

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	11
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UFBGA, WLCSP
Supplier Device Package	16-WLCSP (2.17x2.32)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1102uk-118

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M0 microcontroller

- GPIO pins can be used as edge and level sensitive interrupt sources.
- Four general purpose counter/timers with a total of one capture input and 10 match outputs.
- Programmable windowed WatchDog Timer (WDT).
- Analog peripherals:
 - ♦ 10-bit ADC with input multiplexing among five pins.
- Serial interfaces:
 - ◆ UART with fractional baud rate generation, internal FIFO, and RS-485 support.
 - One SPI controller with SSP features and with FIFO and multi-protocol capabilities (see <u>Section 7.16</u>).
- Clock generation:
 - 12 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used as a system clock.
 - ◆ Programmable watchdog oscillator with a frequency range of 9.4 kHz to 2.3 MHz.
 - PLL allows CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. May be run from an external clock or the internal RC oscillator.
 - Clock output function with divider that can reflect the system oscillator clock, IRC clock, CPU clock, and the Watchdog clock (LPC1104 only).
- Power control:
 - Integrated PMU (Power Management Unit) to minimize power consumption during Sleep and Deep-sleep modes.
 - Power profiles residing in boot ROM allowing to optimize performance and minimize power consumption for any given application through one simple function call.
 - ◆ Two reduced power modes: Sleep and Deep-sleep modes.
 - Processor wake-up from Deep-sleep mode via a dedicated start logic using up to six of the functional pins.
 - Power-On Reset (POR).
 - Brownout detect with up to four separate thresholds for interrupt and forced reset.
- Unique device serial number for identification.
- Single 3.3 V power supply (1.8 V to 3.6 V).
- Available as WLCSP16 package.

3. Applications

- Mobile devices
- Consumer peripherals
- Lighting

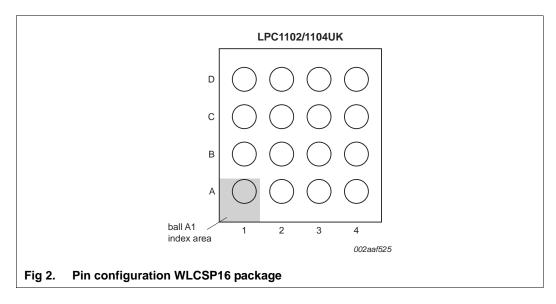
- 8-/16-bit applications
- Portable devices

32-bit ARM Cortex-M0 microcontroller

4. Ordering information

Table 1. Ordering	information		
Type number	Package		
	Name	Description	Version
LPC1102UK	WLCSP16	wafer level chip-size package; 16 bumps; 2.17 \times 2.32 \times 0.6 mm	-
LPC1104UK	WLCSP16	wafer level chip-size package; 16 bumps; 2.17 \times 2.32 \times 0.6 mm	-

4.1 Ordering options


Table 2. Ordering options

Type number	Flash	Total SRAM	UART RS-485	SPI	ADC channels	Package
LPC1102UK	32 kB	8 kB	1	1	5	WLCSP16
LPC1104UK	32 kB	8 kB	1	1	5	WLCSP16

