

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

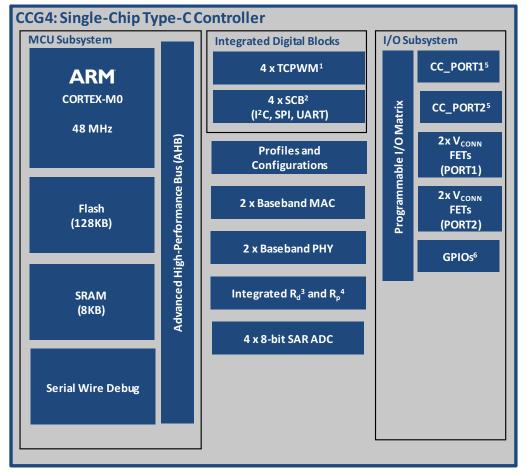
Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details


Details	
Product Status	Active
Applications	USB Type C
Core Processor	ARM® Cortex®-M0
Program Memory Type	FLASH (128kB)
Controller Series	·
RAM Size	8K x 8
Interface	I ² C, SPI, UART/USART, USB
Number of I/O	14
Voltage - Supply	2.7V ~ 5.5V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cypd4126-40lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

1. Timer, counter, pulse width modulation block

2. Serial communication block configurable as UART, SPI, or I²C

3. Termination resistor denoting a UFP

4. Current Sources to indicate a DFP

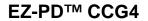
5. Configuration Channel

6. General purpose input/output

Available Firmware and Software Tools

EZ-PD Configuration Utility

The EZ-PD Configuration Utility is a GUI-based Microsoft Windows application developed by Cypress to guide a CCGx user through the process of configuring and programming the chip. The utility allows users to:


1. Select and configure the parameters they want to modify

2. Program the resulting configuration onto the target CCGx device.

The utility works with the Cypress supplied CCG1, CCG2, CCG3, and CCG4 kits, which host the CCGx controllers along with a USB interface. This version of the EZ-PD Configuration Utility supports configuration and firmware update operations on CCGx controllers implementing EMCA and Display Dongle applications. Support for other applications, such as Power Adapters and Notebook port controllers, will be provided in later versions of the utility.

You can download the EZ-PD Configuration Utility and its associated documentation at the following link:

http://www.cypress.com/documentation/software-and-drivers/ez-pd-configuration-utility

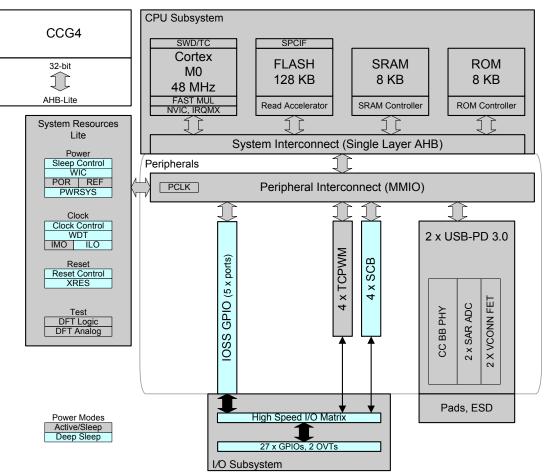


Figure 1. EZ-PD CCG4 Block Diagram

Functional Overview

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in EZ-PD CCG4 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a wakeup interrupt controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a nonmaskable interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a serial wire debug (SWD) interface, which is a 2-wire form of JTAG. The debug configuration used for EZ-PD CCG4 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

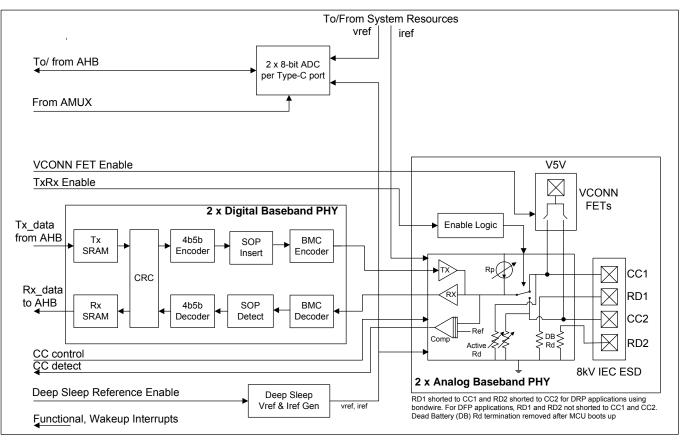
The EZ-PD CCG4 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver two wait-states (WS) access time at 48 MHz and with 0-WS access time at 16 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

USB-PD Subsystem (SS)

EZ-PD CCG4 has two USB-PD subsystems consisting of USB Type-C baseband transceivers and physical-layer logic. These transceivers perform the BMC and the 4b/5b encoding and decoding functions as well as the 1.2-V analog front end. This subsystem integrates the required termination resistors to identify the role of the EZ-PD CCG4 solution. R_D is used to identify EZ-PD CCG4 as a UFP in a DRP application. When configured as a DFP, integrated current sources perform the role of R_P or pull-up resistors. These current sources can be programmed to indicate the complete range of current capacity on VBUS defined in the USB Type-C spec. EZ-PD CCG4 responds to all USB-PD communication.


