

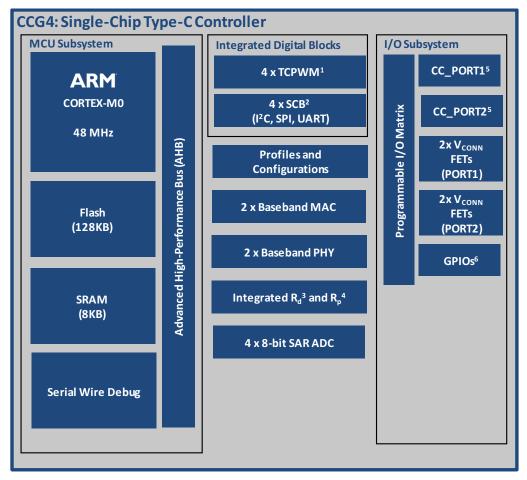
Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application charific microcontrollars are angineered to


Details	
Product Status	Active
Applications	USB Type C
Core Processor	ARM® Cortex®-M0
Program Memory Type	FLASH (128kB)
Controller Series	-
RAM Size	8K x 8
Interface	I ² C, SPI, UART/USART, USB
Number of I/O	30
Voltage - Supply	2.7V ~ 5.5V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cypd4225-40lqxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

- 1. Timer, counter, pulse width modulation block
- 2. Serial communication block configurable as UART, SPI, or I²C
- 3. Termination resistor denoting a UFP
- 4. Current Sources to indicate a DFP
- 5. Configuration Channel
- 6. General purpose input/output

Contents

Functional Overview	6
CPU and Memory Subsystem	6
USB-PD Subsystem (SS)	6
System Resources	7
Peripherals	7
GPIO	8
Pinouts	9
Power	14
Application Diagrams	15
Electrical Specifications	
Absolute Maximum Ratings	
Device-Level Specifications	
Digital Peripherals	
Memory	
System Resources	

Ordering Information	24
Ordering Code Definitions	
Packaging	
Acronyms	
Document Conventions	27
Units of Measure	27
References and Links To Applications Collaterals	28
Document History Page	29
Sales, Solutions, and Legal Information	30
Worldwide Sales and Design Support	30
Products	30
PSoC® Solutions	30
Cypress Developer Community	30
Technical Support	30

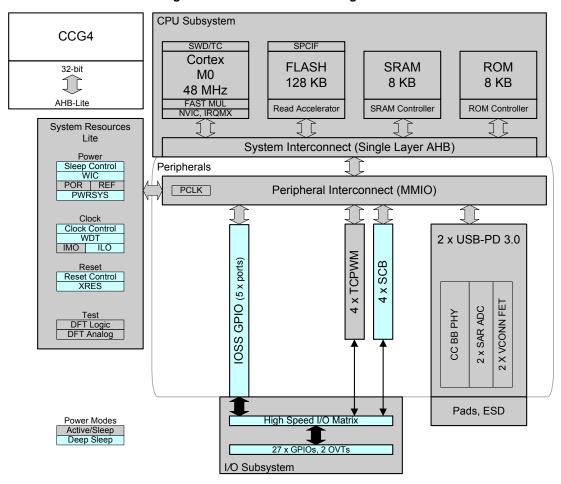


Figure 1. EZ-PD CCG4 Block Diagram

Functional Overview

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in EZ-PD CCG4 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a wakeup interrupt controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a nonmaskable interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a serial wire debug (SWD) interface, which is a 2-wire form of JTAG. The debug configuration used for EZ-PD CCG4 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The EZ-PD CCG4 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver two wait-states (WS) access time at 48 MHz and with 0-WS access time at 16 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

USB-PD Subsystem (SS)

EZ-PD CCG4 has two USB-PD subsystems consisting of USB Type-C baseband transceivers and physical-layer logic. These transceivers perform the BMC and the 4b/5b encoding and decoding functions as well as the 1.2-V analog front end. This subsystem integrates the required termination resistors to identify the role of the EZ-PD CCG4 solution. $\rm R_D$ is used to identify EZ-PD CCG4 as a UFP in a DRP application. When configured as a DFP, integrated current sources perform the role of $\rm R_P$ or pull-up resistors. These current sources can be programmed to indicate the complete range of current capacity on VBUS defined in the USB Type-C spec. EZ-PD CCG4 responds to all USB-PD communication.

