

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s007c8t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	STM8S007C8 value line block diagram	10
Figure 2.	Flash memory organisation	13
Figure 3.	LQFP 48-pin pinout	21
Figure 4.	Memory map	26
Figure 5.	Supply current measurement conditions	42
Figure 6.	Pin loading conditions	43
Figure 7.	Pin input voltage	43
Figure 8.	f _{CPUmax} versus V _{DD}	47
Figure 9.	External capacitor C _{EXT}	48
Figure 10.	Typ. $I_{DD(RUN)}$ vs V_{DD} , HSI RC osc, $f_{CPU} = 16$ MHz	55
Figure 11.	Typ. $I_{DD(WFI)}$ vs V _{DD} , HSI RC osc, f_{CPU} = 16 MHz	55
Figure 12.	HSE external clock source	56
Figure 13.	HSE oscillator circuit diagram	57
Figure 14.	Typical HSI frequency variation vs V _{DD} at 3 temperatures	58
Figure 15.	Typical LSI frequency variation vs V _{DD} @ 25 °C	59
Figure 16.	Typical V _{IL} and V _{IH} vs V _{DD} @ 3 temperatures	62
Figure 17.	Typical pull-up resistance vs V _{DD} @ 3 temperatures	62
Figure 18.	Typical pull-up current vs V _{DD} @ 3 temperatures	63
Figure 19.	Typ. $V_{OL} @ V_{DD} = 5 V$ (standard ports)	64
Figure 20.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (standard ports)	65
Figure 21.	Typ. $V_{OL} @ V_{DD} = 5 V$ (true open drain ports)	65
Figure 22.	Typ. V _{OL} @ V _{DD} = 3.3 V (true open drain ports)	66
Figure 23.	Typ. $V_{OL} @ V_{DD} = 5 V$ (high sink ports)	66
Figure 24.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (high sink ports)	67
Figure 25.	Typ. V_{DD} - V_{OH} @ V_{DD} = 5 V (standard ports)	67
Figure 26.	Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (standard ports)	68
Figure 27.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 5 V$ (high sink ports)	68
Figure 28.	Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (high sink ports)	69
Figure 29.	Typical NRST V _{IL} and V _{IH} vs V _{DD} @ 3 temperatures	70
Figure 30.	Typical NRST pull-up resistance vs V _{DD} @ 3 temperatures	71
Figure 31.	Typical NRST pull-up current vs V _{DD} @ 3 temperatures	71
Figure 32.	Recommended reset pin protection	72
Figure 33.	SPI timing diagram - slave mode and CPHA = 0	73
Figure 34.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	73
Figure 35.	SPI timing diagram - master mode ⁽¹⁾	74
Figure 36.	Typical application with I ² C bus and timing diagram	76
Figure 37.	ADC accuracy characteristics	79
Figure 38.	Typical application with ADC	79
Figure 39.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	83
Figure 40.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint	85
Figure 41.	LQFP48 marking example (package top view)	85
Figure 42.	STM8S007C8 value line ordering information scheme ⁽¹⁾	88

1 Introduction

This datasheet contains the description of the STM8S007C8 value line features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8S microcontroller memory, registers and peripherals, please refer to the STM8S and STM8A microcontroller families reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the PM0051 (How to program STM8S and STM8A Flash program memory and data EEPROM).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

4.2 Single wire interface module (SWIM) and debug module (DM)

The single wire interface module and debug module permits non-intrusive, real-time incircuit debugging and fast memory programming.

SWIM

Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 bytes/ms.

Debug module

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real-time by means of shadow registers.

- R/W to RAM and peripheral registers in real-time
- R/W access to all resources by stalling the CPU
- Breakpoints on all program-memory instructions (software breakpoints)
- Two advanced breakpoints, 23 predefined configurations

4.3 Interrupt controller

- Nested interrupts with three software priority levels
- 32 interrupt vectors with hardware priority
- Up to 33 external interrupts on six vectors including TLI
- Trap and reset interrupts

4.4 Flash program and data EEPROM memory

- 64 Kbytes of high density Flash program single voltage Flash memory
- 128 bytes true data EEPROM
- Read while write: Writing in data memory possible while executing code in program memory.
- User option byte area

Write protection (WP)

Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction.

There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, data EEPROM and option bytes.

To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to write to data EEPROM, modify the contents of main program memory or the device option bytes.

A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to *Figure 2*.

4.5 Clock controller

The clock controller distributes the system clock (f_{MASTER}) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.

Features

- Clock prescaler: To get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching:** Clock sources can be changed safely on the fly in run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management:** To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- *Master clock sources*: Four different clock sources can be used to drive the master clock:
 - 1-24 MHz high-speed external crystal (HSE)
 - Up to 24 MHz high-speed user-external clock (HSE user-ext)
 - 16 MHz high-speed internal RC oscillator (HSI)
 - 128 kHz low-speed internal RC (LSI)
- **Startup clock:** After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): This feature can be enabled by software. If an HSE clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an interrupt can optionally be generated.
- **Configurable main clock output (CCO):** This outputs an external clock for use by the application.

Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock
PCKEN17	TIM1	PCKEN13	UART3	PCKEN27	Reserved	PCKEN23	ADC
PCKEN16	TIM3	PCKEN12	UART1	PCKEN26	Reserved	PCKEN22	AWU
PCKEN15	TIM2	PCKEN11	SPI	PCKEN25	Reserved	PCKEN21	Reserved
PCKEN14	TIM4	PCKEN10	l ² C	PCKEN24	Reserved	PCKEN20	Reserved

Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers

Independent watchdog timer

The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure

The IWDG time base spans from 60 μ s to 1 s.

4.8 Auto wakeup counter

- Used for auto wakeup from active halt mode
- Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
- LSI clock can be internally connected to TIM3 input capture channel 1 for calibration

4.9 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

4.10 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver

- 16-bit up, down and up/down autoreload counter with 16-bit prescaler
- Four independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Synchronization module to control the timer with external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

4.11 TIM2, TIM3 - 16-bit general purpose timers

- 16-bit autoreload (AR) up-counter
- 15-bit prescaler adjustable to fixed power of 2 ratios 1...32768
- Timers with 3 or 2 individually configurable capture/compare channels
- PWM mode
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

4.14.4 I²C

•

- I²C master features
 - Clock generation
 - Start and stop generation
- I²C slave features
 - Programmable I²C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
 - Supports different communication speeds
 - Standard speed (up to 100 kHz)
 - Fast speed (up to 400 kHz)

				Inpu	t		Out	put		-		
Pin number	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	РР	Main functio (after reset)	Default alternate function	Alternate function after remap [option bit]
33	PC6/SPI_MOSI	I/O	x	x	х	нs	О3	x	Х	Port C6	SPI master out/ slave in	
34	PC7/SPI_MISO	I/O	<u>x</u>	х	Х	HS	O3	х	х	Port C7	SPI master in/ slave out	
35	PG0	I/O	<u>X</u>	Х			01	Х	Х	Port G0		
36	PG1	I/O	<u>X</u>	Х			O1	Х	Х	Port G1		
37	PE3/TIM1_BKIN	I/O	<u>x</u>	х	Х		01	х	Х	Port E3	Timer 1 - break input	
38	PE2/I ² C_SDA	I/O	X		Х		O1	T ⁽²⁾		Port E2	I ² C data	
39	PE1/I ² C_SCL	I/O	X		Х		O1	T ⁽²⁾		Port E1	I ² C clock	
40	PE0/CLK_CCO	I/O	X	х	Х	HS	O3	х	Х	Port E0	Configurable clock output	
41	PD0/TIM3_CH2	I/O	X	x	х	нs	O3	x	х	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
42	PD1/SWIM ⁽³⁾	I/O	х	X	Х	нs	04	х	х	Port D1	SWIM data interface	
43	PD2/TIM3_CH1	I/O	<u>x</u>	х	Х	нs	О3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH3 [AFR1]
44	PD3/TIM2_CH2	I/O	<u>x</u>	х	Х	HS	03	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
45	PD4/TIM2_CH1/B EEP	I/O	<u>x</u>	х	Х	нs	О3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
46	PD5/ UART3_TX	I/O	<u>x</u>	х	Х		01	х	Х	Port D5	UART3 data transmit	
47	PD6/ UART3_RX ⁽¹⁾	I/O	<u>x</u>	х	Х		01	х	Х	Port D6	UART3 data receive	
48	PD7/TLI	I/O	<u>x</u>	х	Х		01	х	х	Port D7	Top level interrupt	

Table 5. STM8S007C8 pin description (continued)

1. The default state of UART1_RX and UART3_RX pins is controlled by the ROM bootloader. These pins are pulled up as part of the bootloader activation process and returned to the floating state before a return from the bootloader.

2. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to V_{DD} are not implemented).

3. The PD1 pin is in input pull-up during the reset phase and after the internal reset release.

Address	Block	Register label	Register name	Reset status
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0x00
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0x00
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C		PF_CR1	Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00
0x00 501E		PG_ODR	Port G data output latch register	0x00
0x00 501F		PG_IDR	Port G input pin value register	0x00
0x00 5020	Port G	PG_DDR	Port G data direction register	0x00
0x00 5021		PG_CR1	Port G control register 1	0x00
0x00 5022		PG_CR2	Port G control register 2	0x00
0x00 5023		PH_ODR	Port H data output latch register	0x00
0x00 5024		PH_IDR	Port H input pin value register	0x00
0x00 5025	Port H	PH_DDR	Port H data direction register	0x00
0x00 5026		PH_CR1	Port H control register 1	0x00
0x00 5027		PH_CR2	Port H control register 2	0x00
0x00 5028		PI_ODR	Port I data output latch register	0x00
0x00 5029		PI_IDR	Port I input pin value register	0x00
0x00 502A	Port I	PI_DDR	Port I data direction register	0x00
0x00 502B		PI_CR1	Port I control register 1	0x00
0x00 502C		PI_CR2	Port I control register 2	0x00

/~		• •	/ / N
Tahlo 7 1/0	nort hardware	rogistor man	(continued)
	port narawarc	register map	(continucu)

Address	Block	Register Label	Register Name	Reset Status
0x00 7F00		A	Accumulator	0x00
0x00 7F01		PCE	Program counter extended	0x00
0x00 7F02		PCH	Program counter high	0x00
0x00 7F03		PCL	Program counter low	0x00
0x00 7F04		ХН	X index register high	0x00
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00
0x00 7F06		YH	Y index register high	0x00
0x00 7F07		YL	Y index register low	0x00
0x00 7F08		SPH	Stack pointer high	0x17 ⁽²⁾
0x00 7F09		SPL	Stack pointer low	0xFF
0x00 7F0A		CCR	Condition code register	0x28
0x00 7F0B to 0x00 7F5F			Reserved area (85 bytes)	
0x00 7F60	CPU	CFG_GCR	Global configuration register	0x00
0x00 7F70		ITC_SPR1	Interrupt software priority register 1	0xFF
0x00 7F71		ITC_SPR2	Interrupt software priority register 2	0xFF
0x00 7F72		ITC_SPR3	Interrupt software priority register 3	0xFF
0x00 7F73		ITC_SPR4	Interrupt software priority register 4	0xFF
0x00 7F74	ne	ITC_SPR5	Interrupt software priority register 5	0xFF
0x00 7F75		ITC_SPR6	Interrupt software priority register 6	0xFF
0x00 7F76		ITC_SPR7	Interrupt software priority register 7	0xFF
0x00 7F77		ITC_SPR8	Interrupt software priority register 8	0xFF
0x00 7F78 to 0x00 7F79			Reserved area (2 bytes)	
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00
0x00 7F81 to 0x00 7F8F		·	Reserved area (15 bytes)	

 Table 9. CPU/SWIM/debug module/interrupt controller registers

9 Electrical characteristics

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

9.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \Sigma$).

9.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \Sigma$).

9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Typical current consumption

For typical current consumption measurements, V_{DD} , V_{DDIO} and V_{DDA} are connected together in the configuration shown in *Figure 5*.

9.1.5 Pin loading conditions

9.1.6 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 6.

Figure 6. Pin loading conditions

9.1.7 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.

Figure 7. Pin input voltage

Total current consumption in halt mode

Symbol	Parameter	Conditions	Тур	Max	Unit	
I _{DD(H)}	Supply current in balt mode	Flash in operating mode, HSI clock after wakeup	63.5	-		
	Supply current in halt mode	Flash in power-down mode, HSI clock after wakeup	6.5	35	μA	

Table 24. Total current consumption in halt mode at V_{DD} = 5 V, T_A -40 to 85° C

Table 25. Total current consumption in halt mode at V_{DD} = 3.3 V

Symbol	Parameter	Conditions	Тур	Unit
I _{DD(H)}	Supply current in balt mode	Flash in operating mode, HSI clock after wakeup	61.5	
	Supply current in halt mode	Flash in power-down mode, HSI clock after wakeup	4.5	μΛ

Low-power mode wakeup times

Table 26. Wakeup times

Symbol	Parameter		Conditions		Тур	Max ⁽¹⁾	Unit
t	Wakeup time from wait		-		-	(2)	
۳WU(WFI)	mode to run mode ⁽³⁾	$f_{CPU} = f_{MASTER} =$	16 MHz.		0.56	-	1
. Wak		MVR voltage	Flash in operating mode ⁽⁵⁾		1 ⁽⁶⁾	2 ⁽⁶⁾	
	Wakeup time active halt mode to run mode. ⁽³⁾	regulator on ⁽⁴⁾	Flash in power-down mode ⁽⁵⁾	HSI (after	3 ⁽⁶⁾	-	μs
WU(AH)		MVR voltage	Flash in operating mode ⁽⁵⁾	wakeup)	48 ⁽⁶⁾	-	
		regulator off ⁽⁴⁾	Flash in power-down mode ⁽⁵⁾		50 ⁽⁶⁾	-	
t _{WU(H)}	Wakeup time from halt	Flash in operating mode ⁽⁵⁾			52	-	1
	mode to run mode ⁽³⁾	Flash in power-do	own mode ⁽⁵⁾		54	-	1

1. Data guaranteed by design, not tested in production.

2. $t_{WU(WFI)} = 2 \times 1/f_{master} + 7 \times 1/f_{CPU}$

3. Measured from interrupt event to interrupt vector fetch.

4. Configured by the REGAH bit in the CLK_ICKR register.

5. Configured by the AHALT bit in the FLASH_CR1 register.

6. Plus 1 LSI clock depending on synchronization.

Total current consumption and timing in forced reset state

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
I _{DD(R)}	Supply current in reset state	$V_{DD} = 5 V$	1.6	-	m۸
	Supply current in reset state	V _{DD} = 3.3 V	0.8	-	ША
t _{RESETBL}	Reset release to bootloader vector fetch	-	-	150	μs

Table 27	. Total	current	consum	ption a	and ti	imina	in f	orced	reset	state
	· · · · · u	ouncin	oonsum			mmg		01000	10000	Juic

1. Data guaranteed by design, not tested in production.

Current consumption of on-chip peripherals

Subject to general operating conditions for V_{DD} and T_A .

HSI internal RC/ $f_{CPU} = f_{MASTER} = 16$ MHz.

Table 28.	Peripheral	current	consum	ption

Symbol	Parameter	Тур.	Unit	
I _{DD(TIM1)}	TIM1 supply current ⁽¹⁾	220		
I _{DD(TIM2)}	TIM2 supply current ⁽¹⁾	120	1	
I _{DD(TIM3)}	TIM3 timer supply current ⁽¹⁾	100	1	
I _{DD(TIM4)}	TIM4 timer supply current ⁽¹⁾	25		
I _{DD(UART1)}	UART1 supply current ⁽²⁾	90	μA	
I _{DD(UART3)}	UART3 supply current ⁽²⁾	110		
I _{DD(SPI)}	SPI supply current ⁽²⁾	40		
I _{DD(I2C)}	I ² C supply current ⁽²⁾	50		
I _{DD(ADC2)}	ADC2 supply current when converting (3)	1000		

 Data based on a differential I_{DD} measurement between reset configuration and timer counter running at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.

2. Data based on a differential I_{DD} measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not tested in production.

3. Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions. Not tested in production.

Symbol	Parameter	Conditions	onditions Min		Мах	Unit
f _{HSE}	External high speed oscillator frequency	-	1	-	24	MHz
R _F	Feedback resistor	-	-	220	-	kΩ
C ⁽¹⁾	Recommended load capacitance (2)	-	-	-	20	pF
I _{DD(HSE)}	HSE oscillator power consumption	C = 20 pF, f _{OSC} = 24 MHz	-	-	6 (startup) 2 (stabilized) ⁽³⁾	m۸
		C = 10 pF, f _{OSC} = 24 MHz	-	-	6 (startup) 1.5 (stabilized) ⁽³⁾	
9 _m	Oscillator transconductance	-	5	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	ms

Table 30. HSE oscillator characteristics

1. C is approximately equivalent to 2 x crystal Cload.

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Data based on characterization results, not tested in production.

 t_{SU(HSE)} is the start-up time measured from the moment it is enabled (by software) to a stabilized 24 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 13. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

 $\begin{array}{l} {\sf R}_m: \mbox{ Notional resistance (see crystal specification)} \\ {\sf L}_m: \mbox{ Notional inductance (see crystal specification)} \\ {\sf C}_m: \mbox{ Notional capacitance (see crystal specification)} \\ {\sf Co: Shunt capacitance (see crystal specification)} \\ {\sf C}_{L1} = {\sf C}_{L2} = {\sf C}: \mbox{ Grounded external capacitance } \\ {\sf g}_m >> {\sf g}_{mcrit} \end{array}$

DocID022171 Rev 5

Low speed internal RC oscillator (LSI)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency	-	-	128	-	kHz
t _{su(LSI)}	LSI oscillator wakeup time	-	-	-	7 ⁽¹⁾	μs
I _{DD(LSI)}	LSI oscillator power consumption	-	-	5	-	μA

CS

1. Guaranteed by design, not tested in production.

Figure 15. Typical LSI frequency variation vs V_{DD} @ 25 °C

Symbol	Parameter	Conditions	Min	Max	Unit
	Output low level with 8 pins sunk	$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$	-	0.8	
V _{OL}	Output low level with 4 pins sunk	$I_{IO} = 10 \text{ mA}, V_{DD} = 3.3 \text{ V}$	-	1 ⁽¹⁾	
	Output low level with 4 pins sunk	I_{IO} = 20 mA, V_{DD} = 5 V	-	1.5 ⁽¹⁾	V
	Output high level with 8 pins sourced	$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$	4.0	-	v
V _{OH}	Output high level with 4 pins sourced	$I_{IO} = 10 \text{ mA}, V_{DD} = 3.3 \text{ V}$	2.1 ⁽¹⁾	-	
	Output high level with 4 pins sourced	$I_{IO} = 20 \text{ mA}, V_{DD} = 5 \text{ V}$	3.3 ⁽¹⁾	-	

Table 38. Output driving current (high sink ports)

1. Data based on characterization results, not tested in production

Typical output level curves

Figure 20 to *Figure 27* show typical output level curves measured with output on a single pin.

Figure 26. Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (standard ports)

9.3.7 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	-0.3 V	-	0.3 x V _{DD}	
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	-	$0.7 ext{ x V}_{ ext{DD}}$	-	V _{DD} + 0.3	V
V _{OL(NRST)}	NRST output low level voltage ⁽¹⁾	I _{OL} = 2 mA	-	-	0.5	
R _{PU(NRST)}	NRST pull-up resistor ⁽²⁾	-	30	55	80	kΩ
t _{IFP(NRST)}	NRST input filtered pulse ⁽³⁾	-	-	-	75	ns
t _{INFP(NRST)}	NRST Input not filtered pulse ⁽³⁾	-	500	-	-	ns
t _{OP(NRST)}	NRST output pulse ⁽¹⁾	-	15	-	-	μs

Tahla	30	NDGT	nin	charactoristics
lable	39.	NKƏL	pin	characteristics

1. Data based on characterization results, not tested in production.

2. The $\rm R_{PU}$ pull-up equivalent resistor is based on a resistive transistor

3. Data guaranteed by design, not tested in production.

Figure 29. Typical NRST $\rm V_{IL}$ and $\rm V_{IH}$ vs $\rm V_{DD}$ @ 3 temperatures

1. Example of an actual transfer curve.

- 2. The ideal transfer curve
- 3.

End point correlation line E_T = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. E_0 = Offset error: deviation between the first actual transition and the first ideal one. E_G = Gain error: deviation between the last ideal transition and the last actual one. E_D = Differential linearity error: maximum deviation between actual steps and the ideal one. E_L = Integral linearity error: maximum deviation between any actual transition and the end point correlation between any actual transition and the end point correlation line.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID022171 Rev 5

