

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, SCI, UART/USART
Peripherals	POR, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90387pmt-g-158

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Product Lineup	. 4
Packages And Product Models	5
Product Comparison	. 5
Pin Assignment	6
Pin Description	. 7
I/O Circuit Type	. 9
Handling Devices	10
Block Diagram	12
Memory Map Memory Allocation of MB90385 Memory Map	12
I/О Мар	14
Interrupt Sources, Interrupt Vectors, And Interrupt Control	
Registers	21
Peripheral Resources	22
I/O Ports	22
Time-Base Timer	28
Watchdog Timer	30
16-bit Input/Output Timer	
16-bit Reload Timer	
Watch Timer Outline	
8/16-bit PPG Timer Outline	39

Address Matching Detection Function Outline	43 45 47 49 51 52
512 Kbit Flash Memory Outline	
Electrical Characteristics	55 57 58 60 67 68 70
Example Characteristics 7	71
Ordering Information 7	77
Package Dimension	78
Major Changes 7	79
Document History	
Sales, Solutions, and Legal Information 8	81

Part Number Parameter	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G				
8/10-bit A/D converter	Conversion time: 6.125 µs (at 16 Sequential conversion of two or maximum of 8 channels is allow Single conversion mode: Selecte Sequential conversion mode: Se	esolution: Selectable 10-bit or 8-bit. onversion time: $6.125 \ \mu s$ (at 16 MHz machine clock, including sampling time) equential conversion of two or more successive channels is allowed. (Setting a aximum of 8 channels is allowed.) ingle conversion mode: Selected channel is converted only once. equential conversion mode: Selected channel is converted repetitively. alt conversion mode: Conversion of selected channel is stopped and activated alter-					
UART(SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 kbps to 2 Mbps Clock-asynchronous transfer: 9,615 bps to 500 kbps Communication is allowed by bi-directional serial communication function and maste slave type connection.						
CAN	Compliant with Ver 2.0A and Ver 8 built-in message buffers. Transmission rate of 10 kbps to CAN wake-up	·	clock)				

*1: Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).

*2: MB90387S, MB90F387S

2. Packages And Product Models

Package	MB90F387, MB90F387S	MB90387, MB90387S
LQA048	\bigcirc	\bigcirc

 \bigcirc : Yes \times : No

Note: Refer to Package Dimension for details of the package.

3. Product Comparison

Memory Space

When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:

- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000^H to FFFFFF^H is viewed on 00 bank and an image of FE0000^H to FF3FFF^H is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F387/F387S/387/387S, an image from FF4000H to FFFFFFH is viewed on 00 bank and an image of FE0000H to FF3FFFH is viewed only on FF bank.

5. Pin Description

Pin No.	Pin Name	Circuit Type	Function			
1	AVcc	-	Vcc power input pin for A/D converter.			
2	AVR	-	Power (Vref+) input pin for A/D converter. Use as input for Vcc or lower.			
3 to 10	P50 to P57	Е	General-purpose input/output ports.			
	AN0 to AN7		Functions as analog input pins for A/D converter. Valid when analog input setting is "enabled."			
11	P37	D	General-purpose input/output port.			
	ADTG		Function as an external trigger input pin for A/D converter. Use the pin by setting as input port.			
12	P20	D	General-purpose input/output port.			
	TIN0		Function as an event input pin for reload timer 0. Use the pin by setting as input port.			
13	P21	D	General-purpose input/output port.			
	TOT0		Function as an event output pin for reload timer 0. Valid only when output setting is "enabled."			
14	P22	D	General-purpose input/output port.			
	TIN1		Function as an event input pin for reload timer 1. Use the pin by setting as input port.			
15	P23	D	General-purpose input/output port.			
	TOT1		Function as an event output pin for reload timer 1. Valid only when output settir "enabled."			
16 to 19	P24 to P27	D	General-purpose input/output ports.			
	INT4 to INT7		Functions as external interrupt input pins. Use the pins by setting as input por			
20	MD2	F	Input pin for specifying operation mode. Connect directly to Vss.			
21	MD1	С	Input pin for specifying operation mode. Connect directly to Vcc.			
22	MD0	С	Input pin for specifying operation mode. Connect directly to Vcc.			
23	RST	В	External reset input pin.			
24	Vcc	-	Power source (5 V) input pin.			
25	Vss	-	Power source (0 V) input pin.			
26	С	-	Capacitor pin for stabilizing power source. Connect a ceramic capacitor of approximately 0.1 $\mu\text{F}.$			
27	X0	А	Pin for high-rate oscillation.			
28	X1	А	Pin for high-rate oscillation.			
29 to 32	P10 to P13	D	General-purpose input/output ports.			
	IN0 to IN3		Functions as trigger input pins of input capture ch.0 to ch.3. Use the pins by setting as input ports.			
33 to 36	P14 to P17	G	General-purpose input/output ports. High-current output ports.			
	PPG0 to PPG3		Functions as output pins of PPG timers 01 and 23. Valid when output setting is "enabled."			
37	P40	D	General-purpose input/output port.			
	SIN1		Serial data input pin for UART. Use the pin by setting as input port.			
38	P41	D	General-purpose input/output port.			
	SCK1		Serial clock input pin for UART. Valid only when serial clock input/output setting on UART is "enabled."			

Notes When Using No Sub Clock

■ If an oscillator is not connected to X0A and X1A pin, apply pull-down resistor to X0A pin and leave X1A pin open.

About Power Supply Pins

- If two or more Vcc and Vss pins exist, the pins that should be at the same potential are connected to each other inside the device. For reducing unwanted emissions and preventing malfunction of strobe signals caused by increase of ground level, however, be sure to connect the Vcc and Vss pins to the power source and the ground externally.
- Pay attention to connect a power supply to Vcc and Vss of MB90385 series device in a lowest-possible impedance.
- Near pins of MB90385 series device, connecting a bypass capacitor is recommended at 0.1 µF across Vcc pin and Vss pin.

Crystal Oscillator Circuit

- Noises around X0 and X1 pins cause malfunctions on a MB90385 series device. Design a print circuit so that X0 and X1 pins, an crystal oscillator (or a ceramic oscillator), and bypass capacitor to the ground become as close as possible to each other. Furthermore, avoid wires to X0 and X1 pins crossing each other as much as possible.
- Print circuit designing that surrounds X0 and X1 pins with grounding wires, which ensures stable operation, is strongly recommended.

Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

Sequence of Turning on Power of A/D Converter and Applying Analog Input

- Be sure to turn on digital power (Vcc) before applying signals to the A/D converter and applying analog input signals (AN0 to AN7 pins).
- Be sure to turn off the power of A/D converter and analog input before turning off the digital power source.
- Be sure not to apply AVR exceeding AVcc when turning on and off. (No problems occur if analog and digital power is turned on and off simultaneously.)

Handling Pins When A/D Converter is Not Used

■ If the A/D converter is not used, connect the pins under the following conditions: "AVcc=AVR=Vcc," and "AVss=Vss"

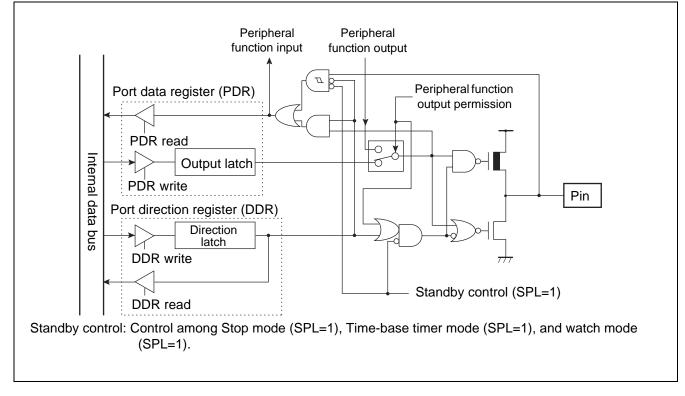
Note on Turning on Power

For preventing malfunctions on built-in step-down circuit, maintain a minimum of 50 μs of voltage rising time (between 0.2 V and 2.7V) when turning on the power.

Stabilization of Supply Voltage

■ A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.

For reference, the supply voltage should be controlled so that Vcc ripple variations (peak-to-peak values) at commercial frequencies (50 Hz / 60 Hz) fall below 10% of the standard Vcc supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

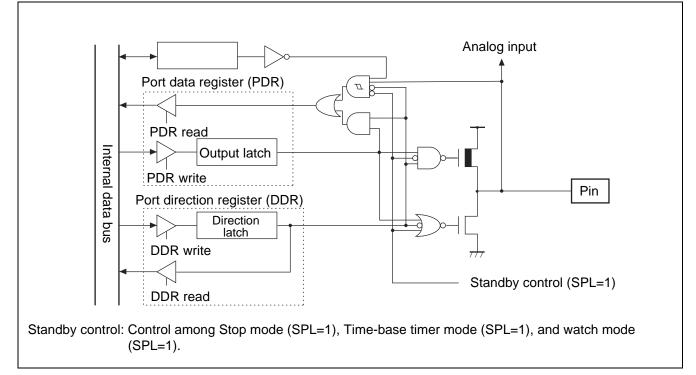

10. I/O Map

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
00000н		(Reserve	ed area) *		
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB
00003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXB
000006н to 000010н		(Reserve	ed area) *		
000011н	DDR1	Port 1 direction data register	R/W	Port 1	0000000в
000012н	DDR2	Port 2 direction data register	R/W	Port 2	0000000в
000013н	DDR3	Port 3 direction data register	R/W	Port 3	000Х0000в
000014н	DDR4	Port 4 direction data register	R/W	Port 4	ХХХ00000в
000015н	DDR5	Port 5 direction data register	R/W	Port 5	0000000в
000016н to 00001Ан		(Reserve	ed area) *		
00001Bн	ADER	Analog input permission register	R/W	8/10-bit A/D converter	11111111в
00001Cнto 000025н		(Reserve	ed area) *		
000026н	SMR1	Serial mode register 1	R/W	UART1	0000000в
000027н	SCR1	Serial control register 1	R/W, W		00000100в
000028н	SIDR1/ SODR1	Serial input data register 1/ Serial output data register 1	R, W		XXXXXXXXB
000029н	SSR1	Serial status data register 1	R, R/W		00001000в
00002Ан		(Reserve	ed area) *		
00002Вн	CDCR1	Communication prescaler control register 1	R/W	UART1	0ХХХ0000в
00002Cнto 00002Fн		(Reserve	ed area) *		·
000030н	ENIR	DTP/External interrupt permission register	R/W	DTP/External interrupt	0000000в
000031н	EIRR	DTP/External interrupt permission register	R/W		XXXXXXXXB
000032н	ELVR	Detection level setting register	R/W	1	0000000в
000033н			R/W	1	0000000в
000034н	ADCS	A/D control status register	R/W 8/10-bit A/D		0000000в
000035н			R/W, W	converter	0000000в
000036н	ADCR	A/D data register	W, R	1	XXXXXXXXB
000037н			R	1	00101XXXв

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
000083н		(Reserve	ed area) *		
000084н	TCANR	Send cancel register	W	CAN controller	0000000в
000085н		(Reserve	ed area) *		
000086н	TCR	Send completion register	R/W	CAN controller	0000000в
000087н		(Reserve	ed area) *		
000088н	RCR	Receive completion register	R/W	CAN controller	0000000в
000089н		(Reserve	ed area) *		
00008Ан	RRTRR	Receive RTR register	R/W	CAN controller	0000000в
00008Вн		(Reserve	ed area) *		
00008Сн	ROVRR	Receive overrun register	R/W	CAN controller	0000000в
00008Dн		(Reserve	ed area) *		
00008Eн	RIER	Receive completion interrupt permission register	R/W	CAN controller	0000000в
00008Fн to 00009Dн		(Reserv	ed area) *		
00009Eн	PACSR	Address detection control register	R/W	Address matching detection function	0000000в
00009Fн	DIRR	Delay interrupt request generation/ release register	R/W	Delay interrupt generation module	XXXXXXX0B
0000А0н	LPMCR	Lower power consumption mode control register	W,R/W	Lower power consumption mode	00011000в
0000A1н	CKSCR	Clock selection register	R,R/W	Clock	11111100в
0000А2н to 0000А7н		(Reserv	ed area) *		
0000A8н	WDTC	Watchdog timer control register	R,W	Watchdog timer	XXXXX111 _B
0000A9н	TBTC	Time-base timer control register	R/W,W	Time-base timer	1XX00100в
0000ААн	WTC	Watch timer control register	R,R/W	Watch timer	1Х001000в
0000ABн to 0000ADн		(Reserv	ed area) *	· · · · ·	
0000AEн	FMCS	Flash memory control status register	R,W,R/W	512k-bit Flash memory	000X0000b
0000AFн		(Reserv	ed area) *	. 1	

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003С38н, 003С39н	DLCR4	DLC register 4	R/W	CAN controller	XXXXXXXXB, XXXXXXXB
003С3Ан, 003С3Вн	DLCR5	DLC register 5 R/W		XXXXXXXXB, XXXXXXXB	
003C3Cн, 003C3Dн	DLCR6	DLC register 6 R/W		XXXXXXXXB, XXXXXXXB	
003C3Eн, 003C3Fн	DLCR7	DLC register 7	R/W		XXXXXXXXB, XXXXXXXB
003C40н to 003C47н	DTR0	Data register 0	R/W		XXXXXXXXB to XXXXXXXXB
003C48н to 003C4Fн	DTR1	Data register 1	R/W		XXXXXXXXB to XXXXXXXXB
003C50н to 003C57н	DTR2	Data register 2	R/W	-	XXXXXXXXB to XXXXXXXB
003C58н to 003C5Fн	DTR3	Data register 3	R/W		XXXXXXXXB to XXXXXXXXB
003C60н to 003C67н	DTR4	Data register 4	R/W		XXXXXXXXB to XXXXXXXXB
003C68н to 003C6Fн	DTR5	Data register 5	R/W		XXXXXXXXB to XXXXXXXXB
003C70н to 003C77н	DTR6	Data register 6	R/W		XXXXXXXXB to XXXXXXXXB
003C78н to 003C7Fн	DTR7	Data register 7	R/W		XXXXXXXXB to XXXXXXXXB
003C80н to 003CFFн		(Rese	rved area) *		
003D00н, 003D01н	CSR	Control status register	R/W, R	CAN controller	0XXXX001в, 00XXX000в
003D02н	LEIR	Last event display register	R/W		000XX000 _B
003D03н		(Rese	rved area) *		
003D04н, 003D05н	RTEC	Send/receive error counter	R	CAN controller	0000000в, 0000000в
003D06н, 003D07н	BTR	Bit timing register	R/W		11111111 _в , Х1111111 _в
003D08н	IDER	IDE register	R/W		XXXXXXXXB
003D09н		(Rese	rved area) *		
003D0Aн	TRTRR	Send RTR register	R/W	CAN controller	0000000в
003D0Bн		(Rese	rved area) *		
003D0CH	RFWTR	Remote frame receive wait register	R/W	CAN controller	XXXXXXXXB

Port 4 Pins Block Diagram


Port 4 Registers

- Port 4 registers include port 4 data register (PDR4) and port 4 direction register (DDR4).
- The bits configuring the register correspond to port 4 pins on a one-to-one basis.

Relation between Port 4 Registers and Pins

Port Name	Bits of Register and Corresponding Pins								
Port 4	PDR4, DDR4	-	-	-	bit4	bit3	bit2	bit1	bit0
	Corresponding pins	-	-	-	P44	P43	P42	P41	P40

Port 5 Pins Block Diagram

Port 5 Registers

- Port 5 registers include port 5 data register (PDR5), port 5 direction register (DDR5), and analog input permission register (ADER).
- Analog input permission register (ADER) allows or disallows input of analog signal to the analog input pin.
- The bits configuring the register correspond to port 5 pins on a one-to-one basis.

Relation between Port 5 Registers and Pins

Port Name	Bits of Register and Corresponding Pins									
Port 5	PDR5, DDR5	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
	ADER	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	
	Corresponding pins	P57	P56	P55	P54	P53	P52	P51	P50	

12.3 Watchdog Timer

The watchdog timer is a 2-bit counter that uses time-base timer or watch timer as count clock. If the counter is not cleared within an interval time, CPU is reset.

Watchdog Timer Functions

- The watchdog timer is a timer counter that prevents runaway of a program. Once a watchdog timer is activated, the counter of watchdog timer must always be cleared within a specified time of interval. If specified interval time elapses without clearing the counter of a watchdog timer, CPU resetting occurs. This is the function of a watchdog timer.
- The interval time of a watchdog timer is determined by a clock cycle, which is input as a count clock. Watchdog resetting occurs between a minimum time and a maximum time specified.
- The output target of a clock source is specified by the watchdog clock selection bit (WTC: WDCS) in the watch timer control register.
- Interval time of a watchdog timer is specified by the time-base timer output selection bit / watch timer output selection bit (WDTC: WT1, WT0) in the watchdog timer control register.

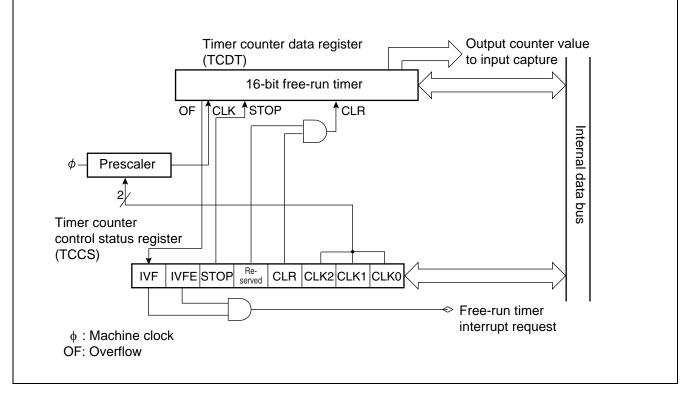
Min	Мах	Clock Cycle	Min	Max	Clock Cycle
Approx. 3.58 ms	Approx. 4.61 ms	(2 ¹⁴ ±2 ¹¹) /HCLK	Approx. 0.457 s	Approx. 0.576 s	(2 ¹² ±2 ⁹) /SCLK
Approx. 14.33 ms	Approx. 18.3 ms	(2 ¹⁶ ±2 ¹³) /HCLK	Approx. 3.584 s	Approx. 4.608 s	(2 ¹⁵ ±2 ¹²) /SCLK
Approx. 57.23 ms	Approx. 73.73 ms	(2 ¹⁸ ±2 ¹⁵) /HCLK	Approx. 7.168 s	Approx. 9.216 s	(2 ¹⁶ ±2 ¹³) /SCLK
Approx. 458.75 ms	Approx. 589.82 ms	(2 ²¹ ±2 ¹⁸) /HCLK	Approx. 14.336 s	Approx. 18.432 s	(2 ¹⁷ ±2 ¹⁴) /SCLK

Interval Timer of Watchdog Timer

HCLK: Oscillation clock (4 MHz), CSCLK: Sub clock (8.192 kHz)

Notes:

- If the time-base timer is cleared when watchdog timer count clock is used as time base timer output (carry-over signal), watchdog reset time may become longer.
- When using the sub clock as machine clock, be sure to specify watchdog timer clock source selection bit (WDCS) in watch timer control register (WTC) at "0," selecting output of watch timer.


16-bit Free-run Timer

Counter value of 16-bit free-run timer is used as reference time (base time) of input capture.

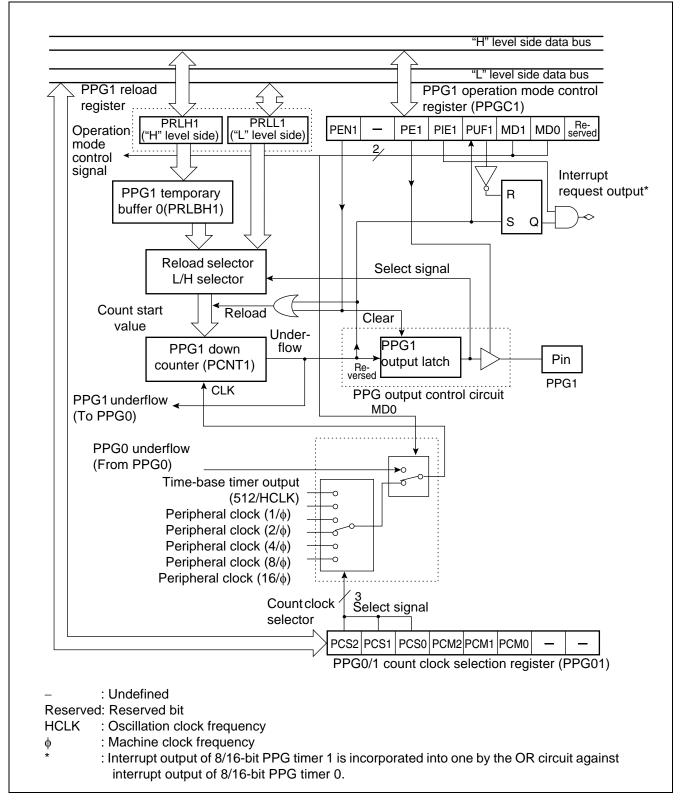
Input Capture

Input capture detects rising edge, falling edge or both edges and retains a counter value of 16-bit free-run timer. Detection of edge on input signal is allowed to generate interrupt.