The USB-PD sub-system contains two 8-bit SAR (successive approximation register) ADCs for analog to digital conversions. The ADCs include an 8-bit DAC and a comparator. The DAC output forms the positive input of the comparator. The negative input of the comparator is from a 4-input multiplexer. The four inputs of the multiplexer are a pair of global analog multiplex busses an internal bandgap voltage and an internal voltage proportional to the absolute temperature. All GPIO inputs can be connected to the global analog multiplex busses through a switch at each GPIO that can enable that GPIO to be connected to the mux bus for ADC use. The CC1 and CC2 pins of both Type-C ports are not available to connect to the mux busses.

To support the latest USB-PD 3.0 specification, CCG4 has implemented the fast role swap feature. Fast Role Swap enables externally powered docks and hubs to rapidly switch to bus power when their external power supply is removed. For more details, refer to Section 6.3.17 (FR_Swap Message) in the USB-PD 3.0 specification.

CCG4 is designed to be fully interoperable with revision 3.0 of the USB Power Delivery specification as well as revision 2.0 of the USB Power Delivery specification.

CCG4 supports Extended Messages containing data of up to 260 bytes. The Extended Messages will be larger than expected by the USB-PD 2.0 hardware. To accommodate Revision 2.0 based systems, a Chunking mechanism is implemented such that Messages are limited to Revision 2.0 sizes unless it is discovered that both systems support the longer Message lengths.

Figure 2. USB-PD Subsystem

System Resources

Power System

The power system is described in detail in the section "Power" on page 14. It provides the assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) or interrupts (low voltage detect (LVD)). EZ-PD CCG4 can operate from three different power sources over the range of 2.7 to 5.5 V and has three different power modes, transitions between which are managed by the power system. EZ-PD CCG4 provides Sleep and Deep Sleep low-power modes.

Clock System

The clock system for EZ-PD CCG4 consists of the internal main oscillator (IMO) and the internal low-power oscillator (ILO).

Peripherals

Serial Communication Blocks (SCB)

EZ-PD CCG4 has four SCBs, which can be configured to implement an I^2 C, SPI, or UART interface. The hardware I^2 C blocks implement full multi-master and slave interfaces capable of multimaster arbitration. In the SPI mode, the SCB blocks can be configured to act as a master or a slave.

In the I^2C mode, the SCB blocks are capable of operating at speeds up to 1 Mbps (Fast Mode Plus) and have flexible buffering options to reduce interrupt overhead and latency for the CPU. These blocks also support I^2C that creates a mailbox address range in the memory of EZ-PD CCG4 and effectively reduce I^2C communication to reading from and writing to an array in memory. In addition, the blocks support 8-deep FIFOs for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduce the need for clock stretching caused by the CPU not having read data on time.

The I²C peripherals are compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/Os are implemented with GPIO in open-drain modes.

The I^2 C port on SCB 2, SCB 3 and SCB 4 blocks of EZ-PD CCG4 are not completely compliant with the I^2 C spec in the following:

- The GPIO cells for SCB 2 to SCB 4 I²C port are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8-mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the bus load.

Timer/Counter/PWM Block (TCPWM)

EZ-PD CCG4 has up to four TCPWM blocks. Each implements a 16-bit timer, counter, pulse-width modulator (PWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width of an input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or decode quadrature signals.

GPIO

EZ-PD CCG4 has 30 GPIOs that includes the I^2 C and SWD pins, which can also be used as GPIOs. The I^2 C pins from only SCB 1 are overvoltage-tolerant. The number of available GPIOs vary with the part numbers. The GPIO block implements the following:

- Seven drive strength modes:
 - Input only
 - Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode)
- Selectable slew rates for dV/dt related noise control to improve EMI

During power-on and reset, the I/O pins are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

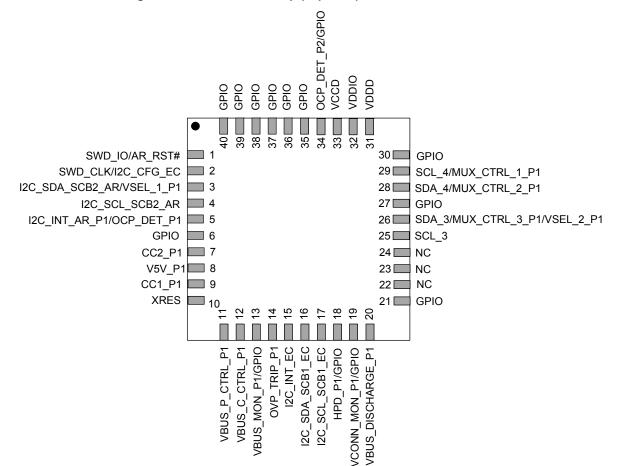


Table 2. Pinout for CYPD4125-40LQXIT

Group	Pin Name	Pin Number	Description					
LICD Tyme C Dort 1	CC1_P1	9	USB PD connector detect/Configuration Channel 1					
USB Type-C Port 1	CC2_P1	7	USB PD connector detect/Configuration Channel 2					
	VBUS_P_CTRL_P1	11	Full rail control I/O for enabling/disabling. Provider load FET of USB Type-C port 1.					
VBUS Control	VBUS_C_CTRL_P1	12	Full rail control I/O for enabling/disabling. Consumer load FET of USB Type-C port 1/SCB1 (see Table 3 through Table 6 on page 12).					
	VBUS_DISCHARGE_P1	20	I/O used for discharging VBUS line during voltage change					
VCONN Control	VCONN_MON_P1/GPIO	19	VCONN_MON_P1 (Monitor VCONN for OVP condition on port 1)/GPIO					
Overvoltage Protection (OVP)	OVP_TRIP_P1	14	VBUS overvoltage output indicator for port 1 (active LOW)					
	GPIO	27	SCB3 (see Table 3 through Table 6)/GPIO					
	VBUS_MON_P1/GPIO	13	VBUS_MON_P1 (VBUS overvoltage protection monitoring signal)/GPIO					
	HPD_P1/GPIO	18	HPD_P1 (Hot Plug Detect I/O for port 1)/GPIO					
	GPIO	21						
	GPIO	30	GPIO					
	GPIO	34						
	GPIO	35	CPIO/SCP4 (see Table 3 through Table 6)					
	GPIO	36	GPIO/SCB4 (see Table 3 through Table 6)					
	GPIO	37						
(GPIO	38	GPIO					
	GPIO	39						
	GPIO	40						
	I2C_SCL_SCB1_EC	17	SCB1/SCB4 (see Table 3 through Table 6)					
GPIOs and Serial	I2C_SDA_SCB1_EC	16	SCB1/SCB3 (see Table 3 through Table 6)					
Interfaces	I2C_INT_EC	15	I2C interrupt line					
	I2C_SCL_SCB2_AR	4	SCB2 (see Table 3 through Table 6)					
	I2C_SDA_SCB2_AR/VSEL_1_P1	3	SCB1 or SCB2 (see Table 3 through Table 6) or voltage selection control for VBUS on port 2					
	I2C_INT_AR_P1/OCP_DET_P1	5	I2C interrupt line or VBUS Overcurrent Protection Input for port 1 (Active LOW)					
	GPIO	6	GPIO/SCB1/SCB2 (see Table 3 through Table 6)					
	SCL_3/GPIO	25	GPIO/SCB3 (see Table 3 through Table 6)					
	SDA_3/MUX_CTRL_3_P1/VSEL_2_P1	26	SCB3 (see Table 3 through Table 6) or MUX_CTRL_3_P1 (Mux control for port 1), or Voltage selection control for VBUS on port 1					
	SCL_4/MUX_CTRL_1_P1	29	SCB3 (see Table 3 through Table 6) or MUX_CTRL_1_P1 (Mux control for port 1)					
	SDA_4/MUX_CTRL_2_P1	28	SCB4 (see Table 3 through Table 6) or MUX_CTRL_2_P1 (Mux control for port 1)					
	SWD_IO/AR_RST#	1	Serial wire debug I/O (SWD IO)/SCB1. See Table 3 through Table 6 or Alpine Ridge Reset.					
	SWD_CLK/I2C_CFG_EC	2	SWD Clock/I2C_CFG_EC					
Reset	XRES ^[4]	10	Reset input (active LOW)					

Note
4. This is firmware configurable GPIO. By default, this pin is floating. Firmware can add pull-up/pull-down and enable/disable IO buffers.

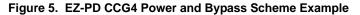
Figure 4. 40-Pin QFN Pin Map (Top View) for CYPD4125-40LQXIT

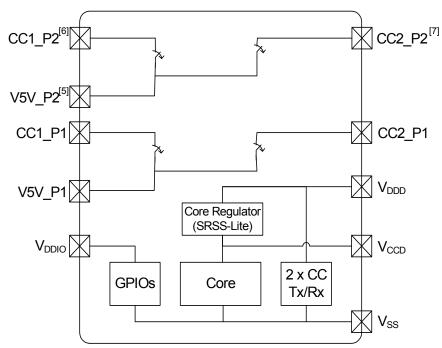
Power

The following power system diagram shows the set of power supply pins as implemented in EZ-PD CCG4.

CCG4 shall be able to operate from three possible external supply sources: V5V_P1 for first Type-C port, V5V_P2 for second Type- C port and VDDD.

CCG4 has the power supply input V5V_P1 and V5V_P2 pins for providing power to EMCA cables through integrated VCONN FETs. There are two VCONN FETs in CCG4 per Type-C port to power either CC1 or CC2 pin. These FETs are capable of providing a minimum of 1W on the CC1 and CC2 pins for the EMCA cables. In USB-PD applications, the valid levels on V5V_P1 and V5V_P2 supplies can range from 4.85 V to 5.5 V.


The chip's internal operating power supply is derived from VDDD. In UFP mode, CCG4 operates in 2.7 V - 5.5V. In DFP and DRP modes, it operates in the 3.0 V - 5.5 V range.


A separate I/O supply pin, VDDIO, allows the GPIOs to operate at levels from 1.71 V to 5.5 V. The VDDIO pin can be equal to or less than the voltages connected to the V5V P1 or V5V P2 and VDDD pins. The VDDIO supply should be less than or equal to VDDD supply.

The VCCD output of EZ-PD CCG4 must be bypassed to ground via an external capacitor (in the range of 80 to 120 nF; X5R ceramic or better).

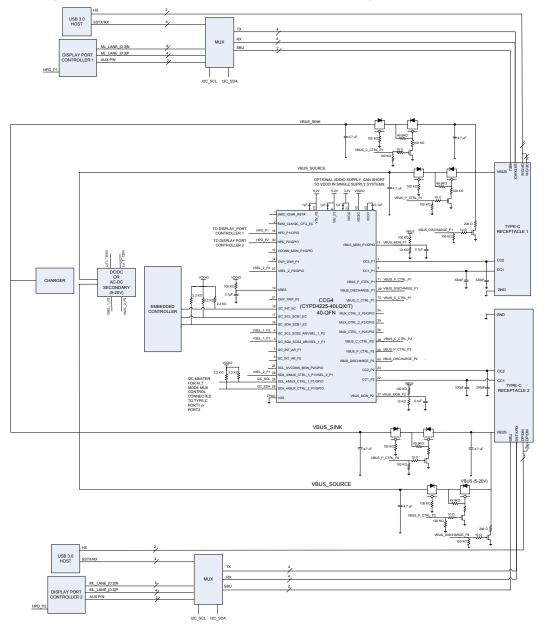
Bypass capacitors must be used from VDDD and V5V P1 or V5V P2 pins to ground; typical practice for systems in this frequency range is to use a 0.1-µF capacitor on VDDD, V5V_P1 and V5V P2. Note that these are simply rules of thumb and that for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Figure 5 shows an example of the power supply bypass capacitors.

Note

- V5V_P1 denoted power supply input for Type-C port 1 5.
- VSV_P2 denoted power supply input for Type-C port 2 CC1_1:USB PD connector detect/Configuration Channel 1 for Type-C port 1 CC1_2:USB PD connector detect/Configuration Channel 1 for Type-C port 2 CC2_1:USB PD connector detect/Configuration Channel 2 for Type-C port 1 CC2_2:USB PD connector detect/Configuration Channel 2 for Type-C port 2 6.
- 7.

Application Diagrams


Figure 6 and Figure 7 show a dual Type-C port and a single Type-C port Notebook DRP application diagram using a CCG4 device. The Type-C port can be used as a power provider or a power consumer.

In each of these applications, CCG4 communicates with the Embedded Controller (EC), which manages the Battery Charger Controller (BCC) to control the charging and discharging of internal battery. It also controls the Data Mux to route the HighSpeed signals either to the USB chipset (during normal mode) or the DisplayPort Chipset (during Alternate Mode).The SBU, SuperSpeed, and HighSpeed lines are routed directly from the Display Mux of the notebook to the Type-C receptacle.

For the dual Type-C notebook application, these Type-C ports can be power providers or power consumers simultaneously. In addition, the CCG4 device controls the transfer of DisplayPort signals over the Type-C interface using the display mux controllers.

Optional FETs are provided for applications that need to provide power for accessories and cables using VCONN pin of the Type-C receptacle. VBUS FETs are also used for providing power over VBUS and for consuming power over VBUS. A VBUS_DISCHARGE FET controlled by CCG4 device is used to quickly discharge VBUS after the Type-C connection is detached.

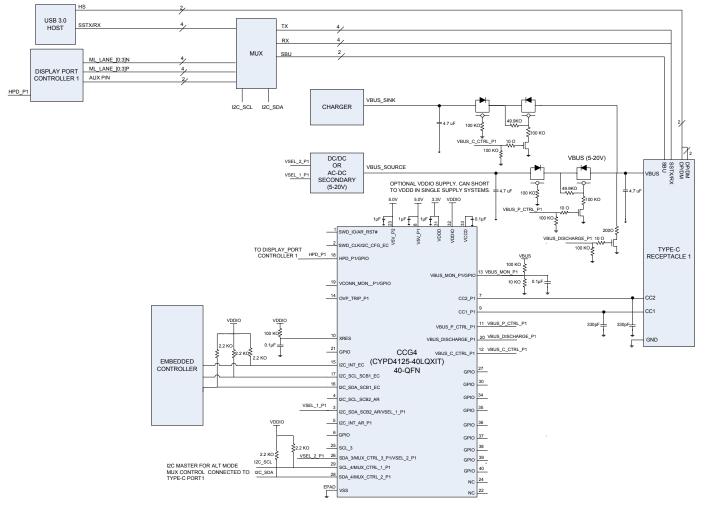


Figure 7. CCG4 in a Single Port Notebook Application using CYPD4125-40LQXIT

Table 10. I/O DC Specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.GIO#5	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	-
SID.GIO#6	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	-
SID.GIO#16	I _{IL}	Input leakage current (absolute value)	_	-	2	nA	25 °C, V _{DDIO} = 3.0 V
SID.GIO#17	C _{IN}	Input capacitance	-	-	7	pF	-
SID.GIO#43	V _{HYSTTL}	Input hysteresis LVTTL	25	40	-	mV	$V_{DDIO} \ge 2.7$ V. Guaranteed by characterization.
SID.GPIO#44	V _{HYSCMOS}	Input hysteresis CMOS	$0.05 \times V_{DDIO}$	Ι	-	mV	Guaranteed by characterization
SID69	I _{DIODE}	Current through protection diode to V _{DDIO} /Vss	-	-	100	μA	Guaranteed by characterization
SID.GIO#45	I _{TOT_GPIO}	Maximum total source or sink chip current	_	_	200	mA	Guaranteed by characterization

Table 11. I/O AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID70	T _{RISEF}	Rise time	2	-	12	ns	3.3-V V_{DDIO} , Cload = 25 pF
SID71	T _{FALLF}	Fall time	2	_	12	ns	3.3-V V _{DDIO} , Cload = 25 pF

XRES

Table 12. XRES DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.XRES#1	V _{IH}	Input voltage HIGH threshold	$0.7 \times V_{DDIO}$	_	-	V	CMOS input
SID.XRES#2	V _{IL}	Input voltage LOW threshold	-	-	$0.3 \times V_{DDIO}$	V	CMOS input
SID.XRES#3	C _{IN}	Input capacitance	-	-	7	pF	-
SID.XRES#4	V _{HYSXRES}	Input voltage hysteresis	_	_	$0.05 \times V_{DDIO}$	mV	Guaranteed by characterization

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

Pulse Width Modulation (PWM) for GPIO Pins

Table 13. PWM AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.3	T _{CPWMFREQ}	Operating frequency	-	Fc	-	MHz	Fc max = CLK_SYS. Maximum = 48 MHz
SID.TCPWM.4	T _{PWMENEXT}	Input trigger pulse width	-	2/Fc	-	ns	For all trigger events
SID.TCPWM.5	T _{PWMEXT}	Output trigger pulse width	-	2/Fc	-	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	T _{CRES}	Resolution of counter	-	1/Fc	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	-	1/Fc	-	ns	Minimum pulse width of PWM output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	_	1/Fc	_	ns	Minimum pulse width between quadrature-phase inputs

βĈ

Table 14. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	I	1	Mbps	_

Table 15. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	-	1	1	Mbps	_

Table 16. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166		SPI operating frequency (Master; 6X oversampling)	Ι	Ι	8	MHz	-

Table 17. Fixed SPI Master Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID167	T _{DMO}	MOSI valid after SClock driving edge	-	_	15	ns	-
SID168	T _{DSI}	MISO valid before SClock capturing edge	20	-	_	ns	Full clock, late MISO sampling
SID169	T _{HMO}	Previous MOSI data hold time	0	_	Ι	ns	Referred to Slave capturing edge

SWD Interface

Table 22. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.SWD#1	F_SWDCLK1	$3.3~V \leq V_{DDIO} \leq 5.5~V$	-	-	14	MHz	SWDCLK \leq 1/3 CPU clock frequency
SID.SWD#2	F_SWDCLK2	$1.8~V \leq V_{DDIO} \leq 3.3~V$	-	_	7	MHz	SWDCLK \leq 1/3 CPU clock frequency
SID.SWD#3	T_SWDI_SETUP	T = 1/f SWDCLK	0.25 * T	-	-	ns	Guaranteed by characterization
SID.SWD#4	T_SWDI_HOLD	T = 1/f SWDCLK	0.25 * T	-	-	ns	Guaranteed by characterization
SID.SWD#5	T_SWDO_VALID	T = 1/f SWDCLK	-	-	0.5*T	ns	Guaranteed by characterization
SID.SWD#6	T_SWDO_HOLD	T = 1/f SWDCLK	1	1	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 23. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#13	F _{IMOTOL}	Frequency variation at 24, 36, and 48 MHz (trimmed)	-	-	±2	%	_
SID226	T _{STARTIMO}	IMO startup time	-	-	7	μs	-
SID229	T _{JITRMSIMO}	RMS jitter at 48 MHz	-	145	-	ps	-
F _{IMO}	-	IMO frequency	24	-	48	MHz	-

Internal Low-Speed Oscillator

Table 24. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO}	ILO startup time	_	_	2	ms	Guaranteed by characterization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by characterization
SID.CLK#5	F _{ILO}	ILO Frequency	20	40	80	kHz	-

Power Down

Table 25. PD DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.PD.1	Rp_std	DFP CC termination for default USB Power	64	80	96	μA	-
SID.PD.2	Rp_1.5A	DFP CC termination for 1.5A power	166	180	194	μA	-
SID.PD.3	Rp_3.0A	DFP CC termination for 3.0A power	304	330	356	μA	-
SID.PD.4	Rd	UFP CC termination	4.59	5.1	5.61	kΩ	-
SID.PD.5	Rd_DB	UFP Dead Battery CC termination on CC1 and CC2	4.08	5.1	6.12	kΩ	All supplies forced to 0 V and 1.0 V applied at CC1 or CC2. Applicable for DRP applications only.
SID.PD.15	Vdrop_V5V_CC1	Voltage drop from V5V_P1 and V5V_P2 pins to CC1 pin while sourcing 215 mA. CC1 and CC2 pins of Port1 and Port2 are not short circuit protected. Max allowed sourcing current is 500 mA.	_	_	100	mV	_
SID.PD.16	Vdrop_V5V_CC2	Voltage drop from V5V_P1 and V5V_P2 pins to CC2 pin while sourcing 215 mA CC1 and CC2 pins of Port1 and Port2 are not short circuit protected. Max allowed sourcing current is 500 mA.	_	_	100	mV	_

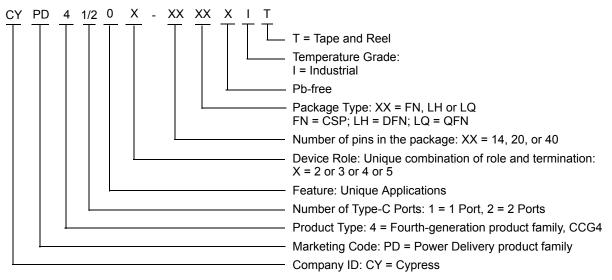
Analog to Digital Converter

Table 26. ADC DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.ADC.1	Resolution	ADC resolution	-	8	-	bits	-
SID.ADC.2	INL	Integral nonlinearity	-1.5	-	1.5	LSB	-
SID.ADC.3	DNL	Differential nonlinearity	-2.5	-	2.5	LSB	-
SID.ADC.4	Gain Error	Gain error	-1.0	-	1.0	LSB	_

Table 27. ADC AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.ADC.5	SLEW_Max	Rate of change of sampled voltage signal	Ι	Ι	3	V/ms	_


Ordering Information

The EZ-PD CCG4 part numbers and features are listed in Table 28.

Table 28. EZ-PD CCG4 Ordering Information

Part Number	Application	Type-C Ports	ТСРѠМ	PD Spec#	Dead Battery Termination	Termination Resistor	Role	Package
CYPD4125-40LQXIT	Notebooks, docking station	1	4	PD2.0	Yes	RP ^[11] , RD ^[12]	DRP	40-pin QFN
CYPD4225-40LQXIT	Notebooks, docking station	2	4	PD2.0	Yes	RP ^[11] , RD ^[12]	DRP	40-pin QFN
CYPD4126-40LQXIT	Notebooks, docking station	1	2	PD3.0	Yes	RP ^[11] , RD ^[12]	DRP	40-pin QFN
CYPD4226-40LQXIT	Notebooks, docking station	2	2	PD3.0	Yes	RP ^[11] , RD ^[12]	DRP	40-pin QFN
CYPD4136-40LQXIT	Power adapter	1	2	PD3.0	No	RP ^[11]	DFP	40-pin QFN
CYPD4236-40LQXIT	Power adapter	2	2	PD3.0	No	RP ^[11]	DFP	40-pin QFN

Ordering Code Definitions

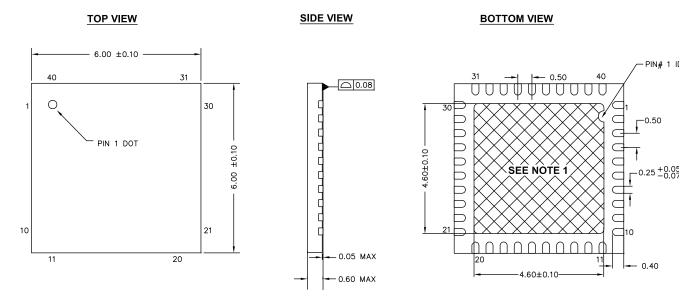
Notes

Termination resistor denoting a downstream facing port.
 Termination resistor denoting an accessory or upstream facing port.

Packaging

Table 29. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	-	-40	25	85	°C
TJ	Operating junction temperature	_	-40	-	100	°C
T _{JA}	Package θ_{JA} (40-pin QFN)	_	-	31	-	°C/W
T _{JC}	Package θ_{JC} (40-pin QFN)	_	-	29	-	°C/W


Table 30. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time within 5 °C of Peak Temperature
40-pin QFN	260 °C	30 seconds

Table 31. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
40-pin QFN	MSL 3

Figure 8. 40-Pin QFN (6 × 6 × 0.6 mm), LR40A/LQ40A 4.6 × 4.6 E-PAD (Sawn) Package Outline, 001-80659

NOTES:

- 1. XXX HATCH AREA IS SOLDERABLE EXPOSED PAD
- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT: 68 ±2 mg
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-80659 *A

Acronyms

Table 32. Acronyms Used in this Document

Acronym	Description
ADC	analog-to-digital converter
API	application programming interface
ARM®	advanced RISC machine, a CPU architecture
CC	configuration channel
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
CS	current sense
DFP	downstream facing port
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DRP	dual role port
EEPROM	electrically erasable programmable read-only memory
EMCA	a USB cable that includes an IC that reports cable characteristics (e.g., current rating) to the Type-C ports
EMI	electromagnetic interference
ESD	electrostatic discharge
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output
IC	integrated circuit
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
I/O	input/output, see also GPIO
LVD	low-voltage detect
LVTTL	low-voltage transistor-transistor logic
MCU	microcontroller unit
NC	no connect
NMI	nonmaskable interrupt
NVIC	nested vectored interrupt controller

Table 32. Acronyms Used in this Document (continued)

operational amplifierOCPovercurrent protectionOVPovercurrent protectionPCBprinted circuit boardPDpower deliveryPGAprogrammable gain amplifierPHYphysical layerPORpower-on resetPRESprecise power-on resetPSoC®Programmable System-on-Chip™PVMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial clockSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB portXRESexternal reset I/O pin	Acronym	Description
OVPovervoltage protectionPCBprinted circuit boardPDpower deliveryPGAprogrammable gain amplifierPHYphysical layerPORpower-on resetPRESprecise power-on resetPSoC®Programmable System-on-Chip™PWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	opamp	operational amplifier
PCBprinted circuit boardPDpower deliveryPGAprogrammable gain amplifierPHYphysical layerPORpower-on resetPRESprecise power-on resetPSoC®Programmable System-on-Chip™PWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	OCP	overcurrent protection
PDpower deliveryPGAprogrammable gain amplifierPHYphysical layerPORpower-on resetPRESprecise power-on resetPSoC®Programmable System-on-Chip™PWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial clockSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	OVP	overvoltage protection
PGAprogrammable gain amplifierPHYphysical layerPORpower-on resetPRESprecise power-on resetPSoC®Programmable System-on-Chip™PWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a USB portUSBIOUSB input/output, CCG4 pins used to connect to a USB port	PCB	printed circuit board
PHYphysical layerPORpower-on resetPRESprecise power-on resetPSoC®Programmable System-on-Chip™PWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBIOUSB input/output, CCG4 pins used to connect to a USB port	PD	power delivery
PORpower-on resetPRESprecise power-on resetPSoC®Programmable System-on-Chip™PWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBIOUSB input/output, CCG4 pins used to connect to a USB port	PGA	programmable gain amplifier
PRESprecise power-on resetPSoC®Programmable System-on-Chip™PWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBIOUSB input/output, CCG4 pins used to connect to a USB port	PHY	physical layer
PSoC®Programmable System-on-Chip™PWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	POR	power-on reset
PWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	PRES	precise power-on reset
RAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	PSoC®	Programmable System-on-Chip™
RISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial Bus USB input/output, CCG4 pins used to connect to a USB port	PWM	pulse-width modulator
RMSroot-mean-squareRTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	RAM	random-access memory
RTCreal-time clockRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial Bus USB input/output, CCG4 pins used to connect to a USB port	RISC	reduced-instruction-set computing
RXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	RMS	root-mean-square
SARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial Bus USB input/output, CCG4 pins used to connect to a USB port	RTC	real-time clock
SCLI²C serial clockSDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial Bus USB input/output, CCG4 pins used to connect to a USB port	RX	receive
SDAI²C serial dataS/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	SAR	successive approximation register
S/Hsample and holdSPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	SCL	I ² C serial clock
SPISerial Peripheral Interface, a communications protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	SDA	I ² C serial data
SF1protocolSRAMstatic random access memorySWDserial wire debug, a test protocolTXtransmitType-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	S/H	sample and hold
SWD serial wire debug, a test protocol TX transmit Type-C a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power UART Universal Asynchronous Transmitter Receiver, a communications protocol USB Universal Serial Bus USBIO USB input/output, CCG4 pins used to connect to a USB port	SPI	
TX transmit Type-C a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power UART Universal Asynchronous Transmitter Receiver, a communications protocol USB Universal Serial Bus USBIO USB input/output, CCG4 pins used to connect to a USB port	SRAM	static random access memory
Type-Ca new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	SWD	serial wire debug, a test protocol
Type-Ca reversible cable, capable of sourcing up to 100 W of powerUARTUniversal Asynchronous Transmitter Receiver, a communications protocolUSBUniversal Serial BusUSBIOUSB input/output, CCG4 pins used to connect to a USB port	ТΧ	transmit
OART communications protocol USB Universal Serial Bus USBIO USB input/output, CCG4 pins used to connect to a USB port USB port	Туре-С	a reversible cable, capable of sourcing up to 100 W
USBIO USB input/output, CCG4 pins used to connect to a USB port	UART	
USB port	USB	Universal Serial Bus
XRES external reset I/O pin	USBIO	
	XRES	external reset I/O pin

Document Conventions

Units of Measure

Table 33. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
Hz	hertz
KB	1024 bytes
kHz	kilohertz
kΩ	kilo ohm
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μs	microsecond

Symbol	Unit of Measure
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
s	second
sps	samples per second
V	volt

Table 33. Units of Measure (continued)

Document History Page

Document Title: EZ-PD™ CCG4 USB Type-C Port Controller Document Number: 001-98440				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	4921014	MURT	09/24/2015	New datasheet
*A	4999504	MURT	11/03/2015	Updated Table 1, Table 2, Table 7, Table 8, Table 18 and Table 23. Updated Figure 3 through Figure 6 and Figure 7.
*В	5049109	MURT	12/14/2015	Updated Table 8 and Table 26.
*C	5141544	MVTA	03/02/2016	Removed "Fixed UART DC Specifications", "Fixed I2C DC Specifications", "Fixed SPI DC Specifications", "IMO DC SPecifications" and "ILO DC Specifications" table. Updated application schematic for both single port and dual port notebook applications Updated copyright information Updated Sleep Current in General Description from 2 mA to 2.5 mA Updated description for pin#34, pin#5, and pin#10 row in Table 1 Updated description for pin#5 and pin#10 row in Table 2
*D	5290129	MURT/MVTA	05/31/2016	Updated to include support for PD 3.0 features.
*E	5307418	VGT	06/14/2016	Added Available Firmware and Software Tools. Added descriptive notes for the application diagrams. Added References and Links To Applications Collaterals. Updated Cypress logo and copyright information.
*F	5669709	SVPH	03/30/2017	Updated SID34 typ value. Updated the template. Removed CYPD4135 and CYPD4235 parts. Moved datasheet status to Final.