The USB-PD sub-system contains two 8-bit SAR (successive approximation register) ADCs for analog to digital conversions. The ADCs include an 8-bit DAC and a comparator. The DAC output forms the positive input of the comparator. The negative input of the comparator is from a 4-input multiplexer. The four inputs of the multiplexer are a pair of global analog multiplex busses an internal bandgap voltage and an internal voltage proportional to the absolute temperature. All GPIO inputs can be connected to the global analog multiplex busses through a switch at each GPIO that can enable that GPIO to be connected to the mux bus for ADC use. The CC1 and CC2 pins of both Type-C ports are not available to connect to the mux busses.

To support the latest USB-PD 3.0 specification, CCG4 has implemented the fast role swap feature. Fast Role Swap enables externally powered docks and hubs to rapidly switch to bus power when their external power supply is removed. For more details, refer to Section 6.3.17 (FR_Swap Message) in the USB-PD 3.0 specification.

CCG4 is designed to be fully interoperable with revision 3.0 of the USB Power Delivery specification as well as revision 2.0 of the USB Power Delivery specification.

CCG4 supports Extended Messages containing data of up to 260 bytes. The Extended Messages will be larger than expected by the USB-PD 2.0 hardware. To accommodate Revision 2.0 based systems, a Chunking mechanism is implemented such that Messages are limited to Revision 2.0 sizes unless it is discovered that both systems support the longer Message lengths.

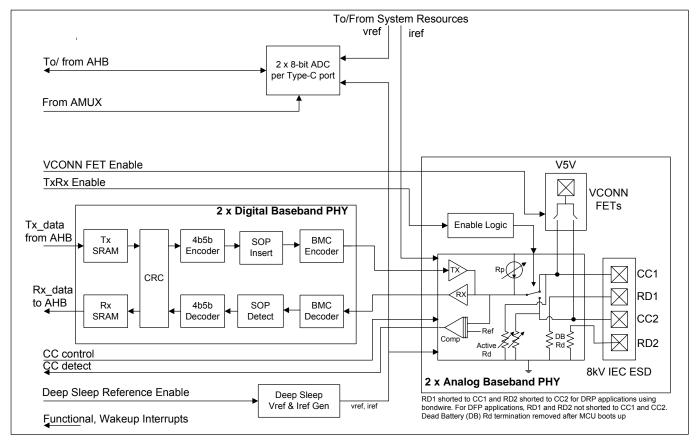


Figure 2. USB-PD Subsystem

System Resources

Power System

The power system is described in detail in the section "Power" on page 14. It provides the assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) or interrupts (low voltage detect (LVD)). EZ-PD CCG4 can operate from three different power sources over the range of 2.7 to 5.5 V and has three different power modes, transitions between which are managed by the power system. EZ-PD CCG4 provides Sleep and Deep Sleep low-power modes.

Clock System

The clock system for EZ-PD CCG4 consists of the internal main oscillator (IMO) and the internal low-power oscillator (ILO).

Peripherals

Serial Communication Blocks (SCB)

EZ-PD CCG4 has four SCBs, which can be configured to implement an I^2 C, SPI, or UART interface. The hardware I^2 C blocks implement full multi-master and slave interfaces capable of multimaster arbitration. In the SPI mode, the SCB blocks can be configured to act as a master or a slave.

In the I²C mode, the SCB blocks are capable of operating at speeds up to 1 Mbps (Fast Mode Plus) and have flexible buffering options to reduce interrupt overhead and latency for the CPU. These blocks also support I²C that creates a mailbox address range in the memory of EZ-PD CCG4 and effectively reduce I²C communication to reading from and writing to an array in memory. In addition, the blocks support 8-deep FIFOs for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduce the need for clock stretching caused by the CPU not having read data on time.

The I²C peripherals are compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/Os are implemented with GPIO in open-drain modes.

The I²C port on SCB 2, SCB 3 and SCB 4 blocks of EZ-PD CCG4 are not completely compliant with the I²C spec in the following:

- The GPIO cells for SCB 2 to SCB 4 I²C port are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8-mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the bus load.

Timer/Counter/PWM Block (TCPWM)

EZ-PD CCG4 has up to four TCPWM blocks. Each implements a 16-bit timer, counter, pulse-width modulator (PWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width of an input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or decode quadrature signals.

GPIO

EZ-PD CCG4 has 30 GPIOs that includes the I^2 C and SWD pins, which can also be used as GPIOs. The I^2 C pins from only SCB 1 are overvoltage-tolerant. The number of available GPIOs vary with the part numbers. The GPIO block implements the following:

- Seven drive strength modes:
 - □ Input only
 - □ Weak pull-up with strong pull-down
- ☐ Strong pull-up with weak pull-down
- □ Open drain with strong pull-down
- □ Open drain with strong pull-up
- □ Strong pull-up with strong pull-down
- □ Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode)
- Selectable slew rates for dV/dt related noise control to improve EMI

During power-on and reset, the I/O pins are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Pinouts

Table 1. Pinout for CYPD4225-40LQXIT

Group	Pin Name	Pin Number	Description
USB Type-C Port 1	CC1_P1	9	USB PD connector detect/Configuration Channel 1
USB Type-C Poil I	CC2_P1	7	USB PD connector detect/Configuration Channel 2
USB Type-C Port 2	CC1_P2	22	USB PD connector detect/Configuration Channel 1
OSB Type-C FOIL 2	CC2_P2	24	USB PD connector detect/Configuration Channel 2
	VBUS_P_CTRL_P1	11	Full rail control I/O for enabling/disabling Provider load FET of USB Type-C port 1
	VBUS_C_CTRL_P1	12	Full rail control I/O for enabling/disabling Consumer load FET of USB Type-C port 1/SCB1 (see Table 3 through Table 6 on page 12)
VBUS Control	VBUS_P_CTRL_P2	39	Full rail control I/O for enabling/disabling Provider load FET of USB Type-C port 2
	VBUS_C_CTRL_P2	38	Full rail control I/O for enabling/disabling Consumer load FET of USB Type-C port 2
	VBUS_DISCHARGE_P1	20	I/O used for discharging VBUS line during voltage change
	VBUS_DISCHARGE_P2	40	I/O used for discharging VBUS line during voltage change
	VCONN_MON_P1/GPIO	19	VCONN_MON_P1 (Monitor VCONN for UVP condition on port 1)/GPIO
VCONN Control	SCL_3/VCONN_MON_P2	25	SCB3 (see Table 3 through Table 6) or VCONN_MON_P2(Monitor VCONN for UVP condition on port 2)
Overvoltage	OVP_TRIP_P1	14	VBUS overvoltage output indicator for port 1 (active LOW)
Protection (OVP)	OVP_TRIP_P2	21	VBUS overvoltage output indicator for port 2 (active LOW)
	VBUS_MON_P1/GPIO	13	VBUS_MON_P1 (VBUS overvoltage protection monitoring signal)/GPIO
	HPD_P1/GPIO	18	HPD_P1 (Hot Plug Detect I/O for port 1)/GPIO
	HPD_P2/GPIO	30	HPD_P2 (Hot Plug Detect I/O for port 2)/GPIO
	MUX_CTRL_3_P2/OCP_DET_P2	34	MUX_CTRL_3_P2 (Mux control for port 2) or VBUS Overcurrent Protection Input for port 2 (active LOW)
	GPIO/MUX_CTRL_2_P2	35	MUX_CTRL_2_P2 (Mux control for port 2)/SCB4 (see Table 3 through Table 6)
	GPIO/MUX_CTRL_1_P2	36	MUX_CTRL_1_P2 (Mux control for port 2)/SCB4 (see Table 3 through Table 6)
	VBUS_MON_P2	37	VBUS_MON_P2(VBUS overvoltage protection monitoring signal)
	VSEL_2_P2/GPIO	27	VSEL_2_P2(Voltage selection control for VBUS on port 2)/GPIO
GPIOs and Serial Interfaces	I2C_SCL_SCB1_EC	17	SCB1/SCB4 (see Table 3 through Table 6)
monacc	I2C_SDA_SCB1_EC	16	SCB1/SCB3 (see Table 3 through Table 6)
	I2C_INT_EC	15	I2C Interrupt line
	I2C_SCL_SCB2_AR/VSEL_1_P2	4	SCB2 (see Table 3 through Table 6) or VSEL_1_P2 (Voltage selection control for VBUS on port 2)
	I2C_SDA_SCB2_AR/VSEL_1_P1	3	SCB1/SCB2 (see Table 3 through Table 6) or VSEL_1_P1 (Voltage selection control for VBUS on port 1)
	I2C_INT_AR_P1/OCP_DET_P1	5	I2C interrupt line or VBUS Overcurrent Protection Input for port 1 (active LOW)
	I2C_INT_AR_P2	6	I2C interrupt line/SCB1/SCB2 (see Table 3 through Table 6)
	SDA_3/MUX_CTRL_3_P1/VSEL_2_P1	26	SCB3 (see Table 3 through Table 6) or MUX_CTRL_3_P1 (Mux control for port 1) or VSEL_2_P1 (Voltage selection control for VBUS on port 1)
	SCL_4/MUX_CTRL_1_P1	29	SCB4 (see Table 3 through Table 6)/MUX_CTRL_1_P1 (Mux control for port 1)

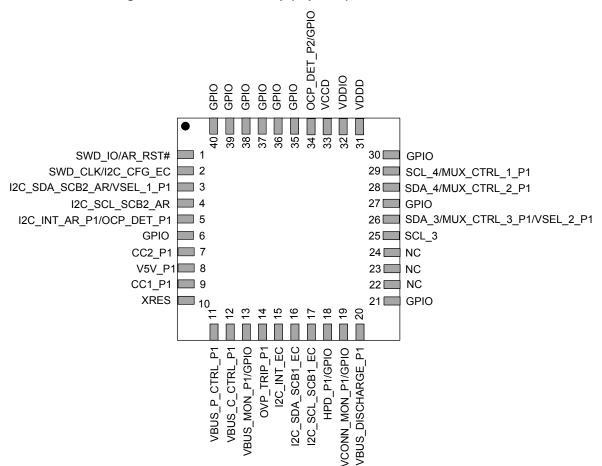


Figure 4. 40-Pin QFN Pin Map (Top View) for CYPD4125-40LQXIT

Application Diagrams

Figure 6 and Figure 7 show a dual Type-C port and a single Type-C port Notebook DRP application diagram using a CCG4 device. The Type-C port can be used as a power provider or a power consumer.

In each of these applications, CCG4 communicates with the Embedded Controller (EC), which manages the Battery Charger Controller (BCC) to control the charging and discharging of internal battery. It also controls the Data Mux to route the HighSpeed signals either to the USB chipset (during normal mode) or the DisplayPort Chipset (during Alternate Mode).The SBU, SuperSpeed, and HighSpeed lines are routed directly from the Display Mux of the notebook to the Type-C receptacle.

For the dual Type-C notebook application, these Type-C ports can be power providers or power consumers simultaneously. In addition, the CCG4 device controls the transfer of DisplayPort signals over the Type-C interface using the display mux controllers.

Optional FETs are provided for applications that need to provide power for accessories and cables using VCONN pin of the Type-C receptacle. VBUS FETs are also used for providing power over VBUS and for consuming power over VBUS. A VBUS_DISCHARGE FET controlled by CCG4 device is used to quickly discharge VBUS after the Type-C connection is detached.

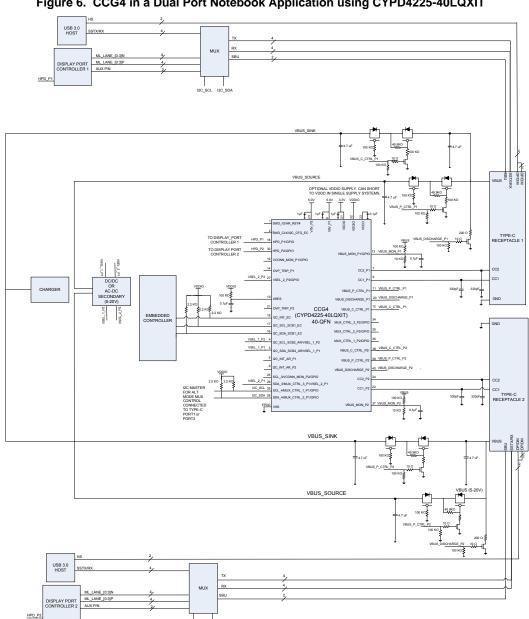


Figure 6. CCG4 in a Dual Port Notebook Application using CYPD4225-40LQXIT

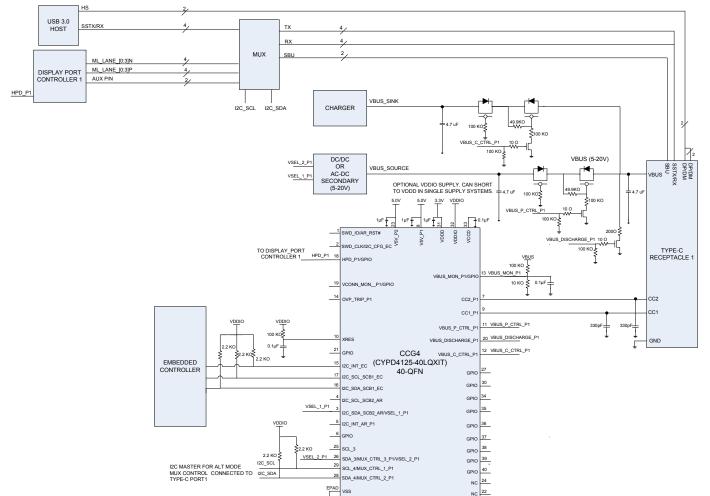


Figure 7. CCG4 in a Single Port Notebook Application using CYPD4125-40LQXIT

Electrical Specifications

Absolute Maximum Ratings

Table 7. Absolute Maximum Ratings^[8]

Parameter	Description	Min	Тур	Max	Units	Details/Conditions
V_{DDD_MAX}	Digital supply relative to V _{SS}	-0.5	_	6	V	Absolute max
V5V_P1	Max supply voltage relative to V _{SS}	-	_	6	V	Absolute max
V5V_P2	Max supply voltage relative to V _{SS}	-	_	6	V	Absolute max
V _{DDIO_MAX}	Max supply voltage relative to V _{SS}	_	_	6	V	Absolute Max
V _{GPIO_ABS}	GPIO voltage	-0.5	_	V _{DDIO} + 0.5	V	Absolute max
I _{GPIO_ABS}	Maximum current per GPIO	-25	_	25	mA	Absolute max
I _{GPIO_injection}	GPIO injection current, Max for V_{IH} > V_{DDD} , and Min for V_{IL} < V_{SS}			mA	Absolute max, current injected per pin	
ESD_HBM	Electrostatic discharge human body model	2200	-	_	V	-
ESD_CDM	Electrostatic discharge charged device model	500	-	_	V	-
LU	Pin current for latch-up	-200	_	200	mA	_
ESD_IEC_CON	_CON Electrostatic discharge 8000 -		_	V	Contact discharge on CC1, CC2 pins	
ESD_IEC_AIR	Electrostatic discharge IEC61000-4-2	15000	_	_	V	Air discharge for pins CC1, CC2

Device-Level Specifications

All specifications are valid for $-40~^{\circ}\text{C} \le \text{TA} \le 85~^{\circ}\text{C}$ and $\text{TJ} \le 100~^{\circ}\text{C}$, except where noted. Specifications are valid for 3.0~V to 5.5~V, except where noted.

Table 8. DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.PWR#1	V_{DDD}	Power supply input voltage	2.7	_	5.5	V	UFP applications
SID.PWR#1_A	V_{DDD}	Power supply input voltage	3.0	_	5.5	V	DFP/DRP applications
SID.PWR#26	V5V_P1, V5V_P2	Power supply input voltage	4.85	_	5.5	V	-
PWR#13	V_{DDIO}	GPIO power supply	1.71	-	5.5	V	-
SID.PWR#24	V _{CCD}	Output voltage (for core logic)	-	1.8	-	V	_
SID.PWR#15	C _{EFC}	External regulator voltage bypass on V _{CCD}	80	100	120	nF	X5R ceramic or better
SID.PWR#16	C _{EXC}	Power supply decoupling capacitor on $V_{\rm DDD}$	0.8	1	_	μF	X5R ceramic or better
SID.PWR#27	C _{EXV}	Power supply decoupling capacitor on V5V_P1 and V5V_P2	-	0.1	_	μF	X5R ceramic or better
Active Mode, V _D	_{DDD} = 2.7 to 5	.5 V. Typical values measured at V	_{DD} = 3.3	V.			
SID.PWR#4	I _{DD12}	Supply current	ı	10	_	mA	V5V_P1 and V5V_P2 = 5 V, T_A = 25 °C, CC I/O IN Transmit or Receive, no I/O sourcing current, CPU at 24 MHz, two PD ports active

Note

Document Number: 001-98440 Rev. *F

^{8.} Usage above the absolute maximum conditions listed in Table 7 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 10. I/O DC Specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.GIO#5	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	-
SID.GIO#6	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	-
SID.GIO#16	I _{IL}	Input leakage current (absolute value)	_	1	2	nA	25 °C, V _{DDIO} = 3.0 V
SID.GIO#17	C _{IN}	Input capacitance	-	_	7	pF	-
SID.GIO#43	V _{HYSTTL}	Input hysteresis LVTTL	25	40	-	mV	V _{DDIO} ≥ 2.7 V. Guaranteed by characterization.
SID.GPIO#44	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDIO}	ı	_	mV	Guaranteed by characterization
SID69	I _{DIODE}	Current through protection diode to V _{DDIO} /Vss	_	ı	100	μA	Guaranteed by characterization
SID.GIO#45	I _{TOT_GPIO}	Maximum total source or sink chip current	_	1	200	mA	Guaranteed by characterization

Table 11. I/O AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID70	T _{RISEF}	Rise time	2	-	12	ns	3.3-V V _{DDIO} , Cload = 25 pF
SID71	T _{FALLF}	Fall time	2	-	12	ns	3.3-V V _{DDIO} , Cload = 25 pF

XRES

Table 12. XRES DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.XRES#1	V _{IH}	Input voltage HIGH threshold	$0.7 \times V_{DDIO}$	_	_	V	CMOS input
SID.XRES#2	V _{IL}	Input voltage LOW threshold	_	_	$0.3 \times V_{DDIO}$	V	CMOS input
SID.XRES#3	C _{IN}	Input capacitance	_	_	7	pF	_
SID.XRES#4	V _{HYSXRES}	Input voltage hysteresis	_	-	0.05 × V _{DDIO}	mV	Guaranteed by characterization