16-bit Free-run Timer Block Diagram

Detailed Pin Assignment on Block Diagram

The 16-bit input/output timer includes a 16-bit free-run timer. Interrupt request number of the 16-bit free-run timer is as follows: Interrupt request number: 19 (13_H)


Prescaler

The prescaler divides a machine clock and provides a counter clock to the 16-bit up counter. Dividing ratio of the machine clock is specified by timer counter control status register (TCCS) among four values.

Timer Counter Data Register (TCDT)

The timer counter data register is a 16-bit up counter. A current counter value of the 16-bit free-run timer is read. Writing a value during halt of the counter allows setting an arbitrary counter value.

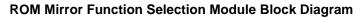
8/16-bit PPG Timer 1 Block Diagram

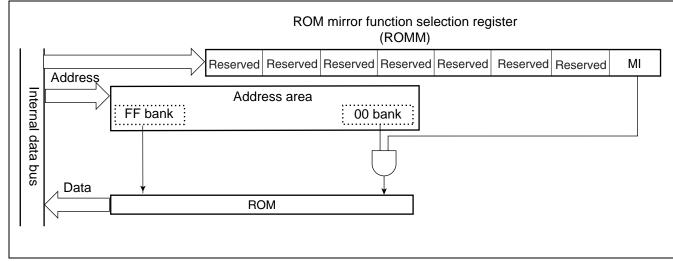
12.12 CAN Controller

The Controller Area Network (CAN) is a serial communication protocol compliant with CANVer2.0A and Ver2.0B. The protocol allows data transmission and reception in both standard frame format and expanded frame format.

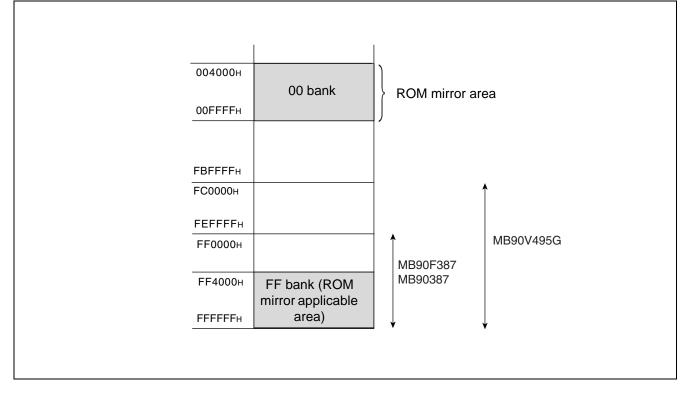
Features of CAN Controller

- CAN controller format is compliant with CANVer2.0A and Ver2.0B.
- The protocol allows data transmission and reception in standard frame format and expanded frame format.
- Automatic transmission of data frame by remote frame reception is allowed.
- Baud rate ranges from 10 kbps to 1 Mbps (with 16-MHz machine clock).


Table 12-5. Data Transmission Baud Rate


Machine Clock	Baud Rate (Max)
16 MHz	1 Mbps
12 MHz	1 Mbps
8 MHz	1 Mbps
4 MHz	500 kbps
2 MHz	250 kbps

- Provided with 8 transmission/reception message buffers.
- Transmission/reception is allowed at ID 11 bit in standard format, and at ID 29 bit in expanded frame format.
- Specifying 0 byte to 8 bytes is allowed in message data.
- Multi-level message buffer configuration is allowed.
- CAN controller has two built-in acceptance masks. Mask settings are independently allowed for the two acceptance masks on reception IDs.
- The two acceptance masks allow reception in standard frame format and expanded frame format.
- For types of masking, all-bit comparison, all-bit masking, and partial masking with acceptance mask register 0/1, are specifiable.


12.14 ROM Mirror Function Selection Module Outline

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.

