

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ80
Core Size	8-Bit
Speed	50MHz
Connectivity	Ethernet, I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/ez80f91az050ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ilog |,

LQFP Pin No	BGA Pin No	Symbol	Function	Signal Direction	Description			
17	F1	ADDR12	Address Bus	Bidirectional	Configured as an output in normal			
18	F2	ADDR13	Address Bus	Bidirectional	operation. The address bus selects a location in memory or I/O space to be			
19	F3	ADDR14	Address Bus	Bidirectional	read or written. Configured as an input			
20	F4	ADDR15	Address Bus	Bidirectional	during bus acknowledge cyclesDrives the Chip Select/Wait State			
21	G1	ADDR16	Address Bus	Bidirectional	Generator block to generate Chip Selects.			
22	G2	V _{DD}	Power Supply		Power Supply.			
23	G3	V _{SS}	Ground		Ground.			
24	F5	ADDR17	Address Bus	Bidirectional	Configured as an output in normal			
25	H1	ADDR18	Address Bus	Bidirectional	operation. The address bus selects a location in memory or I/O space to be			
26	H2	ADDR19	Address Bus	Bidirectional	read or written. Configured as an input			
27	G4	ADDR20	Address Bus	Bidirectional	during bus acknowledge cyclesDrives the Chip Select/Wait State			
28	H3	ADDR21	Address Bus	Bidirectional	Generator block to generate Chip			
29	J1	ADDR22	Address Bus	Bidirectional	⁻ Selects.			
30	G5	ADDR23	Address Bus	Bidirectional	-			
31	J2	V _{DD}	Power Supply		Power Supply.			
32	H4	V _{SS}	Ground		Ground.			
33	J3	CS0	Chip Select 0	Output, Active Low	$\overline{\text{CS0}}$ Low indicates that an access is occurring in the defined $\overline{\text{CS0}}$ memory or I/O address space.			
34	K1	CS1	Chip Select 1	Output, Active Low	CS1 Low indicates that an access is occurring in the defined CS1 memory or I/O address space.			
35	K2	CS2	Chip Select 2	Output, Active Low	$\overline{\text{CS2}}$ Low indicates that an access is occurring in the defined $\overline{\text{CS2}}$ memory or I/O address space.			
36	L1	CS3	Chip Select 3	Output, Active Low	$\overline{\text{CS3}}$ Low indicates that an access is occurring in the defined $\overline{\text{CS3}}$ memory or I/O address space.			
37	M1	V _{DD}	Power Supply		Power Supply.			
38	M2	V _{SS}	Ground		Ground.			

Table 2. Pin Identification on the eZ80F91 Device (Continued)

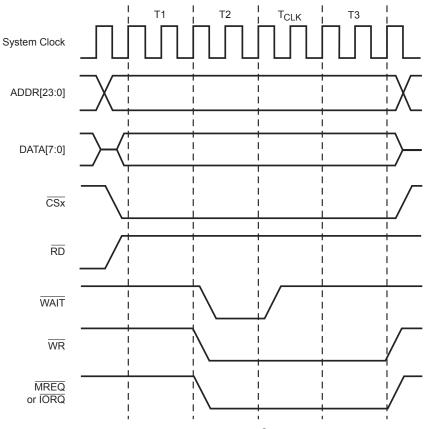


Figure 11. Example: Z80[®] Bus Mode Write Timing

Intel Bus Mode

Chip selects configured for Intel bus mode modify the CPU bus signals to duplicate a four-state memory transfer similar to that found on Intel-style microcontrollers. The bus signals and eZ80F91 pins are mapped as displayed in Figure 12 on page 74. In Intel bus mode, you select either multiplexed or nonmultiplexed address and data buses. In nonmultiplexed operation, the address and data buses are separate. In multiplexed operation, the lower byte of the address, ADDR[7:0], also appears on the data bus, DATA[7:0], during State T1 of the Intel bus mode cycle.