32-bit ARM Cortex-M0 microcontroller

6. Pinning information

6.1 Pinning

NXP Semiconductors

32-bit ARM Cortex-M0 microcontroller

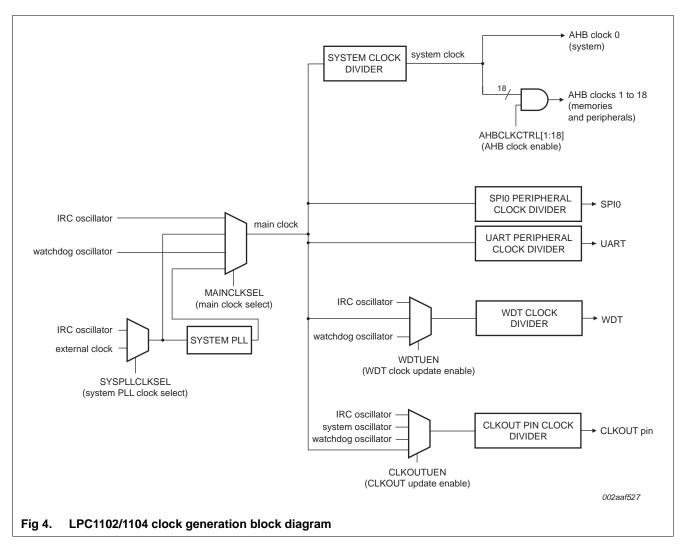
6.2 Pin description

Table 3. LPC1102/1	104 pin de	scription ta	able			
Symbol	LPC1102	LPC1104	Start logic input	Туре	Reset state ^[1]	Description
RESET/PIO0_0	C1[2]	B2 ^[2]	yes	I	I; PU	RESET — External reset input with 20 ns glitch filter. A LOW -going pulse as short as 50 ns on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0.
				I/O	-	PIO0_0 — General purpose digital input/output pin.
PIO0_1/CLKOUT/ CT32B0_MAT2	-	C1 <u>[3]</u>	yes	I/O	I; PU	PIO0_1 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler.
				0	-	CLKOUT — Clockout pin.
				0	-	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
PIO0_6/SCK0	-	A1 <u>[3]</u>	yes	I/O	I;PU	PIO0_6 — General purpose digital input/output pin.
				I/O	-	SCK0 — Serial clock for SPI0.
PIO0_8/MISO/	A2[3]	A3 <u>[3]</u>	yes	I/O	I; PU	PIO0_8 — General purpose digital input/output pin.
CT16B0_MAT0				I/O	-	MISO0 — Master In Slave Out for SPI.
				0	-	CT16B0_MAT0 — Match output 0 for 16-bit timer 0.
PIO0_9/MOSI/	A3 <u>[3]</u>	A4 <u>[3]</u>	yes	I/O	I; PU	PIO0_9 — General purpose digital input/output pin.
CT16B0_MAT1				I/O	-	MOSI0 — Master Out Slave In for SPI.
				0	-	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
SWCLK/	A4 <u>[3]</u>	A2 ^[3]	yes	I	I; PU	SWCLK — Serial wire clock.
PIO0_10/ SCK0/CT16B0_MAT2				I/O	-	PIO0_10 — General purpose digital input/output pin.
				I/O	-	SCK0 — Serial clock for SPI0.
				0	-	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
R/PIO0_11/	B4 <u>[4]</u>	B4 <u>[4]</u>	yes	-	I; PU	R — Reserved.
AD0/CT32B0_MAT3				I/O	-	PIO0_11 — General purpose digital input/output pin.
				I	-	AD0 — A/D converter, input 0.
				I	-	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
R/PIO1_0/	B3[4]	B3 <u>[4]</u>	yes	-	I; PU	R — Reserved.
AD1/CT32B1_CAP0				I/O	-	PIO1_0 — General purpose digital input/output pin.
				I	-	AD1 — A/D converter, input 1.
				I	-	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
R/PIO1_1/	C4[4]	C4[4]	no	-	I; PU	R — Reserved.
AD2/CT32B1_MAT0				I/O	-	PIO1_1 — General purpose digital input/output pin.
				I	-	AD2 — A/D converter, input 2.
				0	-	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.

32-bit ARM Cortex-M0 microcontroller

- Optional windowed operation requires reload to occur between a minimum and maximum time period, both programmable.
- Optional warning interrupt can be generated at a programmable time prior to watchdog time-out.
- Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be disabled.
- Incorrect feed sequence causes reset or interrupt if enabled.
- Flag to indicate watchdog reset.
- Programmable 24-bit timer with internal prescaler.
- Selectable time period from $(T_{cy(WDCLK)} \times 256 \times 4)$ to $(T_{cy(WDCLK)} \times 2^{24} \times 4)$ in multiples of $T_{cy(WDCLK)} \times 4$.
- The Watchdog Clock (WDCLK) source can be selected from the IRC or the dedicated watchdog oscillator (WDO). This gives a wide range of potential timing choices of watchdog operation under different power conditions.

7.14 Clocking and power control


7.14.1 Crystal oscillators

The LPC1102/1104 include two independent oscillators. These are the Internal RC oscillator (IRC) and the Watchdog oscillator. Each oscillator can be used for more than one purpose as required in a particular application.

Following reset, the LPC1102/1104 operate from the Internal RC oscillator until switched by software. This allows systems to operate without any external crystal and the bootloader code to operate at a known frequency.

See Figure 4 for an overview of the LPC1102/1104 clock generation.

32-bit ARM Cortex-M0 microcontroller

7.14.1.1 Internal RC oscillator

The IRC may be used as the clock source for the WDT, and/or as the clock that drives the PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is trimmed to 1 % accuracy over the entire voltage and temperature range.

Upon power-up or any chip reset, the LPC1102/1104 use the IRC as the clock source. Software may later switch to one of the other available clock sources.

7.14.1.2 Watchdog oscillator

The watchdog oscillator can be used as a clock source that directly drives the CPU or the watchdog timer. The watchdog oscillator nominal frequency is programmable between 9.4 kHz to 2.3 MHz. The frequency spread over processing and temperature is ± 40 %.

7.14.2 System PLL

The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32. The CCO operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within

32-bit ARM Cortex-M0 microcontroller

In Sleep mode, execution of instructions is suspended until either a reset or interrupt occurs. Peripheral functions continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses.

7.14.5.3 Deep-sleep mode

In Deep-sleep mode, the chip is in Sleep mode, and in addition all analog blocks are shut down except for the watchdog oscillator and the BOD circuit, which can be configured to remain running in Deep-sleep mode to allow a reset initiated by a timer or BOD event. Deep-sleep mode allows for additional power savings.

Six of the GPIO pins (see <u>Table 3</u>) serve as external wake-up pins to a dedicated start logic to wake up the chip from Deep-sleep mode.

The clock source should be switched to IRC before entering Deep-sleep mode unless the watchdog oscillator remains running in Deep-sleep mode. The IRC can be switched on and off glitch-free and provides a clean clock signal after start-up.

7.15 System control

7.15.1 Start logic

The start logic connects external pins to corresponding interrupts in the NVIC. Each pin shown in <u>Table 3</u> as input to the start logic has an individual interrupt in the NVIC interrupt vector table. The start logic pins can serve as external interrupt pins when the chip is running. In addition, an input signal on the start logic pins can wake up the chip from Deep-sleep mode when all clocks are shut down.

The start logic must be configured in the system configuration block and in the NVIC before being used.

7.15.2 Reset

Reset has four sources on the LPC1102/1104: the RESET pin, the Watchdog reset, Power-On Reset (POR), and the BrownOut Detection (BOD) circuit. In addition, there is an ARM software reset. The RESET pin is a Schmitt trigger input pin. Assertion of chip reset by any source, once the operating voltage attains a usable level, starts the IRC and initializes the flash controller.

A LOW-going pulse as short as 50 ns resets the part.

When the internal Reset is removed, the processor begins executing at address 0, which is initially the Reset vector mapped from the boot block. At that point, all of the processor and peripheral registers have been initialized to predetermined values.

7.15.3 Brownout detection

The LPC1102/1104 include up to four levels for monitoring the voltage on the V_{DD} pin. If this voltage falls below one of the three selected levels, the BOD asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading a dedicated status register. Four additional threshold levels can be selected to cause a forced reset of the chip.

32-bit ARM Cortex-M0 microcontroller

7.15.4 Code security (Code Read Protection - CRP)

This feature of the LPC1102/1104 allow user to enable different levels of security in the system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD) can be restricted. When needed, CRP is invoked by programming a specific pattern into a dedicated flash location. IAP commands are not affected by the CRP.

There are three levels of Code Read Protection:

- 1. CRP1 disables access to the chip via the SWD and allows partial flash update (excluding flash sector 0). This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased.
- 2. CRP2 disables access to the chip via the SWD and only allows full flash erase and update.
- 3. Running an application with level CRP3 selected fully disables any access to the chip via the SWD pins.

Remark: The LPC1102 does not provide an ISP entry pin to be monitored at reset. For all three CRP levels, the user's application code must provide a flash update mechanism which reinvokes ISP by defining a user-selected PIOn pin for ISP entry.

CAUTION

If Code Read Protection of any level (CRP1, CRP2 or CRP3) is selected, no future factory testing can be performed on the device.

7.15.5 APB interface

The APB peripherals are located on one APB bus.

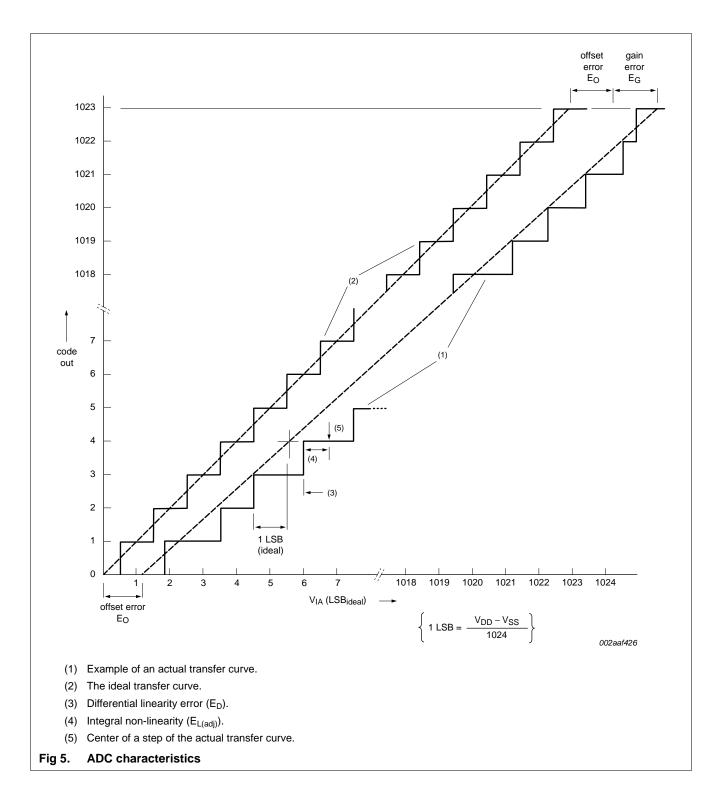
7.15.6 AHBLite

The AHBLite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main static RAM, and the Boot ROM.

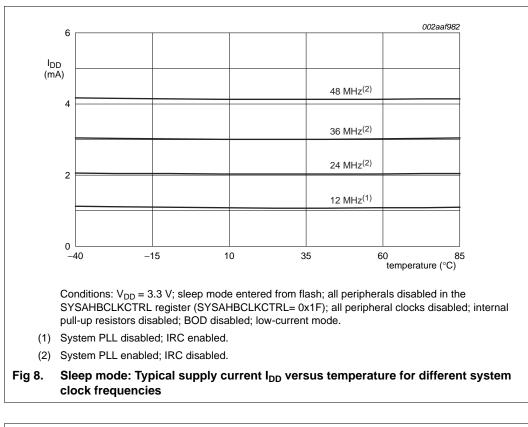
7.15.7 External interrupt inputs

All GPIO pins can be level or edge sensitive interrupt inputs. In addition, start logic inputs serve as external interrupts (see <u>Section 7.15.1</u>).

7.16 Emulation and debugging

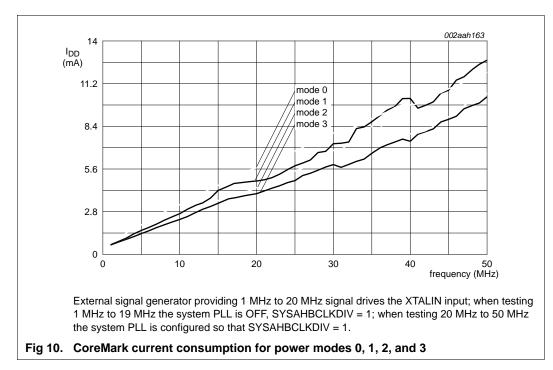

Debug functions are integrated into the ARM Cortex-M0. Serial wire debug with four breakpoints and two watchpoints is supported.