FF Bank Access by ROM Mirror Function

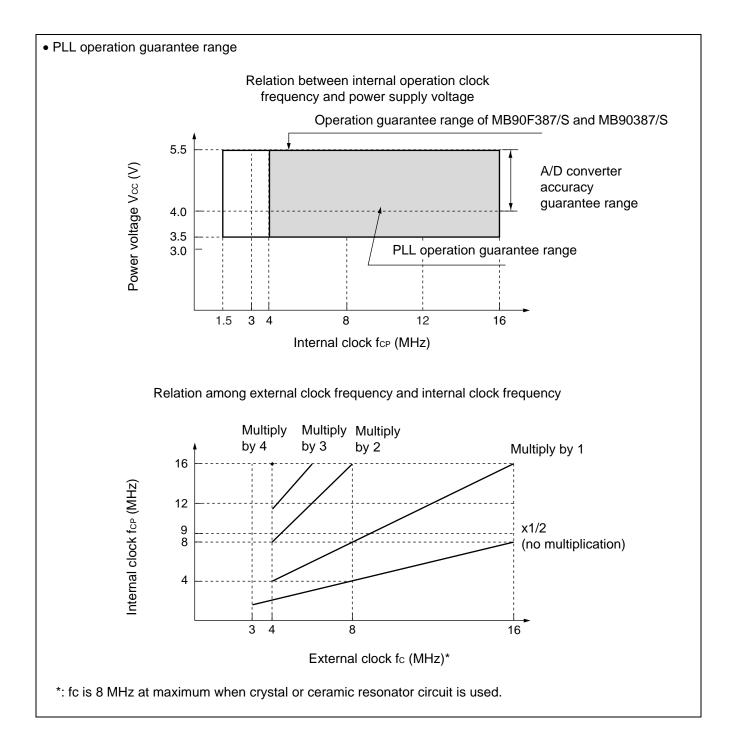
13. Electrical Characteristics

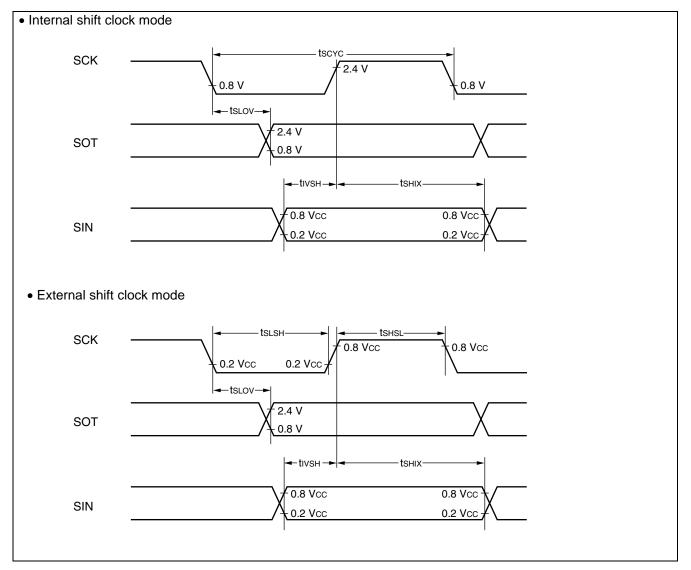
13.1 Absolute Maximum Rating

Parameter	Symbol	Rating		Unit	Remarks	
Parameter		Min	Max	Unit	Remarks	
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6.0	V		
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2	
	AVR	Vss - 0.3	Vss + 6.0	V	$AVcc \ge AVR^{*2}$	
Input voltage*1	Vi	Vss - 0.3	Vss + 6.0	V	*3	
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3	
Maximum clamp current		- 2.0	+ 2.0	mA	*7	
Total maximum clamp current	Σ Iclamp	-	20	mA	*7	
"L" level maximum output current	IOL1	-	15	mA	Normal output*4	
	IOL2	-	40	mA	High-current output*4	
"L" level average output current	IOLAV1	-	4	mA	Normal output*5	
	IOLAV2	-	30	mA	High-current output*5	
"L" level maximum total output current	Σlol1	-	125	mA	Normal output	
	ΣΙοι2	-	160	mA	High-current output	
"L" level average total output current	Σ lolav1	-	40	mA	Normal output*6	
	Σ Iolav2	-	40	mA	High-current output*6	
"H" level maximum output current	Іон1	-	-15	mA	Normal output*4	
	Іон2	-	-40	mA	High-current output*4	
"H" level average output current	IOHAV1	-	-4	mA	Normal output*5	
	IOHAV2	-	-30	mA	High-current output*5	
"H" level maximum total output current	ΣІон1	-	-125	mA	Normal output	
	ΣІон2	-	-160	mA	High-current output	
"H" level average total output current	ΣΙομαν1	-	-40	mA	Normal output*6	
	ΣΙομαν2	-	-40	mA	High-current output*6	
Power consumption	PD	-	245	mW		
Operating temperature	TA	-40	+105	°C		
Storage temperature	Tstg	-55	+150	°C		

*1: The parameter is based on $V_{SS} = AV_{SS} = 0.0 V$.