ilog

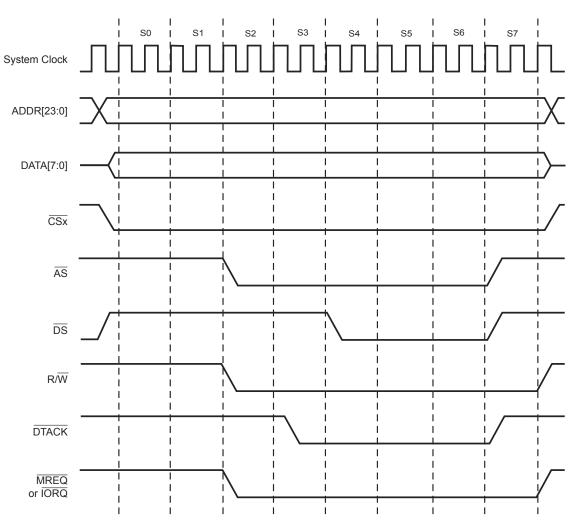


Figure 19. Example: Motorola Bus Mode Write Timing

Switching Between Bus Modes

When switching bus modes between IntelTM to Motorola, Motorola to IntelTM, eZ80[®] to Motorola, or eZ80 to IntelTM, there is one extra SCLK cycle added to the bus access. An extra clock cycle is not required for repeated access in any of the bus modes (for example, IntelTM to IntelTM). An extra clock cycle is not required for IntelTM (or Motorola) to eZ80 bus mode (under normal operation). The extra clock cycle is not shown in the timing examples. Due to the asynchronous nature of these bus protocols, the extra delay does not impact peripheral communication.

108

Bit Position	Value	Description
[1]	0	Disable Write/Erase Protect on block 08000h to 0FFFFh.
BLK1_PROT	1	Enable Write/Erase Protect on block 08000h to 0FFFFh.
[0]	0	Disable Write/Erase Protect on block 00000h to 07FFFh.
BLK0_PROT	1	Enable Write/Erase Protect on block 00000h to 07FFFh.

Note: The lower 32 KB block (0000h to 07FFFh—BLK0) is called the Boot block and is protected using the external WP pin.

Flash Interrupt Control Register

There are two sources of interrupts from the Flash controller. These two sources are:

- Page Erase, Mass Erase, or Row Program completed successfully.
- An error condition occurred.

Either or both of these two interrupt sources are enabled by setting the appropriate bits in the Flash Interrupt Control register.

The Flash Interrupt Control register contains four status bits to indicate the following error conditions:

Row Program Time-Out—This bit signals a time-out during Row Programming. If the current row program operation does not complete within 4864 Flash controller clocks, the Flash controller terminates the row program operation by clearing bit 2 of the Flash Program Control Register and sets the RP_TM0 error bit to 1.

Write Violation—This bit indicates an attempt to write to a protected block of Flash memory (the Write was not performed).

Page Erase Violation—This bit indicates an attempt to erase a protected block of Flash memory (the requested page was not erased).

Mass Erase Violation—This bit indicates an attempt to MASS ERASE when there are one or more protected blocks in Flash memory (the MASS ERASE was not performed).

If the error condition interrupt is enabled, any of these four error conditions result in an interrupt request being sent to the eZ80F91device's interrupt controller. Reading the Flash Interrupt Control register clears all error condition flags and the DONE flag. See Table 42 on page 109.

ilog | 131

- TMR3_OC_CTL2
- Compare Value Registers
 - TMR3_OC3_H
 - TMR3_OC3_L
 - TMR3_OC2_H
 - TMR3_OC2_L
 - TMR3_OC1_H
 - TMR3_OC1_L
 - TMR3_OC0_H
 - TMR3_OC0_L

Multiple PWM mode uses the following 19 registers:

- PWM Control Registers
 - TMR3_PWM_CTL1
 - TMR3_PWM_CTL2
 - TMR3_PWM_CTL3
- PWM Rising Edge Values
 - TMR3_PWM3R_H
 - TMR3_PWM3R_L
 - TMR3_PWM2R_H
 - TMR3_PWM2R_L
 - TMR3_PWM1R_H
 - $TMRx_PWM1R_L$
 - TMR3_PWM0R_H
 - TMR3_PWM0R_L
- PWM Falling Edge Values
 - TMR3_PWM3F_H
 - TMR*x*_PWM3F_L
 - TMR3_PWM2F_H
 - TMR3_PWM2F_L
 - TMR3_PWM1F_H
 - TMR3_PWM1F_L
 - TMR3_PWM0F_H
 - TMR3_PWM0F_L

158

Pulse-Width Modulation Falling Edge—Low Byte

A parallel 16-bit Write of {TMR3_PWMxF_H[7–0], TMR3_PWMxF_L[7–0]} occurs when software initiates a Write to TMR3_PWMxF_L. The register is listed in Table 78.

Table 78. PWMx Falling-Edge Register—Low Byte (TMR3_PWM0F_L = 0084h, TMR3_PWM1F_L = 0086h, TMR3_PWM2F_L = 0088h, TMR3_PWM3F_L = 008Ah)

Reset 0 0 0 0 0 0 0 0	
	eset
CPU Access R/W R/W R/W R/W R/W R/W R/W	PU Access

Note: R/W = Read/Write.

Bit Position	Value	Description
[7:0] PWMXF_L	00h–FFh	These bits represent the Low byte of the 16-bit value to set the falling edge COMPARE value for PWMx, {TMR3_PWMXF_H[7:0], TMR3_PWMXF_L[7:0]}. Bit 7 is bit 7 of the 16-bit timer data value. Bit 0 is bit 0 (lsb) of the 16-bit timer data value.

Pulse-Width Modulation Falling Edge—High Byte

Writing to TMR3_PWMxF_H stores the value in a temporary holding register. A parallel 16-bit Write of {TMR3_PWMxF_H[7–0], TMR3_PWMxF_L[7–0]} occurs when software initiates a Write to TMR3_PWMxF_L. The register is listed in Table 79.

Table 79. PWMx Falling-Edge Register—High Byte (TMR3_PWM0F_H = 0085h, TMR3_PWM1F_H = 0087h, TMR3_PWM2F_H = 0089h, TMR3_PWM3F_H = 008Bh)

Bit	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
CPU Access	R/W							
Note: R/W = Read/Write.								

Bit Position	Value	Description
[7:0] PWMXF_H	00h–FFh	These bits represent the High byte of the 16-bit value to set the falling edge COMPARE value for PWMx, {TMR3_PWMXF_H[7:0], TMR3_PWMXF_L[7:0]}. Bit 7 is bit 15 (msb) of the 16-bit timer data value. Bit 0 is bit 8 of the 16-bit timer data value.

- Write values to the RTC count registers to set the current time
- Write values to the RTC alarm registers to set the appropriate alarm conditions
- Write to RTC_CTRL to clear RTC_UNLOCK; clearing the RTC_UNLOCK bit resets and enables the clock divider

Real-Time Clock Registers

The RTC registers are accessed via the address and data buses using I/O instructions. The RTC_UNLOCK control bit controls access to the RTC count registers. When unlocked (RTC_UNLOCK = 1), the RTC count is disabled and the count registers are Read/Write. When locked (RTC_UNLOCK = 0), the RTC count is enabled and the count registers are Read Only. The default at RESET is for the RTC to be locked.

Real-Time Clock Seconds Register

This register contains the current seconds count. The value in the RTC_SEC register is unchanged by a RESET. The current setting of BCD_EN determines whether the values in this register are binary (BCD_EN = 0) or binary-coded decimal (BCD_EN = 1). Access to this register is Read Only if the RTC is locked, and Read/Write if the RTC is unlocked. See Table 80.

Table 80. Real-Time Clock Seconds Register (RTC_SEC = 00E0h)

Bit	7	6	5	4	3	2	1	0
Reset	Х	Х	Х	Х	Х	Х	Х	Х
CPU Access	R/W*							

Note: X = Unchanged by RESET; R/W* = Read Only if RTC locked, Read/Write if RTC unlocked.

Binary-Coded-Decimal Operation (BCD_EN = 1)

Bit Position	Value	Description
[7:4] TEN_SEC	0–5	The tens digit of the current seconds count.
[3:0] SEC	0–9	The ones digit of the current seconds count.

Binary Operation (BCD_EN = 0)

Bit Position	Value	Description
[7:0] SEC	00h–3Bh	The current seconds count.

ilog ₁₆₄

Real-Time Clock Day-of-the-Week Register

This register contains the current day-of-the-week count. The RTC_DOW register begins counting at 01h. The value in the RTC_DOW register is unchanged by a RESET. The current setting of BCD_EN determines whether the value in this register is binary (BCD_EN = 0) or binary-coded decimal (BCD_EN = 1). Access to this register is Read Only if the RTC is locked and Read/Write if the RTC is unlocked. See Table 83.

Table 83. Real-Time Clock Day-of-the-Week Register (RTC_DOW = 00E3h)

Bit	7	6	5	4	3	2	1	0
Reset	0	0	0	0	Х	Х	Х	Х
CPU Access	R	R	R	R	R/W*	R/W*	R/W*	R/W*

Note: X = Unchanged by RESET; R = Read Only; R/W* = Read Only if RTC locked, Read/Write if RTC unlocked.

Binary-Coded Decimal Operation (BCD_EN = 1)

Bit Position	Value	Description
[7:4]	0000	Reserved.
[3:0] DOW	1–7	The current day-of-the-week.count.

Binary Operation (BCD_EN = 0)

Bit Position	Value	Description
[7:4]	0000	Reserved.
[3:0] DOW	01h–07h	The current day-of-the-week count.

ilog ₁₆₅

Real-Time Clock Day-of-the-Month Register

This register contains the current day-of-the-month count. The RTC_DOM register begins counting at 01h. The value in the RTC_DOM register is unchanged by a RESET. The current setting of BCD_EN determines whether the values in this register are binary $(BCD_EN = 0)$ or binary-coded decimal $(BCD_EN = 1)$. Access to this register is Read Only if the RTC is locked, and Read/Write if the RTC is unlocked. See Table 84.

Table 84. Real-Time Clock Day-of-the-Month Register (RTC_DOM = 00E4h)

Bit	7	6	5	4	3	2	1	0
Reset	Х	Х	Х	Х	Х	Х	Х	Х
CPU Access	R/W*							

Note: X = Unchanged by RESET; R/W* = Read Only if RTC locked, Read/Write if RTC unlocked.

Binary-Coded Decimal Operation (BCD_EN = 1)

Bit Position	Value	Description				
[7:4] TENS_DOM	0–3	The tens digit of the current day-of-the-month count.				
[3:0] DOM	0—9	The ones digit of the current day-of-the-month count.				

Binary Operation (BCD_EN = 0)

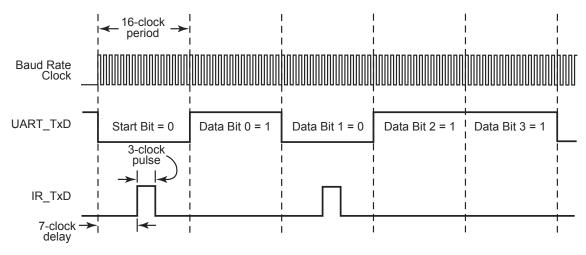
Bit Position	Value	Description
[7:0] DOM	01h–1Fh	The current day-of-the-month count.

ilog ₁₈₉

Bit Position	Value	Description
FOSILION	value	•
4 EPS	0	Even Parity Select. Use odd parity for transmit and receive. The total number of 1 bits in the transmit data plus parity bit is odd. Used as SPACE bit in Multidrop Mode. See Table 104 on page 189 for parity select definitions. Note: Receive Parity is set to SPACE in multidrop mode.
	1	Use even parity for transmit and receive. The total number of 1 bits in the transmit data plus parity bit is even. Used as MARK bit in Multidrop Mode. See Table 104 on page 189 for parity select definitions.
	0	Parity bit transmit and receive is disabled.
3 PEN	1	Parity bit transmit and receive is enabled. For transmit, a parity bit is generated and transmitted with every data character. For receive, the parity is checked for every incoming data character. In Multidrop Mode, receive parity is checked for space parity.
[2:0] CHAR	000–111	UART Character Parameter Selection. See Table 103 on page 189 for a description of the values.

Table 103. UART Character Parameter Definition

CHAR[2:0]	Character Length (Tx/Rx Data Bits)	Stop Bits (Tx Stop Bits)
000	5	1
001	6	1
010	7	1
011	8	1
100	5	2
101	6	2
110	7	2
111	8	2


ilog

196

IrDA specifications. The UART must be enabled to use the endec. For more information on the UART and its BRG, see Universal Asynchronous Receiver/Transmitter on page 175.

Transmit

The data to be transmitted via the IR transceiver is the data sent to UART0. The UART transmit signal, TxD, and Baud Rate Clock are used by the endec to generate the modulation signal, IR_TxD, that drives the infrared transceiver. Each UART bit is 16 clocks wide. If the data to be transmitted is a logical 1 (High), the IR_TxD signal remains Low (0) for the full 16-clock period. If the data to be transmitted is a logical 0, a 3-clock High (1) pulse is output following a 7-clock Low (0) period. Following the 3-clock High pulse, a 6-clock Low pulse completes the full 16-clock data period. Data transmission is displayed in Figure 38. During data transmission, the IR receive function must be disabled by clearing the IR_RxEN bit in the IR_CTL reg to 0 to prevent transmitter-to-receiver crosstalk.

Receive

Data received from the IR transceiver via the IR_RxD signal is decoded by the endec and passed to the UART. The IR_RxEN bit in the IR_CTL register must be set to enable the receiver decoder. The IrDA serial infrared (SIR) data format uses half duplex communication. Therefore, the UART must not be allowed to transmit while the receiver decoder is enabled. The UART Baud Rate Clock is used by the endec to generate the demodulated signal, RxD, that drives the UART. Each UART bit is 16 clocks wide. If the data to be received is a logical 1 (High), the IR_RxD signal remains High (1) for the full 16-clock

ilog ₂₀₇

Table 112. SPI Baud Rate Generator Register—Low Byte (SPI_BRG_L = 00B8h)

Bit		7	6	5	4	3	2	1	0
Reset		0	0	0	0	0	0	1	0
CPU Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Note: R/W = Re	Note: R/W = Read/Write.						1		
Bit									
Position	Value	Description							
[7:0] SPI_BRG_L	00h– FFh	These bits represent the Low byte of the 16-bit BRG divider value. The complete BRG divisor value is returned by {SPI_BRG_H, SPI_BRG_L}.							

Table 113. SPI Baud Rate Generator Register—High Byte (SPI_BRG_H = 00B9h)

Bit	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
CPU Access	R/W							
Note: R/W = Read/Write.								

Bit Position	Value	Description
[7:0] SPI_BRG_H	00h–FFh	These bits represent the High byte of the 16-bit BRG divider value. The complete BRG divisor value is returned by {SPI_BRG_H, SPI_BRG_L}.

ilog ₂₄₄

Bit Position	Value	Description		
2 ign_low_1	0	The <i>Ignore the Low Byte</i> function of the ZDI Address Match 1 registers is disabled. If brk_addr1 is set to 1, ZDI initiates a break when the entire 24-bit address, ADDR[23:0], matches the 3-byte value {ZDI_ADDR1_U, ZDI_ADDR1_H, ZDI_ADDR1_L}.		
	1	The <i>Ignore the Low Byte</i> function of the ZDI Address Match 1 registers is enabled. If brk_addr1 is set to 1, ZDI initiates a break when only the upper 2 bytes of the 24-bit address, ADDR[23:8], match the 2-byte value {ZDI_ADDR1_U, ZDI_ADDR1_H}. As a result, a break occurs anywhere within a 256-byte page.		
1 ign_low_0	0	The <i>Ignore the Low Byte</i> function of the ZDI Address Match 1 registers is disabled. If brk_addr0 is set to 1, ZDI initiates a break when the entire 24-bit address, ADDR[23:0], matches the 3-byte value {ZDI_ADDR0_U, ZDI_ADDR0_H, ZDI_ADDR0_L}.		
	1	The <i>Ignore the Low Byte</i> function of the ZDI Address Ma 1 registers is enabled. If the brk_addr1 is set to 0, ZDI initiates a break when only the upper 2 bytes of the 24- address, ADDR[23:8], match the 2 bytes value {ZDI_ADDR0_U, ZDI_ADDR0_H}. As a result, a break occurs anywhere within a 256-byte page.		
0	0	ZDI single step mode is disabled.		
single_step	1	ZDI single step mode is enabled. ZDI asserts a break following execution of each instruction.		

273

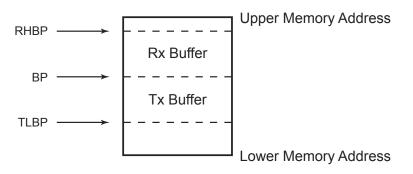

Symbol	Parameter	Test Condition	Min	Тур	Max	Units
F _{vco}	VCO frequency	Recommended operating conditions		50		MHz
G _{vco}	VCO Gain	Recommended operating conditions	36		120	MHz/ V
D1	SCLK Duty Cycle from PLL or XTALOSC source	Recommended operating conditions	45	50	55	%
T1A	PLL Clock Jitter	F _{VCO} = 50 MHz. XTALOSC = 10 MHz		350	500	ps
Lock2	PLL Lock-Time	F _{VCO} = 50 MHz. XTALOSC = 3.579 MHz C _{pll1} = 220 pF, R _{pll} = 499 ¾, C _{pll2} = 0.056 μF				S
I _{oH1} (XTL)	High-level Output Current for XTAL2 pin	V _{oH} = V _{DD} –0.4 V PLL_CTL0[5:4] = 01	-0.3			mA
I _{oL1} (XTL)	Low-level Output Current for XTAL2 pin	V _{oL} = 0.4 V PLL_CTL0[5:4] = 01	0.6			mA
I _{oH2} (XTL)	High-level Output Current for XTAL2 pin	V _{oH} = V _{DD} –0.4 V PLL_CTL0[5:4] = 11				mA
I _{oL2} (XTL)	Low-level Output Current for XTAL2 pin	V _{oL} = 0.4 V PLL_CTL0[5:4] = 11				mA
V _{PP3M} (XTL)	Peak-to-peak voltage under oscillator conditions for XTAL2 pin	F _{OSC} = 3.579 MHz Cx1 = 10 pF Cx2 = 10 pF				V
V _{PP10M} (XTL)	Peak-to-peak voltage under oscillator conditions for XTAL2 pin	F _{OSC} = 10 MHz Cx1 = 10 pF Cx2 = 10 pF				V
C _{xtal1} (package type)	Capacitance measured from XTAL1 pin to GND	T = 25 °C				pF
C _{xtal2} (package type)	Capacitance measured from XTAL2 pin to GND	T = 25 °C				pF
C _{loop} (package type)	Capacitance measured from loop filter pin to GND	T = 25 °C				pF

Table 156. PLL Characteristics (Continued)

293

• Receive High Boundary Pointer (RHBP)—this register points to the end of the Receive buffer + 1.

Figure 60 displays the internal Ethernet shared memory.

The Transmit and Receive buffers are subdivided into packet buffers of 32, 64, 128, or 256 bytes in size. The packet buffer size is set in bits 7 and 6 of the EmacBufSize register. An Ethernet packet accommodate multiple packet buffers. First, however, a brief listing of the contents of a typical Ethernet packet is in order. See Table 177.

Table 177	. Ethernet	Packet	Contents
-----------	------------	--------	----------

Byte Range	Contents
Bytes 0–5	MAC destination address.
Bytes 6–11	MAC source address.
Bytes 12–13	Length/Type field.
Bytes 14–n	MAC Client Data.
Bytes (n+1)–(n+4)	Frame Check Sequence.

At the start of each packet is a descriptor table that describes the packet. Each actual Ethernet packet follows the descriptor table as displayed in Figure 61 on page 294.

ilog ₂₉₉

EMAC Configuration Register 1

The EMAC Configuration Register 1 allows control of the padding, autodetection, cyclic redundancy checking (CRC) control, full-duplex, field length checking, maximum packet ignores, and proprietary header options. See Table 181.

Table 181. EMAC Configuration Register 1 (EMAC_CFG1 = 0021h)

Bit	7	6	5	4	3	2	1	0				
Reset	0	0	0	0	0	0	0	0				
CPU Access	5	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Note: R/W = I	Read/Write.											
Bit												
Position	Value	Descr	iption									
7 PADEN	0	-	No padding. Assume all frames presented to EMAC have proper length.									
	1	data fi	EMAC pads all short frames by adding zeroes to the end of the data field. This bit is used in conjunction with ADPADN and VLPAD.									
6 ADPADN	0	Disabl	Disable autodetection.									
	1	Enable frame detection by comparing the two bytes following the source address with 0x8100 (VLAN Protocol ID) and pad accordingly. This bit is ignored if PADEN is cleared to 0.										
5 VLPAD	0	Do not	Do not pad all short frames.									
	1	EMAC pads all short frames to 64 bytes and append a valid CRC. This bit is ignored if PADEN is cleared to 0.										
4	0	Do not	Do not append CRC.									
CRCEN	1	Appen	Append CRC to every frame regardless of padding options.									
3	0	HALF-	HALF-DUPLEX mode. CSMA/CD is enabled.									
FULLD	1	Enable FULL-DUPLEX mode. CSMA/CD is disabled.										
2	0	Ignore the length field within Transmit/Receive frames.										
FLCHK	1	length	Both Transmit and Receive frame lengths are compared to the length/type field. If the length/type field represents a length then the frame length check is performed.									
1 HUGEN	0		Limit the Receive frame-size to the number of bytes specified in the MAXF[15:0] field.									
	1	Allow unlimited sized frames to be received. Ignore the MAXF[15:0] field.										

ilog ₃₀

MII, RMII/SMII, PMD (100 Mbps) Clock Period = 40 ns		•	/II/SMII /Ibps)	ENDEC Mode (10 Mbps) Clock Period = 100 ns			
		Clock Perio	od = 400 ns				
IPGR2[6:0]	Interpacket Gap	IPGR2[6:0]	Interpacket Gap	IPGR2[6:0]	Interpacket Gap		
00h	0.24 µs	00h	2.4 µs	00h	0.6 µs		
10h	0.88 µs	10h	8.8 µs	10h	2.2 µs		
*12h	0.96 µs	12h	9.6 µs	20h	3.8 µs		
20h	1.52 µs	20h	15.2 µs	40h	7.0 µs		
40h	2.80 µs	40h	28.0 µs	5Ah	9.6 µs		
7Fh	5.32 µs	7Fh	53.2 µs	7Fh	13.3 µs		
ote: *The IEE	E 802.3, 802.3(u) minimum value	s are shaded.				

Table 190. EMAC_IPGT Non-Back-to-Back Settings for Full- /Half-Duplex Modes

A non-back-to-back Transmit IPG is determined by the following formula:

(6 clocks + IPGR2 clocks) * clock period = IPG

The difference in values between Table 189 on page 306 and Table 190 is due to the asynchronous nature of the Carrier Sense (CRS). The CRS must undergo a 2-clock synchronization before the internal Tx state machine detects it. This synchronization equates to a 6-clock intrinsic delay between packets instead of the 3-clock intrinsic delay in the back-to-back packet mode. More information covering this topic is found in the IEEE 802.3/4.2.3.2.1 Carrier Deference section.

EMAC Interpacket Gap Register

The EMAC Interpacket Gap (IPG) is a programmable field representing the IPG between back-to-back packets. It is the IPG parameter used in FULL-DUPLEX and HALF-DUPLEX modes between back-to-back packets. Set this field to the appropriate number of IPG bytes. The default setting of 15h represents the minimum IPG of 0.96 μ s (at 100 Mbps) or 9.6 μ s (at 10 Mbps). See Table 191.

Table 191. EMAC Interpacket Gap Register (EMAC_IPGT = 002Dh)

Bit	7	6	5	4	3	2	1	0
Reset	0	0	0	1	0	1	0	1
CPU Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Note: R = Read Only; R/W	/ = Read	/Write						

ilog ₃₂₂

Bit		7	6	5	4	3	2	1	0	
Reset		0	0	0	0	0	0	0	0	
CPU Access		R	R	R	R/W	R/W	R/W	R/W	R/W	
Note: R = Read C	Note: R = Read Only, R/W = Read/Write.									
Bit Position	Value	Des	cription							
[7:0] EMAC_RRP_H	00h-FFI	Rec	These bits represent the High byte of the 2-byte EMAC Receive Read Pointer value, {EMAC_RRP_H, EMAC_RRP_L}. Bit 7 is bit 15 (msb) of the 16-bit value. Bits 7:5 default to 000 on reset; bit 0 is bit 8 of the 16-bit value.							

Table 213. EMAC Receive Read Pointer Register—High Byte (EMAC_RRP_H = 004Ah)

EMAC Buffer Size Register

The lower six bits of this register set the level at which the EMAC either transmits a pause control frame or jams the Ethernet bus, depending on the mode selected. When each of these bits contain a zero, this feature is disabled.

In FULL-DUPLEX mode, a Pause Control Frame is transmitted as a One-shot operation. The software must free up a number of Rx buffers so that the number of buffers remaining, EmacBlksLeft, is greater than TCPF_LEV.

In HALF-DUPLEX mode, the EMAC jams the Ethernet by sending a continuous stream of hexadecimal 5s (5fh). When the software frees up the Rx buffers and the number of buffers remaining, EmacBlksLeft, is greater than TCPF_LEV, the EMAC stops jamming.

ilog ₃₆₃

DATA58 **DATA6 8 DATA78** DC Characteristics 339 DCD 190, 193 DCD0 13, 198 DCD1 16 **DCTS 193 DDCD 193** DDSR 193 Divider, PLL 266 divisor count 206 divisor count, 16-bit 182 DSR 191, 193 DSR0 13, 198 **DSR1** 16 DTACK 81, 82 DTR 191, 193 DTR0 12, 198 DTR1 15

Ε

EC0 17, 127, 129, 132 EC1 22, 127, 129, 132 edge-selectable interrupts 55 **Edge-Triggered Interrupts 54** EI, Op Code Map 280 EMAC 287 EMAC Address Filter Register 311 EMAC Boundary Pointer Register-Low and High Bytes 319 EMAC Boundary Pointer Register—Upper Byte 319 EMAC Buffer Size Register 322 EMAC Configuration Register 1 299 EMAC Configuration Register 2 301 EMAC Configuration Register 3 302 EMAC Configuration Register 4 303 EMAC FIFO Data Register—Low and High Bytes 332 **EMAC FIFO Flags Register 333** EMAC Functional Description 288 EMAC Hash Table Register 312

EMAC Interpacket Gap 306 EMAC Interpacket Gap Overview 306 EMAC Interpacket Gap Register 307 EMAC Interrupt Enable Register 323 EMAC Interrupt Status Register 325 EMAC Interrupts 292 EMAC Maximum Frame Length Register-Low and High Bytes 309 EMAC memory 288, 289 EMAC MII Management Register 313 EMAC MII Status Register 327 EMAC Non-Back-To-Back IPG Register—Part 1 308 EMAC Non-Back-To-Back IPG Register—Part 2 308 EMAC PHY Address Register 315 EMAC PHY Configuration Data Register-Low Byte 314 EMAC PHY Read Status Data Register-Low and High Bytes 326 EMAC PHY Unit Select Address Register 316 EMAC RAM 93, 94, 95, 96 EMAC Receive Blocks Left Register-Low and High Bytes 330 EMAC Receive High Boundary Pointer Register-Low and High Bytes 320 EMAC Receive Read Pointer Register-Low and High Bytes 321 EMAC Receive Write Pointer Register—High Byte 329 EMAC Receive Write Pointer Register—Low Byte 328 **EMAC Receiver Interrupts 292** EMAC Registers 297 EMAC Reset Control Register 317 EMAC Shared Memory Organization 292 EMAC Station Address Register 304 EMAC System Interrupts 292 EMAC Test Register 298 EMAC Transmit Lower Boundary Pointer Register-Low and High Bytes 318 EMAC Transmit Pause Timer Value Register-Low and High Bytes 305 EMAC Transmit Polling Timer Register 316

ilog | 365

GPIO Overview 49 GPIO port pins 41, 49, 55, 354

Η

HALT 10, 253, 277 HALT instruction 45 HALT Mode 45 HALT mode 1, 46, 245, 253 HALT, Op-Code Map 280 HALT_SLP 10, 253, 260 Handshake 216 handshake 175, 177 hash table 311

I

I/O Chip Select Operation 68 I/O Chip Selects, External 27 I/O Read 99 I/O space 6, 8, 65, 68 I2C Acknowledge bit 226 I2C bus 211, 214, 215 I2C bus clock 211 I2C bus protocol 212 I2C Clock Control Register 229 I2C control bit 217, 218, 220 I2C Control Register 225 I2C Data Register 225 I2C Extended Slave Address Register 224 I2C Registers 223 I2C Software Reset Register 230 I2C Status Register 227 IC0 17, 127, 129, 134, 135, 139, 140, 141, 142, 152, 156 IC1 17, 127, 129, 134, 135, 139, 141, 152, 156 IC2 18, 127, 129, 134, 135, 139, 140, 141, 152, 156 IC3 18, 127, 129, 134, 135, 139, 141, 142, 152, 156 IEEE 1149.1 specification 259, 264 IEEE 802.3 311 IEEE 802.3 frames 300 IEEE 802.3 specification 301, 302

IEEE 802.3, 802.3(u) minimum values 306 IEEE 802.3/4.2.3.2.1 Carrier Deference 307, 308 IEEE Standard 1149.1 257, 258 IEF1 59, 125, 253 **IEF2 59** IFLG bit 211, 216, 219, 221, 222, 223, 226, 229 IM 0, Op Code Map 283 IM 1, Op Code Map 283 IM 2, Op Code Map 283 Information Page Characteristics 102 Infrared Encoder/Decoder 195 Infrared Encoder/Decoder Register 199 Infrared Encoder/Decoder Signal Pins 198 Input Capture 128 INPUT capture mode 130 Input capture mode 128 input capture mode 127, 134 **INSTRD 9 Instruction Store 4** 0 Registers 249 Intel-70 Intel Bus Mode 73 Intel Bus Mode (Separate Address and Data Buses) 74 internal pull-up 50 Internal RC oscillator 115 internal RC oscillator 118 internal system clock 69 Interpacket Gap 306, 307 Interpacket gap 306 interpacket gap 296, 308 Interrupt Controller 57 interrupt enable 9 Interrupt Enable bit 225 interrupt enable bit 160, 178 Interrupt Enable Flag 253 interrupt enable flag 125 Interrupt Input 198 interrupt input 11, 12, 13, 14, 15, 16 Interrupt Priority 61, 63 interrupt priority 63 interrupt priority levels 60 Interrupt Priority Registers 60 Interrupt request 133, 134