Remark: Care must be taken when using the SPI because the SPI clock SCK and the serial wire debug clock SWCLK share the same pin on the WLCSP16 package. Once the SPI is enabled, the serial wire debugger is no longer available (LPC1102 only).

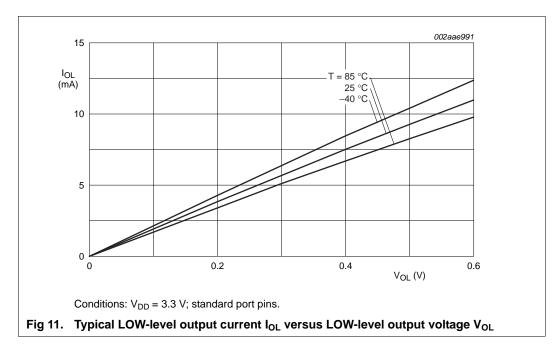

NXP Semiconductors

LPC1102/1104

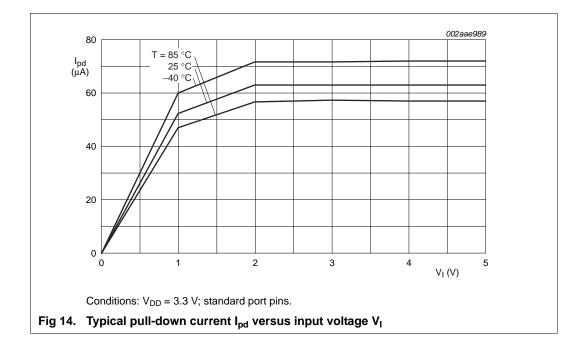
32-bit ARM Cortex-M0 microcontroller



32-bit ARM Cortex-M0 microcontroller



32-bit ARM Cortex-M0 microcontroller



9.3 CoreMark data

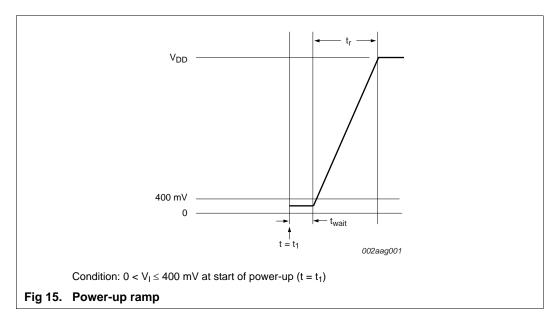
9.4 Electrical pin characteristics

32-bit ARM Cortex-M0 microcontroller

32-bit ARM Cortex-M0 microcontroller

10. Dynamic characteristics

10.1 Power-up ramp conditions


Table 8. Power-up characteristics

T _{amb} =	=−40 °C to	o +85 °C.
--------------------	------------	-----------

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _r	rise time	at t = t ₁ : 0 < V ₁ \leq 400 mV	[1]	0	-	500	ms
t _{wait}	wait time		[1][2]	12	-	-	μs
VI	input voltage	at t = t_1 on pin V_{DD}		0	-	400	mV

[1] See Figure 15.

[2] The wait time specifies the time the power supply must be at levels below 400 mV before ramping up.

10.2 Flash memory

Table 9. Flash characteristics

 $T_{amb} = -40$ °C to +85 °C, unless otherwise specified.

unno							
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
N _{endu}	endurance		[1]	10000	100 000	-	cycles
t _{ret}	retention time	powered		10	-	-	years
		unpowered		20	-	-	years
t _{er}	erase time	sector or multiple consecutive sectors		95	100	105	ms
t _{prog}	programming time		[2]	0.95	1	1.05	ms

[1] Number of program/erase cycles.

[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash in blocks of 256 bytes.

32-bit ARM Cortex-M0 microcontroller

10.4 Internal oscillators

Table 11. Dynamic characteristic: internal oscillators

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.7 \text{ V} \le V_{DD} \le 3.6 \text{ V}.$

Symbol	Parameter	Conditions	Min	Typ <u>[2]</u>	Max	Unit
f _{osc(RC)}	internal RC oscillator frequency	-	11.88	12	12.12	MHz

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

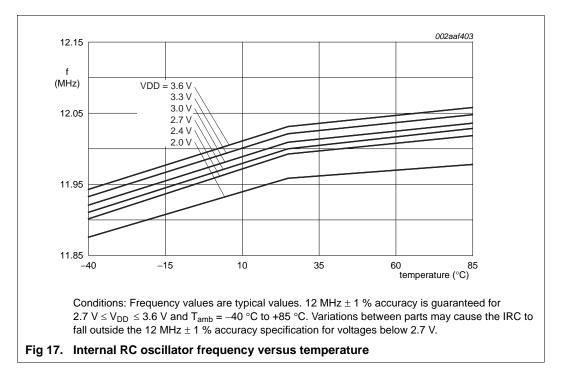
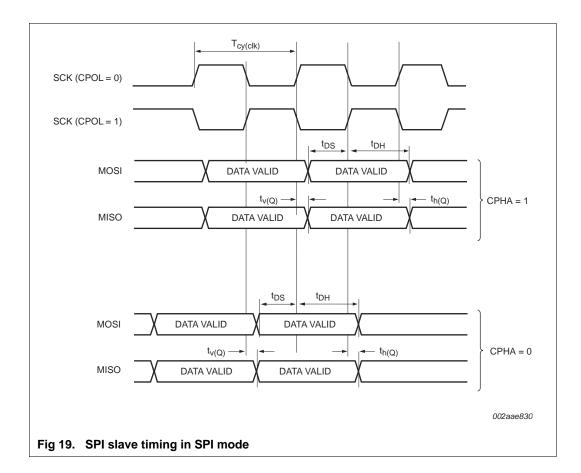


Table 12. Dynamic characteristics: Watchdog oscillator


Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
$f_{osc(int)}$	internal oscillator frequency	DIVSEL = 0x1F, FREQSEL = 0x1 in the WDTOSCCTRL register;	[2][3]	-	9.4	-	kHz
		DIVSEL = 0x00, FREQSEL = 0xF in the WDTOSCCTRL register	[2][3]	-	2300	-	kHz

[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

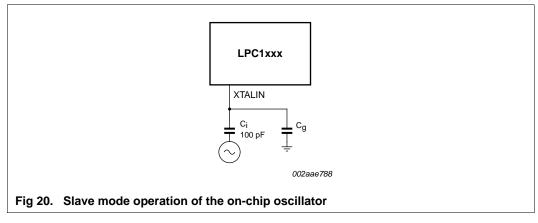
[2] The typical frequency spread over processing and temperature (T_{amb} = $-40 \degree C$ to +85 $\degree C$) is ±40 %.

[3] See user manual UM10429.

32-bit ARM Cortex-M0 microcontroller

32-bit ARM Cortex-M0 microcontroller

11. Application information


11.1 ADC usage notes

The following guidelines show how to increase the performance of the ADC in a noisy environment beyond the ADC specifications listed in <u>Table 6</u>:

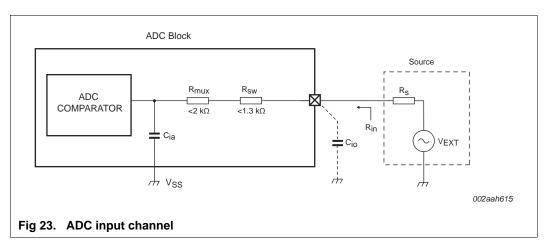
- The ADC input trace must be short and as close as possible to the LPC1102/1104 chip.
- The ADC input traces must be shielded from fast switching digital signals and noisy power supply lines.
- Because the ADC and the digital core share the same power supply, the power supply line must be adequately filtered.
- To improve the ADC performance in a very noisy environment, put the device in Sleep mode during the ADC conversion.

11.2 XTAL input

The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with $C_i = 100 \text{ pF}$. To limit the input voltage to the specified range, choose an additional capacitor to ground C_g which attenuates the input voltage by a factor $C_i/(C_i + C_g)$. In slave mode, a minimum of 200 mV (RMS) is needed.

In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF (<u>Figure 20</u>), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.

11.3 Standard I/O pad configuration


Figure 21 shows the possible pin modes for standard I/O pins with analog input function:

- Digital output driver
- Digital input: Pull-up enabled/disabled
- Digital input: Pull-down enabled/disabled
- Digital input: Repeater mode enabled/disabled
- Analog input

32-bit ARM Cortex-M0 microcontroller

11.5 ADC effective input impedance

A simplified diagram of the ADC input channels can be used to determine the effective input impedance seen from an external voltage source. See Figure 23.

The effective input impedance, R_{in} , seen by the external voltage source, V_{EXT} , is the parallel impedance of ((1/f_s x C_{ia}) + R_{mux} + R_{sw}) and (1/f_s x C_{io}), and can be calculated using <u>Equation 1</u> with

fs = sampling frequency

 $C_{ia} = ADC$ analog input capacitance

R_{mux} = analog mux resistance

 R_{sw} = switch resistance

 C_{io} = pin capacitance

$$R_{in} = \left(\frac{1}{f_s \times C_{ia}} + R_{mux} + R_{sw}\right) \| \left(\frac{1}{f_s \times C_{io}}\right)$$
(1)

Under nominal operating condition V_{DD} = 3.3 V and with the maximum sampling frequency fs = 400 kHz, the parameters assume the following values:

$$\begin{split} C_{ia} &= 1 \text{ pF (max)} \\ R_{mux} &= 2 \text{ k}\Omega \text{ (max)} \\ R_{sw} &= 1.3 \text{ k}\Omega \text{ (max)} \\ C_{io} &= 7.1 \text{ pF (max)} \end{split}$$

The effective input impedance with these parameters is $R_{in} = 308 \text{ k}\Omega$.

32-bit ARM Cortex-M0 microcontroller

14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
LPC1102_1104 v.7	20130926	Product data sheet	-	LPC1102_1104 v.6
Modifications:	Parameter	V _I updated in <u>Table 4</u> and	d Table 5. Condition	V _{DD} = 0 added.
	 Section 11. 	5 "ADC effective input im	pedance" added.	
	 Removed to 19 "SPI slate 	_{clk(H)} and t _{clk(L)} from <u>Figur</u> ve timing in SPI mode"; s	e 18 "SPI master til pec not characteriz	ming in SPI mode" and Figure ed.
LPC1102_1104 v.6	20121231	Product data sheet	-	LPC1102_1104 v.5
Modifications:	 Added Sec 	tion 9.3 "CoreMark data".		
		for power consumption ir Section 9.2.	n Deep-sleep mode	updated in Table 5, Table
	 Table 4 "Lir 	niting values" expanded f	or clarity.	
	 BOD reset 	level 0 added in Table 7.		
LPC1102_1104 v.5	20120727	Product data sheet	-	LPC1102 v.4
Modifications:	 Added LPC 	1104UK.		
		potnote "The peak curren aurrent." from Table 4.	t is limited to 25 tim	nes the corresponding
		ters I _{OL} , V _{OL} , I _{OH} , V _{OH} , c 8.6 V in Table 5).	hanged conditions	to 1.8 V \leq V _{DD} < 2.5 V and 2.
	 WDOSc free 	quency range corrected.		
	 BOD level () removed in Table 7.		
LPC1102 v.4	20110624	Product data sheet	-	LPC1102 v.3
Modifications:	 ADC sample 	ing frequency corrected i	n Table 6 (Table no	te 7).
	Parameter	T _{cy(clk)} corrected on Table	e 14.	
	 Windowed 	WDT features added (Se	ction 7.13).	
	 Programma 	ble open-drain mode ad	ded to GPIO pins (S	Section 7.7).
	 Pull-up leve 	el specified in Table 3, Tal	ble note 1 and Sect	ion 7.7.
	 Condition for 	or parameter T _{stg} in Table	e 4 updated.	
	Table note	4 of Table 4 updated.		
LPC1102 v.3	20110418	Product data sheet	-	LPC1102 v.2
Modifications:	 Changed d 	ata sheet status to Produ	ct.	
	 Power cons 	sumption data added (see	e Figure 6 to Figure	9).
	 Section 10. 	1 "Power-up ramp condit	ions" added.	
	 Reset pad e 	description updated (5 V	tolerant) in Table 3.	
	 IRC frequent temperature 		ire 16 "Internal RC	oscillator frequency versus
	 Clock output 	it removed from feature I	ist.	
LPC1102 v.2	20101126	Preliminary data shee	t -	LPC1102 v.1
Modifications:	Changed d	ata sheet status to Prelim	ninary.	
LPC1102 v.1	20101116	Objective data sheet	-	-

32-bit ARM Cortex-M0 microcontroller

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions"

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status [3] information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer. unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXF Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

32-bit ARM Cortex-M0 microcontroller

17. Contents

1	General description 1
2	Features and benefits 1
3	Applications 2
4	Ordering information 3
4.1	Ordering options 3
5	Block diagram 4
6	Pinning information
6.1	Pinning
6.2	Pin description
7	Functional description 8
7.1	ARM Cortex-M0 processor
7.2	On-chip flash program memory
7.3	On-chip SRAM
7.4	Memory map 8
7.5	Nested Vectored Interrupt Controller (NVIC) 9
7.5.1	Features
7.5.2	Interrupt sources 10
7.6	IOCONFIG block 10
7.7	Fast general purpose parallel I/O 10
7.7.1	Features 10
7.8	UART 10
7.8.1	Features
7.9	SPI serial I/O controller
7.9.1	Features
7.10	10-bit ADC
7.10.1 7.11	Features
7.11	General purpose external event counter/timers 12
7.11.1	Features
7.12	System tick timer
7.12	Windowed WatchDog Timer
7.13.1	Features
7.14	Clocking and power control
7.14.1	Crystal oscillators 13
7.14.1.1	-
7.14.1.2	
7.14.2	System PLL 14
7.14.3	Clock output (LPC1104 only) 15
7.14.4	Wake-up process 15
7.14.5	Power control 15
7.14.5.1	Power profiles 15
7.14.5.2	•
7.14.5.3	• •
7.15	System control 16
7.15.1	Start logic 16
7.15.2	Reset
7.15.3	Brownout detection 16

7.15.4 7.15.5 7.15.6 7.15.7 7.16 8	Code security (Code Read Protection - CRP)APB interface.AHBLiteExternal interrupt inputs.Emulation and debuggingLimiting values	17 17 17 17 17 17 18
9	Static characteristics	19
9.1	BOD static characteristics	23
9.2	Power consumption	23
9.3	CoreMark data	26
9.4	Electrical pin characteristics	26
10	Dynamic characteristics	29
10.1	Power-up ramp conditions	29
10.2	Flash memory	29
10.3	External clock	30
10.4	Internal oscillators	31
10.5		32
10.6	SPI interfaces	32
11	Application information	35
11.1	ADC usage notes	35
11.2	XTAL input	35
11.3 11.4	Standard I/O pad configuration	35
11.4 11.5	Reset pad configuration ADC effective input impedance	36 37
		-
12	Package outline	38
13	Abbreviations	39
14	Revision history	40
15	Legal information	41
15.1	Data sheet status	41
15.2		41
15.3	Disclaimers	41
15.4	Trademarks	42
16	Contact information	42
17	Contents	43

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 26 September 2013 Document identifier: LPC1102_1104