAC_RHBP_L	EMAC Receive High Boundary Pointer Low Byte	00	R/W	320
0048	EMAC_RHBP_H	EMAC Receive High Boundary Pointer High Byte	00	R/W	321
0049	EMAC_RRP_L	EMAC Receive Read Pointer Low Byte	00	R/W	321
004A	EMAC_RRP_H	EMAC Receive Read Pointer High Byte	00	R/W	322
004B	EMAC_BUFSZ	EMAC Buffer Size Register	00	R/W	322
004C	EMAC_IEN	EMAC Interrupt Enable Register	00	R/W	323
004D	EMAC_ISTAT	EMAC Interrupt Status Register	00	R/W	325
004E	EMAC_PRSD_L	EMAC PHY Read Status Data Low Byte	00	R/W	326
004F	EMAC_PRSD_H	EMAC PHY Read Status Data High Byte	00	R/W	327
0050	EMAC_MIISTAT	EMAC MII Status Register	00	R/W	327
0051	EMAC_RWP_L	EMAC Receive Write Pointer Low Byte	00	R/W	328
0052	EMAC_RWP_H	EMAC Receive Write Pointer High Byte	00	R/W	329
0053	EMAC_TRP_L	EMAC Transmit Read Pointer Low Byte	00	R/W	329

Table 3. Register Map (Continued)

ilog

42

Power-On Reset

A POR occurs every time the supply voltage he part rises from below the Voltage Brownout threshold (\bigvee_{BO}) to above the POR voltage threshold (\bigotimes_{O}). The internal bandgap-referenced voltage exterior sends a continuous **ER**ET signal to the Reset controller until the supply voltage (\bigotimes_{O}) exceeds the POR voltage threshold. After Vises above \bigvee_{OR} an on-chip analog delay element by efficient ains the RESET signal to the Reset controller. After this analog delay element by efficient out, the Reset controller holds the eZ80F91 in RESET until the RESET mode time prices. POR operation is displayed in Figure 3 The signals in Figure 3 are not drawn to scale but for displaying purposes only.

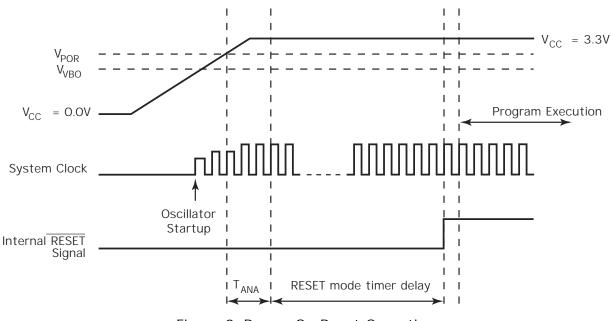


Figure 3. Power-On Reset Operation

Voltage Brownout Reset

If the supply voltage ($\&_C$) drops below the \bigvee_{BO} after program execution begins, the eZ80F91 device resets. The VBO protection uitry detects the low supply voltage and initiates a RESET via the Reset controller eZ80F91 remains in RESET until the supply voltage again returns above the POR voltage threshold wind the Reset controller releases the internal RESET signal. The VBO uitry rejects short negative brown-out pulses to prevent spurious RESET events.

VBO operation is displayed Frigure 4on page 43. The signals in the figure are not drawn to scale but for illustration purposes only.

ilog ₆₁

Bit INT_PO Reset 0* 0* INT_P1 Reset INT_P2 Reset INT_P3 Reset INT_P4 Reset INT_P5 Reset R/W R/W R/W R/W R/W R/W R/W R/W CPU Access

Note: X = Undefined; R/W = Read/Write, *Unused.

PositionValueDescription70Default Interrupt Priority	
7 O Default Interrupt Priority	
INT_PX 1 Level One Interupt Priority	
6 0 Default Interrupt Priority	
INT_PX 1 Level One Interupt Priority	
5 0 Default Interrupt Priority	
INT_PX 1 Level One Interupt Priority	
4 O Default Interrupt Priority	
INT_PX 1 Level One Interupt Priority	
3 0 Default Interrupt Priority	
INT_PX 1 Level One Interupt Priority	
2 0 Default Interrupt Priority	
INT_PX 1 Level One Interupt Priority	
1 0 Default Interrupt Priority	
INT_PX 1 Level One Interupt Priority	
0 0 Default Interrupt Priority	
INT_PX 1 Level One Interupt Priority	

= OO13h, $INT_P4 = OO14h$, $INT_P5 = OO15h$)

Table 14. Interrupt Priority Registers(INT_PO = 0010h, INT_P1 = 0011h, INT_P2 = 0012h, INT_P3

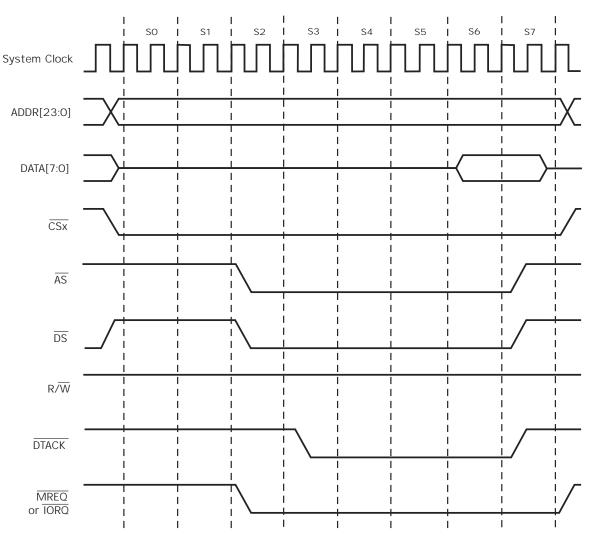
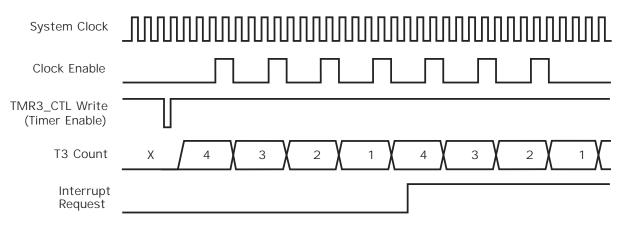


Figure 18. Example: Motorola Bus Mode Read Timing

96

MBIST Control

There are two Memory Built-In Self-Test (MST) controllers for the RAM blocks on the eZ80F91. MBIST_GPR is for General Bose RAM and MBIST_EMR is for EMAC RAM. Writing a 1 to MBIST_ON starts the MBIST testing. Writing a 0 to MBIST_ON stops the MBIST testing. On completion the MBIST testing, MBIST_ON is automatically reset to 0. If RAM passes MBISE sting, MBIST_PASS is 1. The value in MBIST_PASS is only valid when MBIST_DONE is High. Starbole 34


Table 34. MBIST Control Register(MBIST_GPR = 00B6h, MBIST_EMR = 00B7h)

Bit	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
CPU Access	R/W	R	R	R	R	R	R	R
Note: R/W = Read/Write; R = Read Only.								

Bit Position	Value	Description
7	0	MBIST Testing of the RAM is disabled.
MBIST_ON	1	MBIST Testing of the RAM is enabled.
6	0	MBIST Testing has not completed.
MBIST_DONE	1	MBIST Testing has completed.
5	0	MBIST Testing has failed.
MBIST_PASS	1	MBIST Testing has passed.
[4:0]	00000	Reserved.

ilog ₁₂₄

TMRx_RR_H and TMRx_RR_L. Downcounting continues on the next clock edge and the timer continues to countril disabled. An example of the timer operating in CONTINUOUS mode is displayed Frigure 28 Timer register information is listed in Table 51

Table 5	1. Example:	PRT	CONTINUOUS	Mode	Parameters
---------	-------------	-----	------------	------	------------

Parameter	Control Register(s)	Value
Timer Enable	TMRx_CTL[TIM_EN]	1
Reload	TMRx_CTL[RLD]	1
Prescaler Divider = 4	TMXR_CTL[CLK_DIV]	OOb
CONTINUOUS Mode	TMR x_CTL[TIM_CONT]	1
End of Count Interrupt Enable	TIMERER[IRQ_EOC_EN]	1
Timer Reload Value	{TMRx_RR_H, TMR x_RR_L}	0004h

Timer Interrupts

The terminal count flag (TMR_IIR[EOC]) is set to 1 whenever the timer reachesooh, its end-of-count value in SINGLE PASS mode when the timer reloads the start value in CONTINUOUS mode. The terminal count flaggonly set when the timer reachesooh (or reloads) from 001h. The timer interrupt flag is not step 1 when the timer is loaded with the value0000h, which selects the main mum time-out period.

The CPU is programmed to poll the EOC bitther time-out event. Alteratively, an interrupt service request signal is step the CPU by setting the TMREIER[EOC] bit to 1.

Timer Data Register High Byte

The Timerx Data Register—High Byte returns theigh byte of the count value of the selected timer as it existed at the time thatLow byte was read. The Timer Data Register—High Byte (seTeable 58) is read when the timer is operation. Reading the current count value does notifiect timer operation. Toread the 16-bit data of the current count value, {TMR_DR_H[7:0], TMRx_DR_L[7:0]}, first read the Timer Data Register—Low Byte followed by the TimeData Register—High Byte. The Timer Data Register—High Byte value is latched intorner storage when a Read of the Timer Data Register—Low Byte occurs.

This register shares its address with dorresponding timer reload register.

Table 58. Timer Data Register High Byte (TMRO_DR_H = 0064h, TMR1_DR_H = 0069h, TMR2_DR_H = 0073h, TMR3_DR_H = 0078h)

Bit	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
CPU Access	R	R	R	R	R	R	R	R
Note: D. Deed only								

Note: R = Read only.

Bit Position	Value	Description
[7:0] TMR_DR_H	00h FFh	These bits represent the High byte of the 2-byte timer data value, {TMRx_DR_H[7:0], TMRx_DR_L[7:0]}. Bit 7 is bit 15 (msb) of the 16-bit timer data value. Bit 0 is bit 8 of the 16-bit timer data value.

141

Timer Input Capture Value A Register High Byte

The Timer x Input Capture Value A Register—High Byte (Sadale 63) stores the High byte of the capture value for external input For Timer 1, the external input is ICO. For Timer 3, it is IC2.

Table 63. Timer Input Capture Value Register A High Byte (TMR1_CAPA_H = 006Ch, TMR3_CAPA_H = 007Dh)

Bit	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
CPU Access	R	R	R	R	R	R	R	R
Note: R = Read only.								

Bit Position	Value	Description
[7:0] TMRx_CAPA_H	00h FFh	These bits represent the High byte of the 2-byte capture value, {TMRx_CAPA_H[7:0], TMRx_CAPA_L[7:0]}. Bit 7 is bit 15 (msb) of the 16-bit data value. Bit 0 is bit 8 of the 16-bit timer data value.

Timer Input Capture Value B Register Low Byte

The Timer x Input Capture Value B Register—Low Byte (**Sede**le 64) stores the Low byte of the capture value for external input Hor Timer 1, the exteent input is IC1. For Timer 3, it is IC3.

Table 64. Timer Input Capture Value Register B Low Byte (TMR1_CAPB_L = 006Dh, TMR3_CAPB_L = 007Eh)

Bit		7	6	5	4	3	2	1	0			
Reset	eset C		0	0	0	0	0	0	0			
CPU Access	PU Access R		R	R	R	R	R	R	R			
Note: R = Read only.												
Bit Position Value Description												
[7:0] TMRx_CAPB_L	00h	FFh b	These bits represent the Low byte of the 2-byte capture value, {TMRx_CAPB_H[7:0], TMRx_CAPB_L[7:0]}. Bit 7 is bit 7 of the 16-bit data value. Bit 0 is bit 0 (lsb) of the 16-bit timer data value.									

ilog

201

Serial Peripheral Interface

The Serial Peripheral Interface (SPI) is **acty**ronous interface allowing several SPI-type devices to be interconnected. The SPI fisladuplex, synchronous, character-oriented communication channel that employs a four-wire interface. The SPI block consists of a transmitter, receiver, baud rate generator, condrol unit. During an SPI transfer, data is sent and received simultaneously by block master and the slave SPI devices.

In a serial peripheral interface, separate signed required for data and clock. The SPI is configured either as a master or as a slable.connection of two SPI devices (one master and one slave) and the direction of data transfer is displayFeigure 40andFigure 41

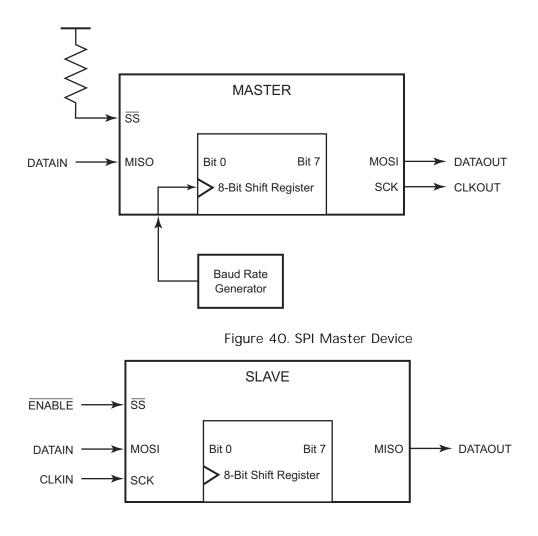


Figure 41. SPI Slave Device

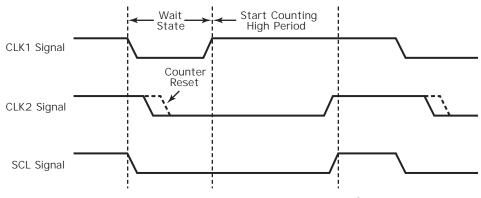


Figure 47. Clock Synchronization In ²C Protocol

Arbitration

Any master initiates a transfer if the busiries. As a result, multiple masters each generates a START condition if the bus is freighin a minimum period. If multiple masters generate a START condition, a START is definiter the bus. Howevearbitration defines which MASTER controls the bus. Arbitrationakes place on the SDA line. As mentioned, START conditions are initiated only while the SOne is held High. If during this period, a master (M1) initiates a High-to-Low traition—that is, a START condition—while a second master (M2) transmits a Low signative line, then the first master, M1, cannot take control of the bus. As a resulte to a output stage for M1 is disabled.

Arbitration continues for many bits. Its firstage is comparison of the address bits. If the masters are each trying to address the same ederbitration continues with a comparison of the data. Because address and data information of Ctbest is used for arbitration, no information is lost uring this process. A master that loses the arbitration generates clock pulses until the end of the master in which it loses the arbitration.

If a master also incorporates a slave function dit loses arbitration during the addressing stage, it is possible that the winning masterrying to address it. The losing master must switch over immediately to its slave receiver modegure 47 displays the arbitration procedure for two masters. Of course, more present an be involved, depending on how many masters are connected to the bus. The mothent is a difference between the internal data level of the master generating DATA to the actual level of the SDA line, its data output is switched off, which means that a Hightput level is the connected to the bus. As a result, the data transfer initiated by thinning master is not affected. Because control of the fC bus is decided solely on the addressed data sent by competing masters, there is no central master, nor any order of priority on the bus.

Special attention must beaid if, during a serial transfethe arbitration procedure is still in progress at the moment when a repeated RT condition or a STOP condition is transmitted to the fC bus. If it is possible for such a sation to occur, the masters involved

ilog

227

Bit Position	Value	Description				
5	0	Master mode START condition is sent.				
STA	1	Master mode start-trans®TiART condition on the bus.				
4	0	Master mode STOP condition is sent.				
STP	1	Master mode stop-transmit STOP condition on the bus				
3	0	² C interrupt flag is not set.				
IFLG	1	I ² C interrupt flag is set.				
2	0	Not Acknowledge.				
ААК	1	Acknowledge.				
[1:0]	00	Reserved.				

I²C Status Register

The f^2C_SR register is a Read Only register **trat**tains a 5-bit status code in the five MSbs; the three LSbs are always 0. The **Ready** I2C_SR registers share the same I/ O addresses as the Write Only I2C_CCR registers**Table** 128

Table 128. PC Status Registers(I2C_SR = 00CCh)
--

-		r									
Bit		7	6	5	4	3	2	1	0		
Reset 1			1	1	1	1	0	0	0		
CPU Access R			R	R	R	R	R	R	R		
Note: R = Read only.											
Bit											
Position	Value	e De	escriptio	n							
[7:3]	000	00 5	-bit ² 1C s	tatus c	ode.						
STAT	1111	1									
[2:0]	000)	Reserve	d.							

There are 29 possible status codes, as listed bite 129 When the C_SR register contains the status codeh, no relevant status information available, no interrupt is generated, and the LG bit in the C_CTL register is not set. All other status codes correspond to a defined state of the I

ilog ₂₄₀

ZDI Address	ZDI Register Name	ZDI Register Function	Reset Value
08h	ZDI_ADDR2_L	Address Match 2 Low Byte	XXh
09h	ZDI_ADDR2_H	Address Match 2 High Byte	XXh
OAh	ZDI_ADDR2_U	Address Match 2 Upper Byte	XXh
OCh	ZDI_ADDR3_L	Address Match 3 Low Byte	XXh
ODh	ZDI_ADDR3_H	Address Match 3 High Byte	XXh
OEh	ZDI_ADDR3_U	Address Match 4 Upper Byte	XXh
10h	ZDI_BRK_CTL	Break Control Register	00h
11h	ZDI_MASTER_CTL	Master Control Register	00h
13h	ZDI_WR_DATA_L	Write Data Low Byte	XXh
14h	ZDI_WR_DATA_H	Write Data High Byte	XXh
15h	ZDI_WR_DATA_U	Write Data Upper Byte	XXh
16h	ZDI_RW_CTL	Read/Write Control Register	OOh
17h	ZDI_BUS_CTL	Bus Control Register	00h
21h	ZDI_IS4	Instruction Store 4	XXh
22h	ZDI_IS3	Instruction Store 3	XXh
23h	ZDI_IS2	Instruction Store 2	XXh
24h	ZDI_IS1	Instruction Store 1	XXh
25h	ZDI_ISO	Instruction Store 0	XXh
30h	ZDI_WR_MEM	Write Memory Register	XXh

Table 133. ZDI Write Only Registers (Continued)

ZDI Read Only Registers

Table 134lists the ZDI Read Only registers. Maof the ZDI Read Only addresses are shared with ZDI Write Only registers.

Table 134. ZDI Read Only Registers

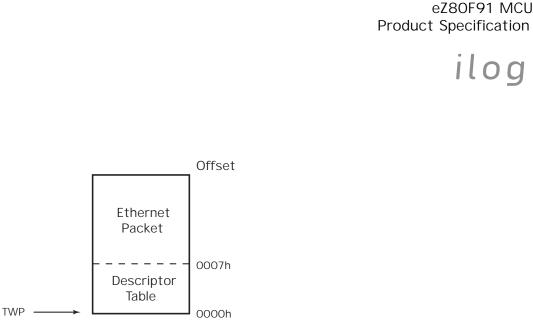
ZDI Address	ZDI Register Name	ZDI Register Function	Reset Value
00h	ZDI_ID_L	eZ80 ^{fi} Product ID Low Byte Register	08h
01h	ZDI_ID_H	eZ80 Product ID High Byte Register	00h
02h	ZDI_ID_REV	eZ80 Product ID Revision Register	XXh

> ilog 283

Table 170. Opcode Map Second Opcode After OEDh

Legend Lower Nibble of 2nd Opcode ¥

2


Upper Nibble of Second Opcode

4 SBC HL,BC Mnemonic

First Operand Second Operand

			_	_		_		.ower Ni				_		_	_	
0	0 INO	1 OUTO	2 LEA	3 LEA	4 TST	5	6	7 LD BC,	8 INO	9 OUTO	A	В	C TST	D	E	LD
0	B,(n)	(n),B	BC, IX+d	BC, IY+d	A,B			(HL)	C,(n)	(n),C			A,C			(HL BC
1	INO	OUTO	LEA	LEA	TST			LD DE,	INO	OUTO			TST			LD(F
	D,(n)	(n),D	DE, IX+d	DE, IY+d	A,D			(HL)	E,(n)	(n),E			A,E			DE
2	INO		LEA HL		TST			LD HL,	INO	OUTO			TST			LC
	H,(n)	(n),H	,IX+d	,IY+d	A,H			(HL)	L,(n)	(n),L			A,L			(HL HI
3		LD IY,			TST			LD IX,	INO	OUTO			TST		LD	
		(HL)	,IX+d	,IY+d	A,(HL)			(HL)	A,(n)	(n),A			A,A		(HL),IY	(HI) IX
4	IN	OUT	SBC	LD	NEG	RETN	IM 0	LD	IN	OUT	ADC	LD	MLT	RETI		LD
_	B,(BC)	(BC),B		(Mmn), BC				I,A	C,(C)	(C),C	HL,BC	BC, (Mmn)				R,
5	IN	OUT	SBC		LEA IX,	LEA IY,	IM 1	LD	IN	OUT	ADC	LD	MLT		IM 2	L
	D,(BC)	(BC),D		(Mmn), DE		IX+d		A,I	E,(C)	(C),E	HL,DE	DE, (Mmn)				A,I
6	IBN	OUT	SBC	LD	TST	PEA	PEA	RRD	IN	OUT	ADC	LD	MLT	LD	LD	RL
	H,(C)	(BC),H		(Mmn), HL	A,n	IX+d	IY+d		L,(C)	(C),L	HL,HL	HL, (Mmn)		MB,A	A,MB	
7			SBC	LD	TSTIO		SLP		IN	OUT	ADC	LD	MLT	STMIX	RSMIX	
			HL,SP	(Mmn), SP	n				A,(C)	(C),A	HL,SP	SP, (Mmn)				
8			INIM	ΟΤΙΜ	INI2						INDM					
9			INIMR	OTIMR	INI2R						INDMR	OTDMR	IND2R			
А	LDI	CPI	INI	OUTI	OUTI2				LDD	CPD	IND (OUTD O	UTD2			
В	LDIR	CPIR	INIR	OTIR (DTI2R			l	DDR C	PDR II	NDR O	TDR OTI	D2R			
С			INIRX	OTIRX				LD			INDRX	OTDRX				
D								I,HL LD								
E								HL,I								
F		n = 8														

Note: n = 8-bit data; Mmn = 16- or 24-bit addataod = 8-bit two s-complement displacement.

Note: For an official description of an Ethecket, pefer to IEEE 802.3 specification, Figure 3-1.

The descriptor table contains three entribe:next pointer (NP), the packet size (Pkt_Size), and the packet status (Stat), as display Figure 62

Figure 62. Descriptor Table Entries

NP is a 24-bit pointer to the start of the next cket. Pkt_Size contains the number of bytes of data in the Ethernet packet, including four CRC bytes, budoes not contain the seven descriptor table bytes. Stat containstances of the packet. Stat differs for Transmit and Receive packets. Statel 1780n page 295 and able 1790n page 295.

294

ilog

316

EMAC PHY Unit Select Address Register

The EMAC PHY Unit Select Address Registeriows the selection of nultiple connected external PHY devices. Selected 202

Table 202. EMAC PHY Unit Select Address Register(EMAC_FIAD = 003Fh)

Bit		7	6	5	4	3	2	1	0	
Reset		0	0	0	0	0	0	0	0	
CPU Access		R	R	R	R/W	R/W	R/W	R/W	R/W	
Note: R = Read Only; R/W = Read/Write.										
Bit										
Position	Value	Desc	ription							
[7:5]	000	Res	served.							
[4:0] FIAD	00h 1F	h Prog	rammal	ole 5-bi	t value	that sel	ects an	extern	al PHY.	

EMAC Transmit Polling Timer Register

This register sets the Transmit Polling **Beri**n increments of PTMR = SYSCLK \div 256. Whenever this register is written, the statistic Transmit Buffer Descriptor is checked to determine if the EMAC owns the Transmitflet It then rechecks this status every TPTMR (calculated by TPTMR x EMAC_PTR[7:0]). The Transmit Polling Timer is disabled if this register is set tooh (which also disables the transmitting of packets). If a transmission is in progressment EMAC_PTMR is set tooh, the transmission will complete. See Table 203

Table 203. EMAC Transmit Polling Timer Register (EMAC_PTMR = 0040h)

Bit		7	6	5	4	3	2	1	0		
Reset	0	0	0	0	0	0	0	0			
CPU Access	R/W	R/W	R/W	/ R/W	/ R/W						
Note: R/W = Read/Write.											
Bit Position Value Description											
[7:0] OOh FFh The Transmit polling period. EMAC_PTMR											

ilog ₃₂₇

Bit	7	6	5	4	3	2	1	0			
Reset	0	0	0	0	0	0	0	0			
CPU Access	R	R	R	R	R	R	R	R			
Note: R = Read Only.											
Bit Position Value Description											
[7:0] O EMAC_PRSD_H											

Table 218. EMAC PHY Read Status Data Register High Byte (EMAC_PRSD_H = 004Fh)

EMAC MII Status Register

The EMAC MII Status Register is used to the current state of the external PHY device. Set able 219

Table 219. EMAC MII Status Registe(EMAC_MIISTAT = 0050h)

Bit	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
CPU Access	R	R	R	R	R	R	R	R
Note: R = Read Only.								

Bit Position	Value	Description
7 BUSY	1	MII management operation in progress Busy. This status bit goes busy whenever the LCTLD (PHY Write) or the RSTAT (PHY Read) is set in the EMAC_MIIMGT register. It is negated when the Write or Read operation to the PHY has completed. In SCANmode, the BUSY will be asserted until the SCAN is disabled. Us the EmacIStat[MGTDONE] interrupt status bot determine whethe data is valid.
	0	Not Busy.
6	1	Local copy of PHY Link fail bit.
MIILF	0	PHY Link OK.

ilog ₃₃₆

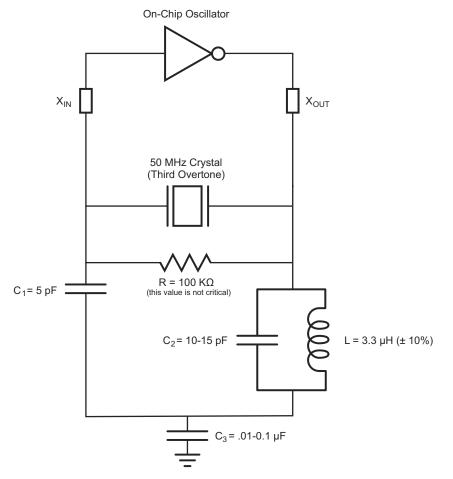


Figure 63. Recommended Crystal Oscillator Configuration 50 MHz Operation

Table 229. Recommended Crystal Oscillator Specifications 1 MHz Operation

Parameter	Frequency Dependent Value	Units	Comments
Frequency	1	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (Rg)	750	Ohms	Maximum
Load Capacitance (C)	13	рF	Maximum

ilog

Table 229. Recommended Crystal Oscillator Specifications 1 MHz Operation (Continued)

Parameter	Frequency Dependent Value	Units	Comments
Shunt Capacitance 😡	7	pF	Maximum
Drive Level	1	mW	Maximum

Table 230. Recommended Crystal Oscillator Specifications 10 MHz Operation

Frequency		Commente
Dependent value	Units	Comments
10	MHz	
Parallel		
Fundamental		
35	Ohms	Maximum
30	pF	Maximum
7	рF	Maximum
1	mW	Maximum
	Dependent Value 10 Parallel Fundamental 35 30	Dependent ValueUnits10MHzParallel

32 kHz Real-Time Clock Crystal Oscillator Operation

Figure 64on page 338 displays a recommended configuration for connecting the Real-Time Clock oscillator with an external 32 kH undamental mode, parallel-resonant crystal. The recommended crystal spit fications are provided in able 23 to page 338. A printed circuit board layout must not add more related pF of stray capacitance to either the RTC_X_{IN} or RTC_X_{OUT} pins. If oscillation does not occure duce the values of capacitors C₁ and C₂ to decrease loading.

An on-chip MOS resistor sets the crystal/drcurrent limit. This configuration does not require an external bias resistor acrossctly et al. An on-chip MOS resistor provides the biasing.

ilog

341

		$T_A = 40 \ "C \text{ to } 105 \ "C$				
Symbol	Parameter	Minimum	Тур	Maximum	Unit	Conditions
V _{VBO}	VBO Voltage Threshold	2.45	2.65	2.90	١	$V_{CQ} = V_{VBO}$
V _{POR}	POR Voltage Threshold	2.55	2.75	2.95	١	$V_{C} = V_{POR}$
V _{HYST}	POR/VBO Hysteresis	30	100	120	m	V
T _{ANA}	POR/VBO analog RESET duration	40		100	PS	
T _{VBO_MIN}	VBO pulse reject period		10		PS	
I _{POR_VBO}	POR/VBO DC current consumption	า	40	50	PA	
IS _{POR_VBO}	POR/VBO DC SLEEP mode current consumption		120	150	PA	VBO_OFF=0 (VBO enabled)
VCC RAMP	V _{CC} ramp rate requirements to guarantee proper RESET occurs	0.1		100	V/m	6

Table 234. POR and VBO Electrical Characteristics

Flash Memory Characteristics

Table 235 lists the Flash memory characteristic the eZ80F91 device. For Flash programming and erase timing information, **Etas**h Memoryon page 97.

Table 235. Flash Memory Electrical Characteristics and Timing

	3.6 V; 105 "C				
Symbol	Minimum	Typical	Maximum	Units	Notes
Flash Byte Read Cycle Time	78			ns	

Current Consumption Under Various Operating Conditions

Figure 65on page 342 displays the typical current consumption of the eZ80F91 device versus Vdd while operating **25** °C, with zero Wait states, and with either a 10 MHz, 20 MHz, or 50 MHz system clock.