

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	56800E
Core Size	16-Bit
Speed	60MHz
Connectivity	CANbus, SCI, SPI
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	21
Program Memory Size	32KB (16K × 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 16
Voltage - Supply (Vcc/Vdd)	2.25V ~ 3.6V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc56f8322mfae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1-1 System Bus Interfaces

- **Note:** Flash memories are encapsulated within the Flash Memory Module (FM). Flash control is accomplished by the I/O to the FM over the peripheral bus, while reads and writes are completed between the core and the Flash memories.
- Note: The primary data RAM port is 32 bits wide. Other data ports are 16 bits.

2.2 Signal Pins

After reset, each pin is configured for its primary function (listed first). In the 56F8122, after reset, each pin must be configured for the desired function. The initialization software will configure each pin for the function listed first for each pin, as shown in **Table 2-2**. Any alternate functionality must be programmed.

Note: Signals in italics are not available in the 56F8122 device.

If the "State During Reset" lists more than one state for a pin, the first state is the actual reset state. Other states show the reset condition of the alternate function, which you get if the alternate pin function is selected without changing the configuration of the alternate peripheral. For example, the SCLK0/GPIOB3 pin shows that it is tri-stated during reset. If the GPIOB_PER is changed to select the GPIO function of the pin, it will become an input if no other registers are changed.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
V _{DD_IO}	5	Supply		I/O Power — This pin supplies 3.3V power to the chip I/O interface
V _{DD_IO}	14			it is enabled.
V _{DD_IO}	34			
V _{DD_IO}	44			
V _{DDA_ADC}	30	Supply		ADC Power — This pin supplies 3.3V power to the ADC modules. It must be connected to a clean analog power supply.
V _{SS}	10	Supply		Ground — These pins provide ground for chip logic and I/O drivers.
V _{SS}	13			
V _{SS}	31			
V _{SS}	45			
V _{SSA_ADC}	29	Supply		ADC Analog Ground — This pin supplies an analog ground to the ADC modules.
V _{CAP} 1	43	Supply	Supply	$V_{CAP}1 - 2$ — Connect each pin to a 2.2µF or greater bypass capacitor
V _{CAP} 2	17			In order to bypass the core logic voltage regulator, required for proper chip operation.

Table 2-2 Signal and Package Information for the 48-Pin LQFP

Table 2-2 Signal and Package Information for the 48-Pin LQFP (Continued)

Signal Name	Pin No.	Туре	State During Reset	Signal Description							
PWMA4 (MOSI1)	8	Output Schmitt Input/ Output	In reset, output is disabled, pull-up is enabled	PWMA4 — This is one of six PWMA output pins. SPI 1 Master Out/Slave In — This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge the slave device uses to latch the data.							
(GPIOA4)		Schmitt Input/ Output		 Port A GPIO — This GPIO pin can be individually programmed as an input or output pin. In the 56F8322, the default state after reset is PWMA4. In the 56F8122, the default state is not one of the functions offered and must be reconfigured. 							
PWMA5	9	Output	In reset,	PWMA5 — This is one of six PWMA output pins.							
(SCLK1)		Schmitt Input/ Output	output is disabled, pull-up is enabled	SPI 1 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input. A Schmitt trigger input is used for noise immunity.							
(GPIOA5)		Schmitt Input/ Output		Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.							
		Output		In the 56F8322, the default state after reset is PWMA5.							
				In the 56F8122, the default state is not one of the functions offered and must be reconfigured.							
FAULTA0	12	Schmitt Input	Input	FAULTA0 — This fault input pin is used for disabling selected PWMA outputs in cases where fault conditions originate off-chip.							
(GPIOA6)		Schmitt Input/		Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.							
		Output		In the 56F8322, the default state after reset is FAULTA0.							
				In the 56F8122, the default state is not one of the functions offered and must be reconfigured.							
ANA0	20	Input	Analog Input	ANA0 - 2 — Analog inputs to ADCA, Channel 0							
ANA1	21										
ANA2	22										
ANA4	23	Input	Analog Input	ANA4 - 6 — Analog inputs to ADCA, Channel 1							
ANA5	24										
ANA6	25										

Table 4-13 Analog to Digital Converter	Registers Address Map (Continued)
(ADCA_BASE	= \$00 F200)

Register Acronym	Address Offset	Register Description
ADCA_HLMT 1	\$1A	High Limit Register 1
ADCA_HLMT 2	\$1B	High Limit Register 2
ADCA_HLMT 3	\$1C	High Limit Register 3
ADCA_HLMT 4	\$1D	High Limit Register 4
ADCA_HLMT 5	\$1E	High Limit Register 5
ADCA_HLMT 6	\$1F	High Limit Register 6
ADCA_HLMT 7	\$20	High Limit Register 7
ADCA_OFS 0	\$21	Offset Register 0
ADCA_OFS 1	\$22	Offset Register 1
ADCA_OFS 2	\$23	Offset Register 2
ADCA_OFS 3	\$24	Offset Register 3
ADCA_OFS 4	\$25	Offset Register 4
ADCA_OFS 5	\$26	Offset Register 5
ADCA_OFS 6	\$27	Offset Register 6
ADCA_OFS 7	\$28	Offset Register 7
ADCA_POWER	\$29	Power Control Register
ADCA_CAL	\$2A	ADC Calibration Register

Table 4-14 Temperature Sensor Register Address Map (TSENSOR_BASE = \$00 F270) Temperature Sensor is NOT available in the 56F8122 device

Register Acronym	Address Offset	Register Description
TSENSOR_CNTL	\$0	Control Register

Table 4-15 Serial Communication Interface 0 Registers Address Map (SCI0_BASE = \$00 F280)

Register Acronym	Address Offset	Register Description
SCI0_SCIBR	\$0	Baud Rate Register
SCI0_SCICR	\$1	Control Register
		Reserved
SCI0_SCISR	\$3	Status Register
SCI0_SCIDR	\$4	Data Register

Table 4-27 FlexCAN Registers Address Map (Continued) (FC_BASE = \$00 F800) FlexCAN is NOT available in the 56F8122 device

Register Acronym	Address Offset	Register Description							
FCMB3_CONTROL	\$58	Message Buffer 3 Control / Status Register							
FCMB3_ID_HIGH	\$59	Message Buffer 3 ID High Register							
FCMB3_ID_LOW	\$5A	Message Buffer 3 ID Low Register							
FCMB3_DATA	\$5B	Message Buffer 3 Data Register							
FCMB3_DATA	\$5C	Message Buffer 3 Data Register							
FCMB3_DATA	\$5D	Message Buffer 3 Data Register							
FCMB3_DATA	\$5E	Message Buffer 3 Data Register							
		Reserved							
FCMB4_CONTROL	\$60	Message Buffer 4 Control / Status Register							
FCMB4_ID_HIGH	\$61	Message Buffer 4 ID High Register							
FCMB4_ID_LOW	\$62	Message Buffer 4 ID Low Register							
FCMB4_DATA	\$63	Message Buffer 4 Data Register							
FCMB4_DATA	\$64	Message Buffer 4 Data Register							
FCMB4_DATA	\$65	Message Buffer 4 Data Register							
FCMB4_DATA	\$66	Message Buffer 4 Data Register							
		Reserved							
FCMB5_CONTROL	\$68	Message Buffer 5 Control / Status Register							
FCMB5_ID_HIGH	\$69	Message Buffer 5 ID High Register							
FCMB5_ID_LOW	\$6A	Message Buffer 5 ID Low Register							
FCMB5_DATA	\$6B	Message Buffer 5 Data Register							
FCMB5_DATA	\$6C	Message Buffer 5 Data Register							
FCMB5_DATA	\$6D	Message Buffer 5 Data Register							
FCMB5_DATA	\$6E	Message Buffer 5 Data Register							
		Reserved							
FCMB6_CONTROL	\$70	Message Buffer 6 Control / Status Register							
FCMB6_ID_HIGH	\$71	Message Buffer 6 ID High Register							
FCMB6_ID_LOW	\$72	Message Buffer 6 ID Low Register							
FCMB6_DATA	\$73	Message Buffer 6 Data Register							
FCMB6_DATA	\$74	Message Buffer 6 Data Register							
FCMB6_DATA	\$75	Message Buffer 6 Data Register							
FCMB6_DATA	\$76	Message Buffer 6 Data Register							
		Reserved							
FCMB7_CONTROL	\$78	Message Buffer 7 Control / Status Register							
FCMB7_ID_HIGH	\$79	Message Buffer 7 ID High Register							
FCMB7_ID_LOW	\$7A	Message Buffer 7 ID Low Register							
FCMB7_DATA	\$7B	Message Buffer 7 Data Register							

5.6.2.1 Reserved—Bits 15–6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.2.2 EOnCE Receive Register Full Interrupt Priority Level (RX_REG IPL)—Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.2.3 EOnCE Transmit Register Empty Interrupt Priority Level (TX_REG IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.2.4 EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)— Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.3 Interrupt Priority Register 2 (IPR2)

Base + \$2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	FMCBE IPL		EMC	C IPI	EMER							0	0	0	IRO	
Write						LOOKINE		201112						ii (Q)		
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-5 Interrupt Priority Register 2 (IPR2)

5.6.8.5 Timer C, Channel 1 Interrupt Priority Level (TMRC1 IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9 Interrupt Priority Register 8 (IPR8)

Base + \$8	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read	SCI0_RCV IPL		SCI0_RERR		0	0	SCI0	SCI0_TIDL		SCI0_XMIT		3 IPI			TMRA1 IPI		
Write			IPL				IF	۲L	IPL		11110		11110		11110		
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Figure 5-11 Interrupt Priority Register 8 (IPR8)

5.6.9.1 SCI0 Receiver Full Interrupt Priority Level (SCI0_RCV IPL)— Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.2 SCI0 Receiver Error Interrupt Priority Level (SCI0_RERR IPL)— Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.3 Reserved—Bits 11–10

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.10.5 ADC A Zero Crossing or Limit Error Interrupt Priority Level (ADCA_ZC IPL)—Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.6 Reserved—Bits 5-4

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.10.7 ADC A Conversion Complete Interrupt Priority Level (ADCA_CC IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.8 Reserved—Bits 1-0

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.11 Vector Base Address Register (VBA)

Base + \$A	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read	0	0	0		VECTOR BASE ADDRESS												
Write					VECTOR BASE ADDRESS												
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Figure 5-13 Vector Base Address Register (VBA)

5.6.11.1 Reserved—Bits 15–13

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.11.2 Interrupt Vector Base Address (VECTOR BASE ADDRESS)— Bits 12–0

The contents of this register determine the location of the Vector Address Table. The value in this register is used as the upper 13 bits of the interrupt vector address. The lower eight bits of the ISR address are determined based upon the highest-priority interrupt; see Section 5.3.1 for details.

6.5.1.2 OnCE Enable (ONCE EBL)—Bit 5

- 0 = OnCE clock to 56800E core enabled when core TAP is enabled
- 1 = OnCE clock to 56800E core is always enabled

6.5.1.3 Software Reset (SW RST)—Bit 4

Writing 1 to this field will cause the part to reset.

6.5.1.4 Stop Disable (STOP_DISABLE)—Bits 3–2

- 00 = Stop mode will be entered when the 56800E core executes a STOP instruction
- 01 = The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can be reprogrammed in the future
- 10 = The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can then only be changed by resetting the device
- 11 = Same operation as 10

6.5.1.5 Wait Disable (WAIT_DISABLE)—Bits 1–0

- 00 = Wait mode will be entered when the 56800E core executes a WAIT instruction
- 01 = The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can be reprogrammed in the future
- 10 = The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can then only be changed by resetting the device
- 11 = Same operation as 10

6.5.2 SIM Reset Status Register (SIM_RSTSTS)

Bits in this register are set upon any system reset and are initialized only by a Power-On Reset (POR). A reset (other than POR) will only set bits in the register; bits are not cleared. Only software should clear this register.

Base + \$1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	SWR	COPR	FXTR	POR	0	0
Write											own	COLIX	2,011	1.01		
RESET	0	0	0	0	0	0	0	0	0	0					0	0

Figure 6-4 SIM Reset Status Register (SIM_RSTSTS)

6.5.2.1 Reserved—Bits 15–6

This bit field is reserved or not implemented. It is read as zero and cannot be modified by writing.

6.5.2.2 Software Reset (SWR)—Bit 5

When 1, this bit indicates that the previous reset occurred as a result of a software reset (write to SW RST bit in the SIM_CONTROL register). This bit will be cleared by any hardware reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it.

6.5.6.3 IRQ—Bit 10

This bit controls the pull-up resistors on the \overline{IRQA} pin.

6.5.6.4 Reserved—Bits 9–4

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.6.5 JTAG—Bit 3

This bit controls the pull-up resistors on the $\overline{\text{TRST}}$ (This pin is always tied inactive on the 56F8322), TMS and TDI pins.

6.5.6.6 Reserved—Bits 2–0

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.7 CLKO Select Register (SIM_CLKOSR)

The CLKO select register can be used to multiplex out any one of the clocks generated inside the clock generation and SIM modules. The default value is SYS_CLK. All other clocks primarily muxed out are for test purposes only, and are subject to significant unspecified latencies at high frequencies.

The upper four bits of the GPIOB register can function as GPIO, Quad Decoder #0 signals, or as additional clock output signals. GPIO has priority and is enabled/disabled via the GPIOB_PER. If GPIOB[7:4] are programmed to operate as peripheral outputs, then the choice between Quad Decoder #0 and additional clock outputs is made here in the CLKOSR. The default state is for the peripheral function of GPIOB[7:4] to be programmed as Quad Decoder #0. This can be changed by altering PHASE0 through INDEX as shown in Figure 6-9.

The CLKOUT pin is not bonded out in this device. Instead, it is offered only as a pad for die-level testing.

Base + \$A	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	PHSA	PHSB		HOME	CLK		C		1	
Write							1110/1	THOD			DIS		0	LIXOOL	-	
RESET	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

Figure 6-9 CLKO Select Register (SIM_CLKOSR)

6.5.7.1 Reserved—Bits 15–10

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.7.2 PHASEA0 (PHSA)—Bit 9

- 0 = Peripheral output function of GPIOB[7] is defined to be PHASEA0
- 1 = Peripheral output function of GPI B[7] is defined to be the oscillator clock (MSTR_OSC, see Figure 3-4)

6.5.7.3 PHASEB0 (PHSB)—Bit 8

- 0 = Peripheral output function of GPIOB[6] is defined to be PHASEB0
- 1 = Peripheral output function of GPIOB[6] is defined to be SYS_CLK2

56F8322 Techncial Data, Rev. 16

As shown in **Figure 6-10**, the GPIO has the final control over which pin controls the I/O. SIM_GPS simply decides which peripheral will be routed to the I/O.

Figure 6-10 Overall Control of Pads Using SIM_GPS Control

Base + \$B	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	C6	C5	B1	B0	A5	Δ4	A3	Α2
Write									00	00	DI	50	710	74	///0	7.2
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-11 GPIO Peripheral Select Register (SIM_GPS)

6.5.8.1 Reserved—Bits 15-8

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.8.2 GPIO C6 (C6)—Bit 7

This bit selects the alternate function for GPIOC6.

- 0 = TC0 (default)
- 1 = TXD0

6.5.8.3 GPIOC5 (C5)—Bit 6

This bit selects the alternate function for GPIOC5.

- 0 = TC1 (default)
- 1 = RXD0

Figure 6-13 I/O Short Address Determination

With this register set, an interrupt driver can set the SIM_ISALL register pair to point to its peripheral registers and then use the I/O Short addressing mode to reference them. The ISR should restore this register to its previous contents prior to returning from interrupt.

- **Note:** The default value of this register set points to the EOnCE registers.
- **Note:** The pipeline delay between setting this register set and using short I/O addressing with the new value is five cycles.

Base + \$D	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	1	1	1	1	1	1	1	1	1	1	1	1	1	1		23.221
Write															10/12	20.22]
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 6-14 I/O Short Address Location High Register (SIM_ISALH)

6.5.10.1 Input/Output Short Address Low (ISAL[23:22])—Bit 1–0

This field represents the upper two address bits of the "hard coded" I/O short address.

Base + \$E	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read								ISAI	[21:6]							
Write		ISAL[21:6]														
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 6-15 I/O Short Address Location Low Register (SIM_ISALL)

6.8 Stop and Wait Mode Disable Function

Figure 6-16 Internal Stop Disable Circuit

The 56800E core contains both STOP and WAIT instructions. Both put the CPU to sleep. For lowest power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. When the PLL is shut down, the 56800E system clock must be set equal to the prescaler output.

Some applications require the 56800E STOP and WAIT instructions be disabled. To disable those instructions, write to the SIM control register (SIM_CONTROL) described in Section 6.5.1. This procedure can be on either a permanent or temporary basis. Permanently assigned applications last only until their next reset.

6.9 Resets

The SIM supports four sources of reset. The two asynchronous sources are the external $\overline{\text{RESET}}$ pin and the Power-On Reset (POR). The two synchronous sources are the software reset, which is generated within the SIM itself, by writing to the SIM_CONTROL register, and the COP reset.

Reset begins with the assertion of any of the reset sources. Release of reset to various blocks is sequenced to permit proper operation of the device. A POR reset is declared when reset is removed and any of the three voltage detectors (1.8V POR, 2.2V core voltage, or 2.7V I/O voltage) indicate a low supply voltage condition. POR will continue to be asserted until all voltage detectors indicate a stable supply is available (note that as power is removed POR is not declared until the 1.8V core voltage threshold is reached.) A POR reset is then extended for 64 clock cycles to permit stabilization of the clock source, followed by a 32 clock window in which SIM clocking is initiated. It is then followed by a 32 clock window in which peripherals are released to implement Flash security, and, finally, followed by a 32 clock window in which the core is initialized. After completion of the described reset sequence, application code will begin execution.

Resets may be asserted asynchronously, but are always released internally on a rising edge of the system clock.

Part 8 General Purpose Input/Output (GPIO)

8.1 Introduction

This section is intended to supplement the GPIO information found in the **56F8300 Peripheral User Manual** and contains only chip-specific information. This information supercedes the generic information in the **56F8300 Peripheral User Manual**.

8.2 Configuration

There are three GPIO ports defined on the 56F8322/56F8122. The width of each port and the associated peripheral function is shown in **Table 8-1** and **Table 8-2**. The specific mapping of GPIO port pins is shown in **Table 8-3**.

GPIO Port	Port Width	Available Pins in 56F8322	Peripheral Function	Reset Function
А	12	7	PWM, SPI 1	PWM
В	8	8	SPI 0, DEC 0, TMRA, SCI 1	SPI 0, DEC 0
С	7	6	XTAL, EXTAL, CAN, TMRC, SCI 0	XTAL, EXTAL, CAN, TMRC

Table 8-1 56F8322 GPIO Ports Configuration

Table 8-2 56F8122 GPIO Ports Configuration

GPIO Port	Port Width	Available Pins in 56F8122	Peripheral Function	Reset Function
A	12	7	SPI 1	Must be reconfigured
В	8	8	SPI 0, SCI1, TMRA	SPI 0, other pins must be reconfigured
С	7	6	XTAL, EXTAL, TMRC, SCI 0	XTAL, EXTAL, TMRC; other pins must be reconfigured

Characteristic	Min	Тур	Max	Unit
ESD for Human Body Model (HBM)	2000	_	_	V
ESD for Machine Model (MM)	200	_	—	V
ESD for Charge Device Model (CDM)	500	_	_	V

Table 10-2 56F8322/56F8122 ElectroStatic Discharge (ESD) Protection

Table 10-3 Thermal Characteristics⁶

Characteristic	Comments	Symbol	Value	Unit	Notes
		Cymber	48-pin LQFP	onic	
Junction to ambient Natural Convection		$R_{ hetaJA}$	41	°C/W	2
Junction to ambient (@1m/sec)		$R_{ hetaJMA}$	34	°C/W	2
Junction to ambient Natural Convection	Four layer board (2s2p)	R _{θJMA} (2s2p)	34	°C/W	1,2
Junction to ambient (@1m/sec)	Four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	29	°C/W	1,2
Junction to case		$R_{ ext{ heta}JC}$	8	°C/W	3
Junction to center of case		Ψ_{JT}	2	°C/W	4, 5
I/O pin power dissipation		P _{I/O}	User-determined	W	
Power dissipation		P _D	$P_D = (I_DD \times V_DD + P_I/O)$	W	
Maximum allowed P_D		P _{DMAX}	(TJ - TA) / RθJA ⁷	W	

- 1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p thermal test board.
- 2. Junction to ambient thermal resistance, Theta-JA (R_{qJA}), was simulated to be equivalent to the JEDEC specification JESD51-2 in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes (2s2p, where "s" is the number of signal layers and "p" is the number of planes) per JESD51-6 and JESD51-7. The correct name for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA.
- 3. Junction to case thermal resistance, Theta-JC (R_{qJC}), was simulated to be equivalent to the measured values using the cold plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement technique is described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when the package is being used with a heat sink.
- 4. Thermal Characterization Parameter, Psi-JT (Y_{JT}), is the "resistance" from junction to reference point thermocouple on top center of case as defined in JESD51-2. Y_{JT} is a useful value to use to estimate junction temperature in steady-state customer environments.
- 5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 6. See Section 12.1 for more details on thermal design considerations.
- 7. TJ = Junction temperature

TA = Ambient temperature

56F8322 Technical Data, Rev. 16

Note: The 56F8122 device is guaranteed to 40MHz and specified to meet Industrial requirements only; PWM, CAN and Quad Decoder are NOT available on the 56F8122 device.

Characteristic	Symbol	Notes	Min	Тур	Max	Unit
Supply voltage	V _{DD_IO}		3	3.3	3.6	V
ADC Supply Voltage	V _{DDA_ADC} , V _{REFH}	V _{REFH} must be less than or equal to V _{DDA_ADC}	3	3.3	3.6	V
Oscillator / PLL Supply Voltage	V _{DDA_OSC} _PLL		3	3.3	3.6	V
Internal Logic Core Supply Voltage	V _{DD_CORE}	OCR_DIS is High	2.25	2.5	2.75	V
Device Clock Frequency	FSYSCLK		0	—	60/40	MHz
Input High Voltage (digital)	V _{IN}	Pin Groups 1, 3 ,4, 5	2	—	5.5	V
Input High Voltage (XTAL/EXTAL, XTAL is not driven by an external clock)	V _{IHC}	Pin Group 6	V _{DDA} -0.8		V _{DDA} +0.3	V
Input high voltage (XTAL/EXTAL, XTAL is driven by an external clock)	V _{IHC}	Pin Group 6	2	—	V _{DDA} +0.3	V
Input Low Voltage	V _{IL}	Pin Groups 1, 3, 4, 5, 6	-0.3	—	0.8	V
Output High Source Current	I _{OH}	Pin Groups 1, 2	—	_	-4	mA
$v_{OH} = 2.4 v (v_{OH} \text{ min.})$		Pin Group 3	—	_	-12	
Output Low Sink Current	I _{OL}	Pin Groups 1, 2	—	_	4	mA
$v_{OL} = 0.4 v (v_{OL} \text{ max})$		Pin Group 3	—	_	12	
Ambient Operating Temperature (Automotive)	Τ _Α		-40	—	125	°C
Ambient Operating Temperature (Industrial)	Τ _Α		-40	—	105	°C
Flash Endurance (Automotive) (Program Erase Cycles)	N _F	T _A = -40°C to 125°C	10,000	—	_	Cycles
Flash Endurance (Industrial) (Program Erase Cycles)	N _F	T _A = -40°C to 105°C	10,000	—	—	Cycles
Flash Data Retention	T _R	T _J <= 85°C avg	15	_	—	Years

Table 10-4 Recommended Operating Conditions

 $(V_{REFLO} = 0V, V_{SS} = V_{SSA_ADC} = 0V, V_{DDA} = V_{DDA_ADC} = V_{DDA_OSC_PLL})$

Note: Total chip source or sink current cannot exceed 150mA. **Note:** *Pins in italics are NOT available in the 56F8122 device.* See Pin Groups in **Table 10-1**

Figure 10-19 Test Access Port Timing Diagram

10.15 Analog-to-Digital Converter (ADC) Parameters

Та	able 10-24 A	ADC Par	ameters
	Symbol	Min	Tvn

Characteristic	Symbol	Min	Тур	Max	Unit
Input voltages	V _{ADIN}	V _{REFL}	—	V _{REFH}	V
Resolution	R _{ES}	12	—	12	Bits
Integral Non-Linearity ¹	INL	—	+/- 2.4	+/- 3.2	LSB ²
Differential Non-Linearity	DNL	—	+/- 0.7	< +1	LSB ²
Monotonicity			GUARANTEED		
ADC internal clock	f _{ADIC}	0.5	_	5	MHz
Conversion range	R _{AD}	V _{REFL}	—	V _{REFH}	V

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	TC0	13	V _{SS}	25	ANA6	37	PHASEB
2	RESET	14	V _{DD_IO}	26	V _{REFN}	38	PHASEA
3	PWMA0	15	SS0	27	V _{REFMID}	39	ТСК
4	PWMA1	16	MISO0	28	V _{REFP}	40	TMS
5	V _{DD_IO}	17	V _{CAP} 2	29	V _{SSA_ADC}	41	TDI
6	PWMA2	18	MOSI0	30	V _{DDA_ADC}	42	TDO
7	PWMA3	19	SCLK0	31	V _{SS}	43	V _{CAP} 1
8	PWMA4	20	ANA0	32	EXTAL	44	V _{DD_IO}
9	PWMA5	21	ANA1	33	XTAL	45	V _{SS}
10	V _{SS}	22	ANA2	34	V _{DD_IO}	46	CAN_RX
11	ĪRQĀ	23	ANA4	35	HOME0	47	CAN_TX
12	FAULTA0	24	ANA5	36	INDEX0	48	TC1

Table 11-1 56F8322 48-Pin LQFP Package Identification by Pin Number

11.2 56F8122 Package and Pin-Out Information

This section contains package and pin-out information for the 56F8122. This device comes in a 48-pin Low-profile Quad Flat Pack (LQFP). **Figure 11-1** shows the package outline for the 48-pin LQFP, **Figure 12-1** shows the mechanical parameters for this package, and **Table 11-1** lists the pin-out for the 48-pin LQFP.

Figure 11-2 Top View, 56F8122 48-Pin LQFP Package