Table 18. Fixed SPI Slave Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID170	T _{DMI}	MOSI valid before Sclock capturing edge	40	_	_	ns	-
SID171	T _{DSO}	MISO valid after Sclock driving edge	_	_	48 + 3 * T _{SCB}	ns	T _{SCB} = T _{CPU} = 1/24 MHz
SID171A	T _{DSO_EXT}	MISO valid after Sclock driving edge in Ext Clk mode	_	-	48	ns	-
SID172	T _{HSO}	Previous MISO data hold time	0	-	_	ns	_
SID172A	T _{SSELSCK}	SSEL valid to first SCK valid edge	100	_	_	ns	_

Memory

Table 19. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.MEM#4	T _{ROWWRITE} ^[10]	Row (block) write time (erase and program)	ı	-	20	ms	_
SID.MEM#3	T _{ROWERASE} ^[10]	Row erase time	1	-	13	ms	_
SID.MEM#8	T _{ROWPROGRAM} ^[10]	Row program time after erase	-	_	7	ms	_
SID178	T _{BULKERASE} ^[10]	Bulk erase time (128 KB)	1	ı	35	ms	_
SID180	T _{DEVPROG} ^[10]	Total device program time	1	ı	25	seconds	Guaranteed by characterization
SID.MEM#6	F _{END}	Flash endurance	100 K	-	-	cycles	Guaranteed by characterization
SID182	F _{RET1}	Flash retention. $T_A \le 55$ °C, 100 K P/E cycles	20	-	-	years	Guaranteed by characterization
SID182A	F _{RET2}	Flash retention. $T_A \le 85$ °C, 10 K P/E cycles	10	ı	1	years	Guaranteed by characterization

System Resources

Power-on-Reset (POR) with Brown Out

Table 20. Imprecise Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	1	1.50	٧	Guaranteed by characterization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	_	1.4	V	Guaranteed by characterization

Table 21. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	_	1.62	V	Guaranteed by characterization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.1	_	1.5	V	Guaranteed by characterization

Note

Document Number: 001-98440 Rev. *F

^{10.} It can take as much as 20 milliseconds to write to flash. During this time the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Power Down

Table 25. PD DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.PD.1	Rp_std	DFP CC termination for default USB Power	64	80	96	μΑ	-
SID.PD.2	Rp_1.5A	DFP CC termination for 1.5A power	166	180	194	μA	_
SID.PD.3	Rp_3.0A	DFP CC termination for 3.0A power	304	330	356	μA	_
SID.PD.4	Rd	UFP CC termination	4.59	5.1	5.61	kΩ	_
SID.PD.5	Rd_DB	UFP Dead Battery CC termination on CC1 and CC2	4.08	5.1	6.12	kΩ	All supplies forced to 0 V and 1.0 V applied at CC1 or CC2. Applicable for DRP applications only.
SID.PD.15	Vdrop_V5V_CC1	Voltage drop from V5V_P1 and V5V_P2 pins to CC1 pin while sourcing 215 mA. CC1 and CC2 pins of Port1 and Port2 are not short circuit protected. Max allowed sourcing current is 500 mA.	-	ı	100	mV	_
SID.PD.16	Vdrop_V5V_CC2	Voltage drop from V5V_P1 and V5V_P2 pins to CC2 pin while sourcing 215 mA CC1 and CC2 pins of Port1 and Port2 are not short circuit protected. Max allowed sourcing current is 500 mA.	_	-	100	mV	-

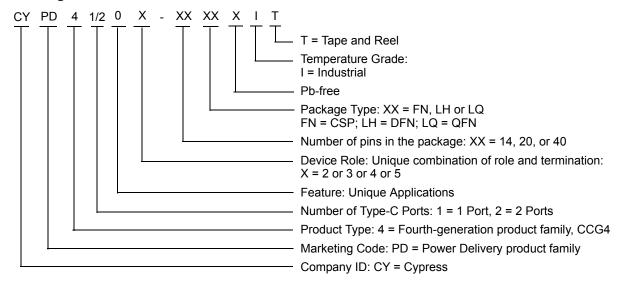
Analog to Digital Converter

Table 26. ADC DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.ADC.1	Resolution	ADC resolution	-	8	-	bits	-
SID.ADC.2	INL	Integral nonlinearity	-1.5	-	1.5	LSB	-
SID.ADC.3	DNL	Differential nonlinearity	-2.5	_	2.5	LSB	-
SID.ADC.4	Gain Error	Gain error	-1.0	1	1.0	LSB	-

Table 27. ADC AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.ADC.5	SLEW_Max	Rate of change of sampled voltage signal	ı		3	V/ms	_


Ordering Information

The EZ-PD CCG4 part numbers and features are listed in Table 28.

Table 28. EZ-PD CCG4 Ordering Information

Part Number	Application	Type-C Ports	TCPWM	PD Spec#	Dead Battery Termination	Termination Resistor	Role	Package
CYPD4125-40LQXIT	Notebooks, docking station	1	4	PD2.0	Yes	RP ^[11] , RD ^[12]	DRP	40-pin QFN
CYPD4225-40LQXIT	Notebooks, docking station	2	4	PD2.0	Yes	RP ^[11] , RD ^[12]	DRP	40-pin QFN
CYPD4126-40LQXIT	Notebooks, docking station	1	2	PD3.0	Yes	RP ^[11] , RD ^[12]	DRP	40-pin QFN
CYPD4226-40LQXIT	Notebooks, docking station	2	2	PD3.0	Yes	RP ^[11] , RD ^[12]	DRP	40-pin QFN
CYPD4136-40LQXIT	Power adapter	1	2	PD3.0	No	RP ^[11]	DFP	40-pin QFN
CYPD4236-40LQXIT	Power adapter	2	2	PD3.0	No	RP ^[11]	DFP	40-pin QFN

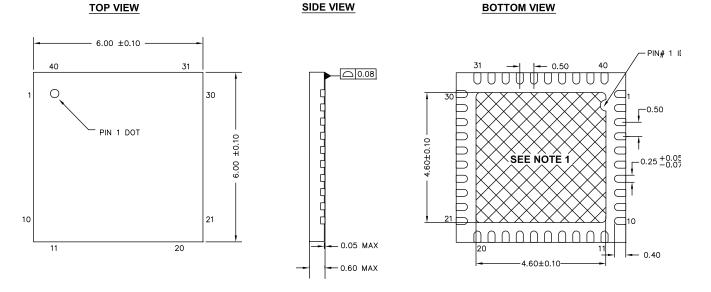
Ordering Code Definitions

^{11.} Termination resistor denoting a downstream facing port.
12. Termination resistor denoting an accessory or upstream facing port.

Packaging

Table 29. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	_	-40	25	85	°C
T_J	Operating junction temperature	_	-40	_	100	°C
T_{JA}	Package θ _{JA} (40-pin QFN)	_	_	31	_	°C/W
T_JC	Package θ _{JC} (40-pin QFN)	_	_	29	_	°C/W


Table 30. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time within 5 °C of Peak Temperature
40-pin QFN	260 °C	30 seconds

Table 31. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
40-pin QFN	MSL 3

Figure 8. 40-Pin QFN (6 \times 6 \times 0.6 mm), LR40A/LQ40A 4.6 \times 4.6 E-PAD (Sawn) Package Outline, 001-80659

NOTES:

- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT: 68 ±2 mg
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-80659 *A

Acronyms

Table 32. Acronyms Used in this Document

Acronym	Description
ADC	analog-to-digital converter
API	application programming interface
ARM [®]	advanced RISC machine, a CPU architecture
CC	configuration channel
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
CS	current sense
DFP	downstream facing port
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DRP	dual role port
EEPROM	electrically erasable programmable read-only memory
EMCA	a USB cable that includes an IC that reports cable characteristics (e.g., current rating) to the Type-C ports
EMI	electromagnetic interference
ESD	electrostatic discharge
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output
IC	integrated circuit
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
I/O	input/output, see also GPIO
LVD	low-voltage detect
LVTTL	low-voltage transistor-transistor logic
MCU	microcontroller unit
NC	no connect
NMI	nonmaskable interrupt
NVIC	nested vectored interrupt controller

Table 32. Acronyms Used in this Document (continued)

Acronym	Description
opamp	operational amplifier
OCP	overcurrent protection
OVP	overvoltage protection
PCB	printed circuit board
PD	power delivery
PGA	programmable gain amplifier
PHY	physical layer
POR	power-on reset
PRES	precise power-on reset
PSoC [®]	Programmable System-on-Chip™
PWM	pulse-width modulator
RAM	random-access memory
RISC	reduced-instruction-set computing
RMS	root-mean-square
RTC	real-time clock
RX	receive
SAR	successive approximation register
SCL	I ² C serial clock
SDA	I ² C serial data
S/H	sample and hold
SPI	Serial Peripheral Interface, a communications protocol
SRAM	static random access memory
SWD	serial wire debug, a test protocol
TX	transmit
Type-C	a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
USB	Universal Serial Bus
USBIO	USB input/output, CCG4 pins used to connect to a USB port
XRES	external reset I/O pin

Document Conventions

Units of Measure

Table 33. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
Hz	hertz
KB	1024 bytes
kHz	kilohertz
kΩ	kilo ohm
Mbps	megabits per second
MHz	megahertz
ΜΩ	mega-ohm
Msps	megasamples per second
μΑ	microampere
μF	microfarad
μs	microsecond

Table 33. Units of Measure (continued)

Symbol	Unit of Measure
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
s	second
sps	samples per second
V	volt

References and Links To Applications Collaterals

Knowledge Base Articles

- Key Differences Among EZ-PD™ CCG1, CCG2, CCG3 and CCG4 - KBA210740
- Programming EZ-PD™ CCG2, EZ-PD™ CCG3 and EZ-PD™ CCG4 Using PSoC® Programmer and MiniProg3 KBA96477
- CCGX Frequently Asked Questions (FAQs) KBA97244
- Handling Precautions for CY4501 CCG1 DVK KBA210560
- Cypress EZ-PD™ CCGx Hardware KBA204102
- Difference between USB Type-C and USB-PD KBA204033
- CCGx Programming Methods KBA97271
- Getting started with Cypress USB Type-C Products -KBA04071
- Type-C to DisplayPort Cable Electrical Requirements
- Dead Battery Charging Implementation in USB Type-C Solutions - KBA97273
- Termination Resistors Required for the USB Type-C Connector – KBA97180
- VBUS Bypass Capacitor Recommendation for Type-C Cable and Type-C to Legacy Cable/Adapter Assemblies – KBA97270
- Need for Regulator and Auxiliary Switch in Type-C to DisplayPort (DP) Cable Solution KBA97274
- Need for a USB Billboard Device in Type-C Solutions KBA97146
- CCG1 Devices in Type-C to Legacy Cable/Adapter Assemblies KBA97145
- Cypress USB Type-C Controller Supported Solutions KBA97179
- Termination Resistors for Type-C to Legacy Ports KBA97272
- Handling Instructions for CY4502 CCG2 Development Kit KBA97916
- Thunderbolt™ Cable Application Using CCG3 Devices -KBA210976
- Power Adapter Application Using CCG3 Devices KBA210975
- Methods to Upgrade Firmware on CCG3 Devices KBA210974
- Device Flash Memory Size and Advantages KBA210973
- Applications of EZ-PDTM CCG4 KBA210739

Application Notes

 AN96527 - Designing USB Type-C Products Using Cypress's CCG1 Controllers

- AN95615 Designing USB 3.1 Type-C Cables Using EZ-PD™ CCG2
- AN95599 Hardware Design Guidelines for EZ-PD™ CCG2
- AN210403 Hardware Design Guidelines for Dual Role Port Applications Using EZ-PD™ USB Type-C Controllers
- AN210771 Getting Started with EZ-PD™ CCG4

Reference Designs

- EZ-PD™ CCG2 Electronically Marked Cable Assembly (EMCA) Paddle Card Reference Design
- EZ-PD™ CCG2 USB Type-C to DisplayPort Cable Solution
- CCG1 USB Type-C to DisplayPort Cable Solution
- CCG1 USB Type-C to HDMI/DVI/VGA Adapter Solution
- EZ-PD™ CCG2 USB Type-C to HDMI Adapter Solution
- CCG1 Electronically Marked Cable Assembly (EMCA) Paddle Card Reference Design
- CCG1 USB Type-C to Legacy USB Device Cable Paddle Card Reference Schematics
- EZ-USB GX3 USB Type-C to Gigabit Ethernet Dongle
- EZ-PD™ CCG2 USB Type-C Monitor/Dock Solution
- CCG2 20W Power Adapter Reference Design
- CCG2 18W Power Adapter Reference Design
- EZ-USB GX3 USB Type-A to Gigabit Ethernet Reference Design Kit

Kits

- CY4501 CCG1 Development Kit
- CY4502 EZ-PD™ CCG2 Development Kit
- CY4531 EZ-PD CCG3 Evaluation Kit
- CY4541 EZ-PD™ CCG4 Evaluation Kit

Datasheets

- CCG1 Datasheet: USB Type-C Port Controller with Power Delivery
- CYPD1120 Datasheet: USB Power Delivery Alternate Mode Controller on Type-C
- CCG2: USB Type-C Port Controller Datasheet
- CCG3: USB Type-C Controller Datasheet

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

ARM® Cortex® Microcontrollers

cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

cypress.com/memory

Microcontrollers cypress.com/mcu
PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-98440 Rev. *F Revised March 30, 2017 Page 30 of 30