*2: AVcc and AVR should not exceed Vcc.

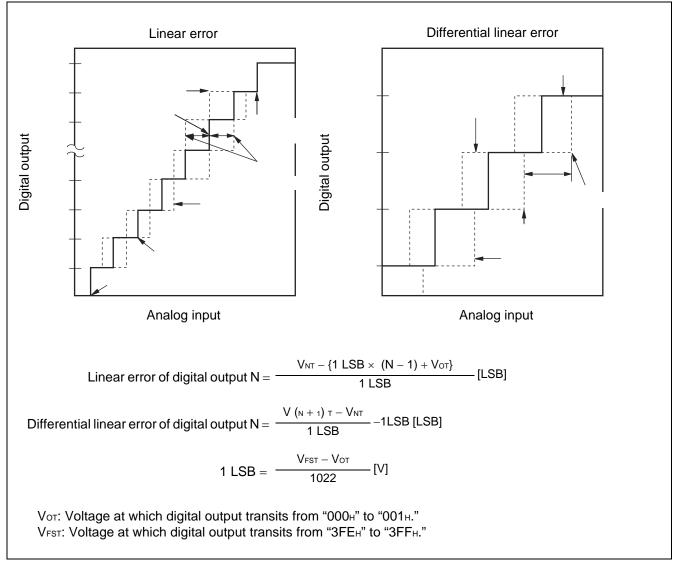

*3: VI and Vo should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.


*4: A peak value of an applicable one pin is specified as a maximum output current.

- *5: An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
- *6: An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)

*7:

Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35*, P36*, P37, P40 to P44, P50 to P57
*: P35 and P36 are MB90387S and MB90F387S only.



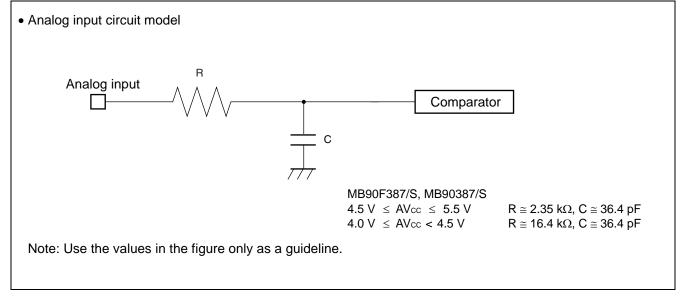
13.4.5 Timer Input Timing

 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
Falameter				Min	Max		
Input pulse width	tтіwн	TIN0, TIN1	-	4 tcp*	-	ns	
	t⊤ıw∟	IN0 to IN3					

*: Refer to Clock Timing ratings for tcp (internal operation clock cycle time).

(Continued)


13.7 Notes on A/D Converter Section

Use the device with external circuits of the following output impedance for analog inputs:

Recommended output impedance of external circuits are: Approx. 3.9 k Ω or lower (4.5 V \leq AVcc \leq 5.5 V) (sampling period=2.00 μ s at 16 MHz machine clock), Approx. 11 k Ω or lower (4.0 V \leq AVcc < 4.5 V) (sampling period=8.0 μ s at 16 MHz machine clock).

If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.

If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.

About errors

As [AVR-AVss] become smaller, values of relative errors grow larger.

13.8 Flash Memory Program/Erase Characteristics

Parameter	Conditions	Value			Unit	Remarks	
Farameter		Min	Тур	Max	Onit	Remarks	
Sector erase time	$\begin{array}{l} T_{\text{A}}=+~25~^{\circ}C\\ V_{\text{CC}}=5.0~V \end{array}$	-	1	15	S	Excludes 00H programming prior to erasure	
Chip erase time		-	4	-	S	Excludes 00H programming prior to erasure	
Word (16-bit width) programming time		-	16	3,600	μS	Except for the over head time of the system	
Program/Erase cycle	_	10,000	-	-	cycle		
Flash Data Retention Time	Average T _A = + 85 °C	20	-	-	Year	*	

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2004-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify a