

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

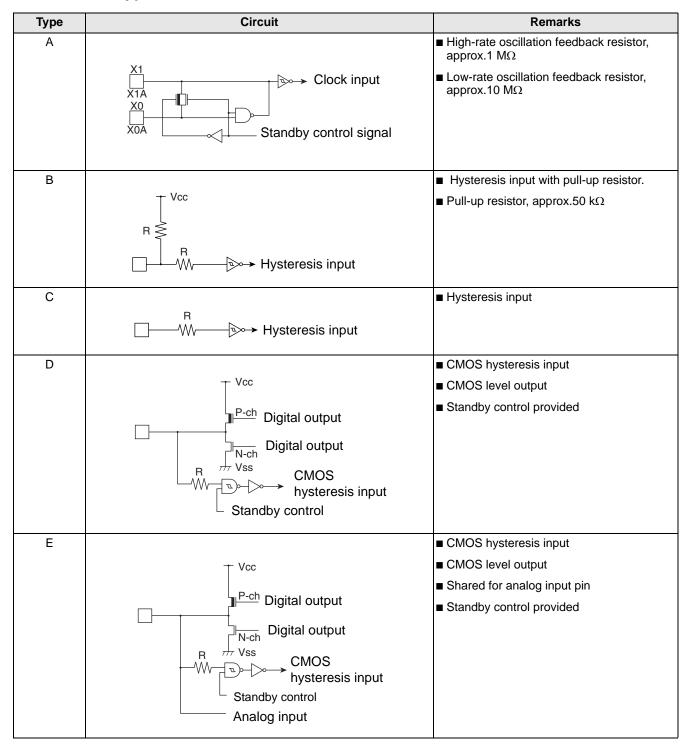
Details

E·XFI

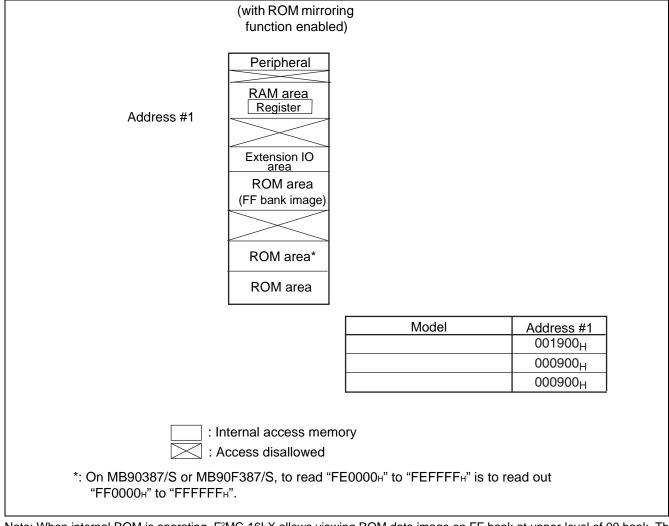
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387pmt-g-152

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


1. Product Lineup

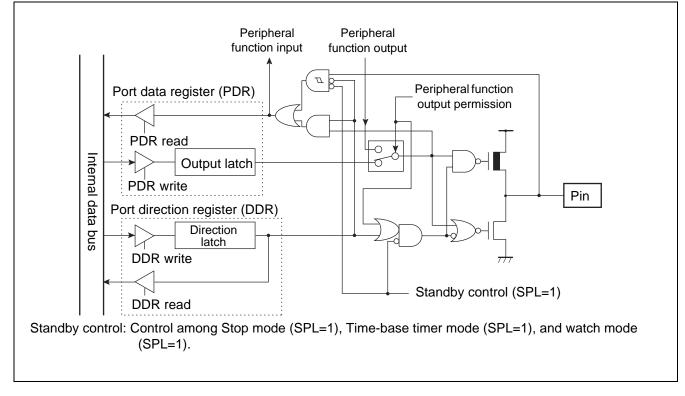
Parameter	Part Number	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G			
Classification		Flash ROM	Mask ROM	Evaluation product			
ROM capacity		64 Kby	tes	-			
RAM capacity		2 Kbyt	es	6 Kbytes			
Process			CMOS	1			
Package		LQFP-48 (pin pit	ch 0.50 mm)	PGA-256			
Operating power	supply voltage	3.5 V to 5	5.5 V	4.5 V to 5.5 V			
Special power su emulator*1	ipply for	-		None			
CPU functions		Number of basic instructions Instruction bit length Instruction length Data bit length	: 351 instructions : 8 bits and 16 bits : 1 byte to 7 bytes : 1 bit, 8 bits, 16 bits				
		Minimum instruction execution ti					
		Interrupt processing time: 1.5 µs					
Low power const (standby) mode	umption	Sleep mode / Watch mode / Time	e-base timer mode / Stop mo	ode / CPU intermittent			
I/O port		General-purpose input/output ports (CMOS output): 34 ports (36 ports*2) including 4 high-current output ports (P14 to P17)					
Time-base timer		18-bit free-run counter Interrupt cycle: 1.024 ms, 4.096 ms, 16.834 ms, 131.072 ms (with oscillation clock frequency at 4 MHz)					
Watchdog timer		Reset generation cycle: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (with oscillation clock frequency at 4 MHz)					
16-bit input/ output timer	16-bit free-run timer	Number of channels: 1 Interrupt upon occurrence of overflow					
	Input capture	Number of channels: 4 Retaining free-run timer value set by pin input (rising edge, falling edge, and both edges)					
16-bit reload time	P.	Number of channels: 2 16-bit reload timer operation Count clock cycle: 0.25 μs, 0.5 μs, 2.0 μs (at 16-MHz machine clock frequency) External event count is allowed.					
Watch timer		15-bit free-run counter Interrupt cycle: 31.25 ms, 62.5 ms, 12 ms, 250 ms, 500 ms, 1.0 s, 2.0 s (with 8.192 kHz sub clock)					
8/16-bit PPG timer		Number of channels: 2 (four 8-bi PPG operation is allowed with fo Outputting pulse wave of arbitrar Count clock: 62.5 ns to 1 μ s (with 16 MHz machine clock)	ur 8-bit channels or two 16-b	ut channels.			
Delay interrupt g	enerator module	Interrupt generator module for task switching. Used for realtime OS.					
DTP/External inte	errupt	Number of inputs: 4 Activated by rising edge, falling edge, "H" level or "L" level input. External interrupt or expanded intelligent I/O service (EI ² OS) is available.					


Pin No.	Pin Name	Circuit Type	Function			
39	P42	D	General-purpose input/output port.			
	SOT1		Serial data input pin for UART. Valid only when serial data input/output setting on UART is "enabled."			
40	P43	D	General-purpose input/output port.			
	ТХ		Transmission output pin for CAN. Valid only when output setting is "enabled."			
41	P44	D	General-purpose input/output port.			
	RX		Transmission output pin for CAN. Valid only when output setting is "enabled."			
42 to 45	P30 to P33	D	General-purpose input/output ports.			
46	X0A*	А	Pin for low-rate oscillation.			
	P35*		General-purpose input/output port.			
47	X1A*	А	Pin for low-rate oscillation.			
	P36*	1	General-purpose input/output port.			
48	AVss	-	Vss power source input pin for A/D converter.			

*: MB90387, MB90F387: X1A, X0A MB90387S, MB90F387S: P36, P35

6. I/O Circuit Type

9.2 Memory Map

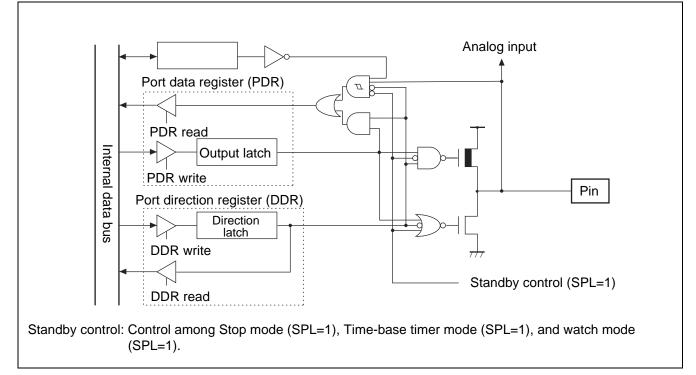

Note: When internal ROM is operating, F²MC-16LX allows viewing ROM data image on FF bank at upper-level of 00 bank. This function is called "mirroring ROM," which allows effective use of C compiler small model.

F²MC-16LX assigns the same low order 16-bit address to FF bank and 00 bank, which allows referencing table in ROM without specifying "far" using pointer.

For example, when accessing to "00C000H", ROM data at "FFC000H" is accessed actually. However, because ROM area of FF bank exceeds 48 Kbytes, viewing all areas is not possible on 00 bank image. Because ROM data of "FF4000H" to "FFFFFH" is viewed on "004000H" to "00FFFFH" image, store a ROM data table in area "FF4000H" to "FFFFFH."

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value	
0000В0н	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111в	
0000B1н	ICR01	Interrupt control register 01			00000111в	
0000В2н	ICR02	Interrupt control register 02			00000111в	
0000ВЗн	ICR03	Interrupt control register 03			00000111в	
0000В4н	ICR04	Interrupt control register 04				
0000B5н	ICR05	Interrupt control register 05				
0000В6н	ICR06	Interrupt control register 06			00000111в	
0000B7 н	ICR07	Interrupt control register 07			00000111в	
0000B8н	ICR08	Interrupt control register 08			00000111в	
0000B9н	ICR09	Interrupt control register 09			00000111в	
0000ВАн	ICR10	Interrupt control register 10			00000111в	
0000ВВн	ICR11	Interrupt control register 11			00000111в	
0000ВСн	ICR12	Interrupt control register 12			00000111в	
0000BDн	ICR13	Interrupt control register 13			00000111в	
0000ВЕн	ICR14	Interrupt control register 14	pt control register 14			
0000BFн	ICR15	Interrupt control register 15			00000111в	
0000C0н to 0000FFн		(Reser	ved area) *			
001FF0⊦	PADR0	Detection address setting register 0 (low-order)	R/W	Address matching detection function	XXXXXXXXB	
001FF1⊦		Detection address setting register 0 (middle-order)			XXXXXXXXB	
001FF2⊦		Detection address setting register 0 (high-order)			XXXXXXXXB	
001FF3⊦	PADR1	Detection address setting register 1 (low-order)	R/W	1	XXXXXXXXB	
001FF4⊦		Detection address setting register 1 (middle-order)			XXXXXXXXB	
001FF5н	1	Detection address setting register 1 (high-order)	1		XXXXXXXXB	
003900н	TMR0/	16-bit timer register 0/16-bit reload	R,W	16-bit reload timer 0	XXXXXXXXB	
003901н	TMRLR0	register		F F	XXXXXXXXB	
003902н	TMR1/	16-bit timer register 1/16-bit reload	R,W	16-bit reload timer 1	XXXXXXXXB	
003903н	TMRLR1	register			XXXXXXXXB	
003904н to 00390Fн		(Reser	ved area) *			

Port 4 Pins Block Diagram

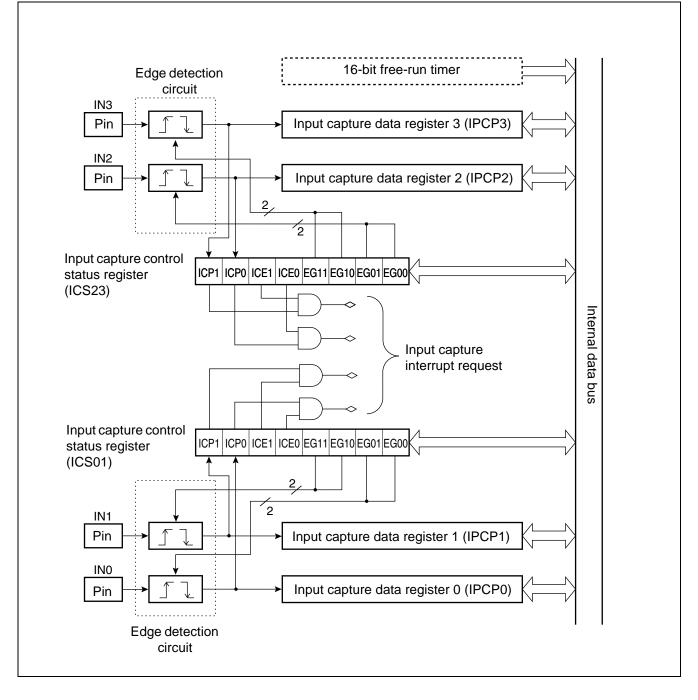

Port 4 Registers

- Port 4 registers include port 4 data register (PDR4) and port 4 direction register (DDR4).
- The bits configuring the register correspond to port 4 pins on a one-to-one basis.

Relation between Port 4 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 4	PDR4, DDR4	-	-	-	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	-	-	-	P44	P43	P42	P41	P40

Port 5 Pins Block Diagram


Port 5 Registers

- Port 5 registers include port 5 data register (PDR5), port 5 direction register (DDR5), and analog input permission register (ADER).
- Analog input permission register (ADER) allows or disallows input of analog signal to the analog input pin.
- The bits configuring the register correspond to port 5 pins on a one-to-one basis.

Relation between Port 5 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 5	PDR5, DDR5	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	ADER	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
	Corresponding pins	P57	P56	P55	P54	P53	P52	P51	P50

Input Capture Block Diagram

12.5 16-bit Reload Timer

The 16-bit reload timer has the following functions:

- Count clock is selectable among 3 internal clocks and external event clock.
- Activation trigger is selectable between software trigger and external trigger.
- Generation of CPU interrupt is allowed upon occurrence of underflow on 16-bit timer register. Available as an interval timer using the interrupt function.
- When underflow of 16-bit timer register (TMR) occurs, one of two reload modes is selectable between one-shot mode that halts counting operation of TMR, and reload mode that reloads 16-bit reload register value to TMR, continuing TMR counting operation.
- The 16-bit reload timer is ready for expanded intelligent I/O service (El²OS).
- MB90385 series device has 2 channels of built-in 16-bit reload timer.

Operation Mode of 16-bit Reload Timer

Count Clock	Activation Trigger	Operation upon Underflow
Internal clock mode	Software trigger, external trigger	One-shot mode, reload mode
Event count mode	Software trigger	One-shot mode, reload mode

Internal Clock Mode

- The 16-bit reload timer is set to internal clock mode, by setting count clock selection bit (TMCSR: CSL1, CSL0) to "00_B", "01_B", "10_B".
- In the internal clock mode, the counter decrements in synchronization with the internal clock.
- Three types of count clock cycles are selectable by count clock selection bit (TMCSR: CSL1, CSL0) in timer control status register.
- Edge detection of software trigger or external trigger is specified as an activation trigger.

12.7 8/16-bit PPG Timer Outline

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode

MB90385 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/3 have the same functions as those of PPG0/1.

Functions of 8/16-bit PPG Timer

The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).

- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

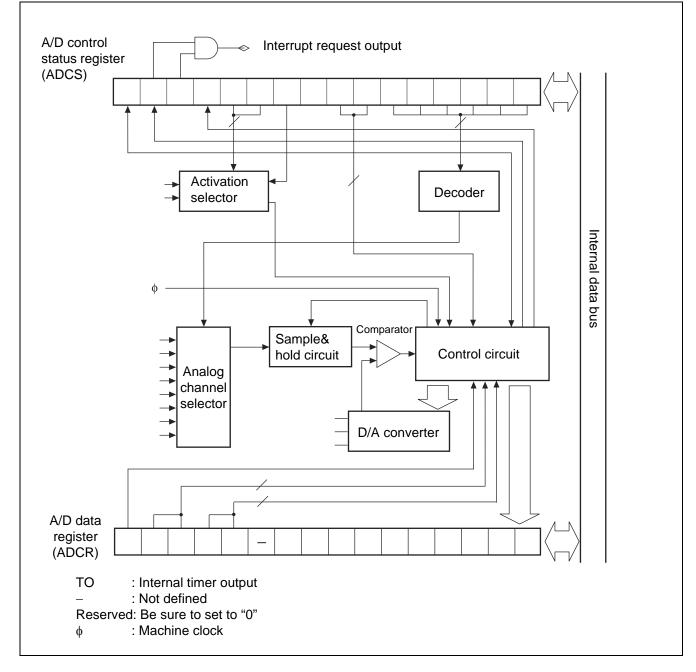
12.10 8/10-bit A/D Converter

The 8/10-bit A/D converter converts an analog input voltage into 8-bit or 10/bit digital value, using the RC-type successive approximation conversion method.

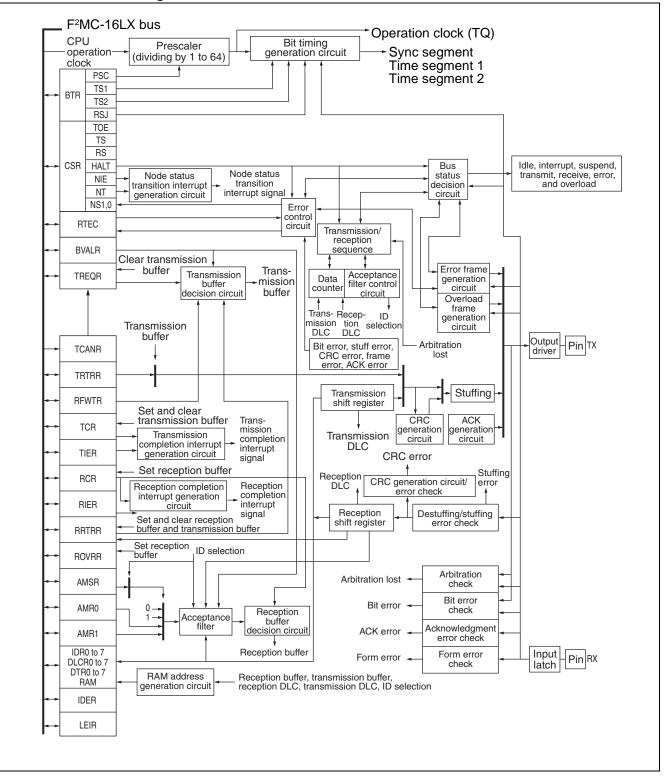
- Input signal is selected among 8 channels of analog input pins.
- Activation trigger is selected among software trigger, internal timer output, and external trigger.

Functions of 8/10-bit A/D Converter

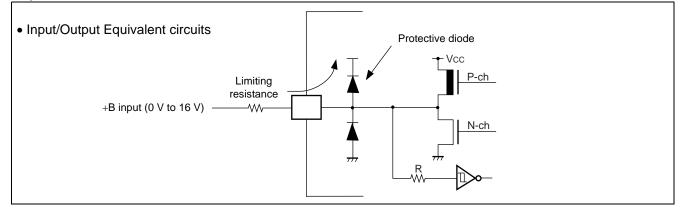
The 8/10-bit A/D converter converts an analog voltage (input voltage) input to analog input pin into an 8-bit or 10-bit digital value (A/D conversion).


The 8/10-bit A/D converter has the following functions:

- A/D conversion takes a minimum of 6.12 µs* for 1 channel, including sampling time. (A/D conversion)
- Sampling of one channel takes a minimum of 2.0 µs*.
- RC-type successive approximation conversion method, with sample & hold circuit is used for conversion.
- Resolution of either 8 bits or 10 bits is specifiable.
- A maximum of 8 channels of analog input pins are allowed for use.
- Generation of interrupt request is allowed, by storing A/D conversion result in A/D data register.
- Activation of EI²OS is allowed upon occurrence of an interrupt request. With use of EI²OS, data loss is avoided even if A/D conversion is performed successively.
- An activation trigger is selectable among software trigger, internal timer output, and external trigger (fall edge).
- : When operating with 16 MHz machine clock

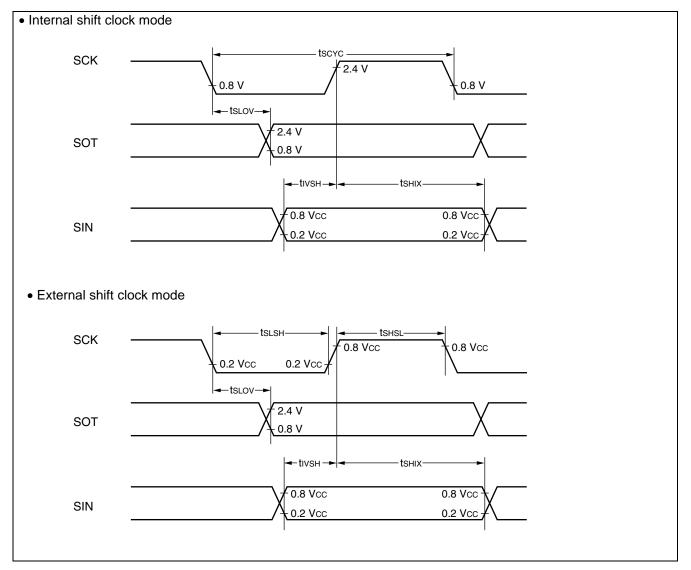

8/10-bit A/D Converter Conversion Mode

Conversion Mode	Description
Singular conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function stops.
Sequential conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function resumes from the start channel.
Pausing conversion mode	The A/D conversion is performed by pausing at each channel. Upon completion of A/D conversion on an end channel, A/D conversion and pause functions resume from the start channel.


8/10-bit A/D Converter Block Diagram

CAN Controller Block Diagram

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits:



WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Deremeter	Symbol	Pin Name	Conditions		Value		Unit	Remarks
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
Power supply current*	lcc∟	Vcc	Vcc = 5.0 V, Internally operating at 8 kHz, subclock operation,	_	0.3	1.2	mA	MB90F387/S
000			$T_A = +25^{\circ}C$		40	100	μΑ	MB90387/S
	ICCLS		$V_{CC} = 5.0 V$, Internally operating at 8 kHz, subclock, sleep mode, $T_{A} = + 25^{\circ}C$	_	10	30	μA	
	Ісст		Vcc = 5.0 V, Internally operating at 8 kHz, watch mode, $T_A = + 25^{\circ}C$		8	25	μΑ	
	Іссн		Stopping, T _A = + 25°C	_	5	20	μΑ	
Input capacity	CIN	Other than AVcc, AVss, AVR, C, Vcc, Vss	-	_	5	15	pF	
Pull-up resistor	Rup	RST	-	25	50	100	kΩ	
Pull-down resistor	Rdown	MD2	-	25	50	100	kΩ	Flash product is not provided with pull-down resistor.

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \circ C to +105 \circ C)$

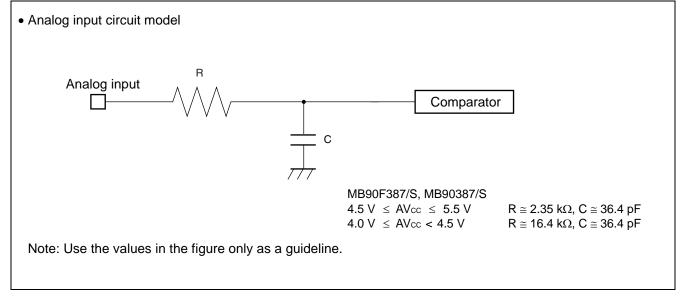
*: Test conditions of power supply current are based on a device using external clock.

13.4.5 Timer Input Timing

 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
Falameter	Symbol	Finite	Conditions	Min	Max	Onit	itemaiks
Input pulse width	tтіwн	TIN0, TIN1	-	4 tcp*	-	ns	
	t⊤ıw∟	IN0 to IN3					

*: Refer to Clock Timing ratings for tcp (internal operation clock cycle time).

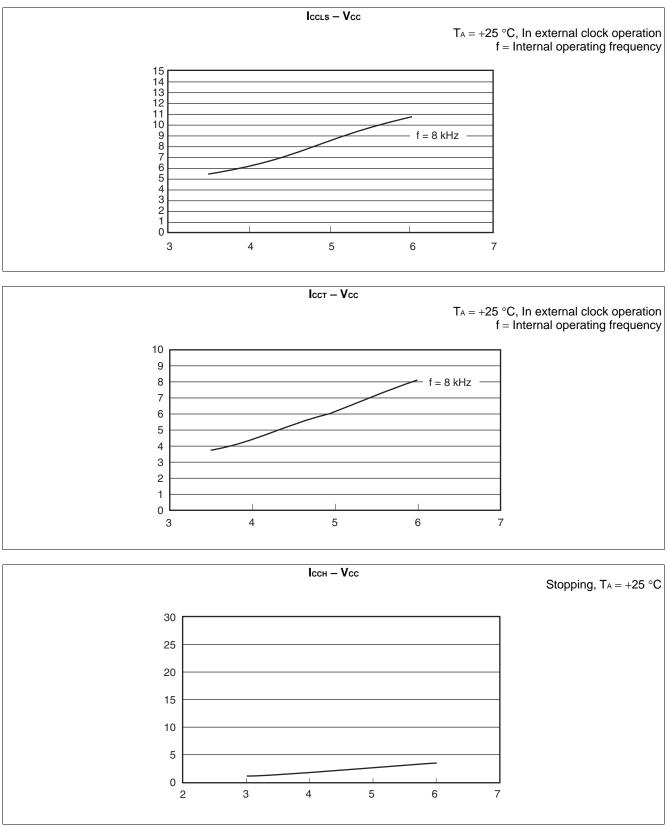

13.7 Notes on A/D Converter Section

Use the device with external circuits of the following output impedance for analog inputs:

Recommended output impedance of external circuits are: Approx. 3.9 k Ω or lower (4.5 V \leq AVcc \leq 5.5 V) (sampling period=2.00 μ s at 16 MHz machine clock), Approx. 11 k Ω or lower (4.0 V \leq AVcc < 4.5 V) (sampling period=8.0 μ s at 16 MHz machine clock).

If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.

If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.


About errors

As [AVR-AVss] become smaller, values of relative errors grow larger.

13.8 Flash Memory Program/Erase Characteristics

Parameter	Conditions		Value		Unit	Remarks
Falameter	Conditions	Min	Тур	Max	Onit	Remarks
Sector erase time	$\begin{array}{l} T_{\text{A}}=+~25~^{\circ}C\\ V_{\text{CC}}=5.0~V \end{array}$	-	1	15	S	Excludes 00H programming prior to erasure
Chip erase time		-	4	-	S	Excludes 00H programming prior to erasure
Word (16-bit width) programming time		-	16	3,600	μS	Except for the over head time of the system
Program/Erase cycle	_	10,000	-	-	cycle	
Flash Data Retention Time	Average T _A = + 85 °C	20	_	-	Year	*

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

(Continued)

Document History

	Document Title: MB90387/387S/F387/F387S, MB90V495G, 16-bit Microcontrollers F ² MC-16LX MB90385 Series Document Number:002-07765								
Revision ECN Orig. of Change Submission Date Description of Change		Description of Change							
**	_	AKIH	12/19/2008	Migrated to Cypress and assigned document number 002-07765. No change to document contents or format.					
*A	6059071	SSAS	02/05/2018	Updated to Cypress template Package: FPT-48P-M26> LQA048					

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2004-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify a